数学建模差分方程模型
- 格式:ppt
- 大小:979.50 KB
- 文档页数:37
数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。
在各种数学模型中,差分方程模型也是一种很重要的模型。
本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。
差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。
这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。
例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。
差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。
一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。
此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。
以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。
设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。
我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。
差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。
差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。
1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。
2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。
3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。
4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。
2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。
2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。
3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。
4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。
随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。
在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。
有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。
例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。
这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。
二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。
但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。
差分方程建模举例差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历背景分析、确定目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。
当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。
然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。
另外,有时有可能通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。
有时还需要找出决定变量的初始条件。
有时还需要将问题适当分成几个子部分,分别求解。
模型1 种群生态学中的虫口模型:在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。
建立数学模型来表现虫子数目的变化规律。
模型建立:假设第n 年的虫口数目为n P ,每年一个成虫平均产卵c 个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有:n n cP P =+1,这是一种简单模型;如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为)1(21-n n p p 221n p ≈,故减少数应当与它成正比,从而有: 21n n n bP cP P -=+这个模型可化成:)1(1n n n x x x -=+λ,这是一阶非线性差分方程。
这个模型的解的稳定性可以用相应一阶差分方程的判断方法来获得。
如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。
数学建模中的差分方程算法在数学建模中,差分方程算法是常用的一种方法。
它可以用来模拟各种现象,例如人口增长、物理运动等。
差分方程算法采用差分逼近的方法来解决连续变量的问题。
本文将介绍差分方程算法的基本原理和应用。
一、差分方程算法的基本原理差分方程算法是在连续变量上进行离散化的方法。
它将一个连续变量的函数f(x)离散化为一个由离散节点组成的序列f(x1),f(x2), …, f(xn)。
这些离散节点通常是等间距的。
通过差分逼近的方法,我们可以将f(x)的导数、二阶导数等进行离散化,从而得到相应的差分方程。
一个一阶常微分方程的一般形式为:dy/dx = f(x,y)如果我们将x、y离散化,可以得到以下的形式:(yi+1-yi)/(xi+1-xi) = f(xi, yi)其中,xi和yi表示第i个离散节点上的值,xi+1和yi+1表示第i+1个离散节点上的值。
这个式子就是一个一阶差分方程。
二、差分方程算法的应用差分方程算法可以用来模拟各种现象。
下面将介绍几个常见的应用。
(一) 人口增长人口增长可以用一个简单的模型来描述:每年有一定比例的人口出生,同时有一定比例的人口死亡。
假设出生率为b,死亡率为d,那么人口增长的速率就是(b-d)N,其中N是当前人口数量。
将时间离散化,可以得到以下的差分方程:Nt+1 - Nt = (b-d)Nt这个式子表示,下一年的人口数量等于当前的人口数量加上人口增长的数量。
每一年人口增长的数量是(b-d)N,其中N表示当前的人口数量。
(二) 物理运动物理运动可以用牛顿第二定律来描述:加速度等于力除以质量。
假设物体的质量为m,力为F,速度为v,物体的位置为x,那么可以得到以下的差分方程:v(t+dt) = v(t) + a(t)dtx(t+dt) = x(t) + v(t)dt + 0.5a(t)dt^2a(t) = F(t)/m这三个式子分别表示,下一时刻的速度等于当前速度加上加速度乘以时间变化量dt;下一时刻的位置等于当前位置加上速度乘以时间变化量dt加上1/2的加速度乘以时间变化量的平方;加速度等于力除以质量。
-192-第十六章 差分方程模型离散状态转移模型涉及的范围很广,可以用到各种不同的数学工具。
下面我们对差分方程作一简单的介绍,下一章我们将介绍马氏链模型。
§1 差分方程1.1 差分方程简介规定t 只取非负整数。
记t y 为变量y 在t 点的取值,则称t t t y y y -=∆+1为t y 的一阶向前差分,简称差分,称t t t t t t t y y y y y y y +-=∆-∆=∆∆=∆+++12122)(为t y 的二阶差分。
类似地,可以定义t y 的n 阶差分t n y ∆。
由t y t 、及t y 的差分给出的方程称为t y 的差分方程,其中含t y 的最高阶差分的阶数称为该差分方程的阶。
差分方程也可以写成不显含差分的形式。
例如,二阶差分方程02=+∆+∆t t t y y y 也可改写成012=+-++t t t y y y 。
满足一差分方程的序列t y 称为差分方程的解。
类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。
若解中不含任意常数,则称此解为满足某些初值条件的特解。
称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++-++ (1) 为n 阶常系数线性差分方程,其中n a a a ,,,10 是常数,00≠a 。
其对应的齐次方程为0110=+++-++t n t n t n y a y a y a (2)容易证明,若序列)1(t y 与)2(t y 均为(2)的解,则)2(2)1(1t t t y c y c y +=也是方程(2)的解,其中21,c c 为任意常数。
若)1(t y 是方程(2)的解,)2(t y 是方程(1)的解,则)2()1(t t t y y y +=也是方程(1)的解。
方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程00110=+++-a a a n n λλ (3) (II )根据特征根的不同情况,求齐次方程(2)的通解。
数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。
所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。
在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。
差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。
差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。
差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。
这个方程是离散的,通过已知的初始条件来逐步递推获得结果。
差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。
例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。
在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。
差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。
2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。
3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。
这部分需要结合实际问题和数学方法来确定。
4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。
这部分是求解差分方程的前提条件。
5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。