21.Taylor级数展开的唯一性
- 格式:ppt
- 大小:1.80 MB
- 文档页数:9
一元微积分与数学分析—常见函数的T aylor展开梅加强南京大学数学系如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.注意:f光滑并不意味着其T aylor展开收敛到自身.例如,考虑函数f(x)=e−1 x2(x=0),f(0)=0,则f在0处的各阶导数均为零,其Maclaurin展开恒为零.问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?定理1(T aylor公式系数的唯一性)设f在x0处n阶可导,且f(x)=nk=0a k(x−x0)k+o(x−x0)n(x→x0),则a k=1k!f(k)(x0),k=0,1,···,n.证明.根据带Peano余项的T aylor公式,f(x)又可写为f(x)=nk=01k!f(k)(x0)(x−x0)k+o(x−x0)n(x→x0).如果令b k=a k−1k!f(k)(x0),k=0,1,···,n,则两式相减可得nk=0b k(x−x0)k=o(x−x0)n(x→x0).首先,在上式中令x→x0即得b0=0.其次,上式两边除以x−x0,再令x→x0可得b1=0.这个过程可以继续,当等式两边除以(x−x0)k并令x→x0时就得到b k=0(0≤k≤n).T aylor展开的运算性质设f,g在x0=0处的Taylor展开分别为∞n=0a n x n,∞n=0b n x n,则(1)λf(x)+µg(x)的Taylor展开为∞n=0(λa n+µb n)x n,其中λ,µ∈R.(2)f(−x)的Taylor展开为∞n=0(−1)n a n x n;(3)f(x k)的Taylor展开为∞n=0a n x kn,其中k为正整数;(4)x k f(x)的Taylor展开为∞n=0a n x k+n,其中k为正整数;(5)f (x)的Taylor展开为∞n=1na n x n−1=∞n=0(n+1)a n+1x n;(6)x0f(t)d t的Taylor展开为∞n=0a nn+1x n+1;例子例11=1+x+x2+···+x n+···,x∈(−1,1).1−x例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例2ln(1−x)=−∞n=1x nn=−x−x22−···−x nn−···,∀x∈[−1,1).(1)对数函数的展开证明.利用积分可得ln(1−x)=−xd t1−t=−x1+t+···+t n−1+t n1−td t=−x−x22−···−x nn−xt n1−td t.如果−1≤x<0,则xt n1−td t≤xt n d t=|x|n+1n+1→0;(n→∞)如果0≤x<1,则xt n1−td t≤11−xxt n d t=x n+1(1−x)(n+1)→0.(n→∞)由此即得(1).将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.例3arctan x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33+x55−x77+···,∀x∈[−1,1].(3)证明.利用积分可得arctan x=xd t1+t2=x−x33+x55+···+(−1)n−1x2n−12n−1+R n(x),其中余项R n(x)=(−1)nxt2n1+t2d t.当x∈[−1,1]时|R n(x)|≤|x|0t2n d t=|x|2n+12n+1→0(n→∞),这说明(3)式成立.特别地,取x=1,我们就重新得到了Leibniz公式π4=1−13+15−17+···.(Leibniz-Gregory)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)证明.e x的各阶导数仍为它自己,由Lagrange余项可得e x=n−1n=0x kk!+R n(x),R n(x)=eθxn!x n,其中θ∈(0,1).此时有如下估计|R n(x)|≤e|x||x|nn!→0(n→∞).这说明(4)式成立.例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)证明.利用sin x=cos x,cos x=−sin x可得sin(2k+1)(0)=(−1)k,sin(2k)(0)=0.由带Lagrange余项的T aylor公式可得sin x=x−x33!+x55!+···+(−1)n−1x2n−1(2n−1)!+(−1)n x2n+1cosθx(2n+1)!,(θ∈(0,1))当n→∞时余项趋于零.cos x的展开类似可得.。
taylor 级数展开式摘要:1.泰勒级数简介2.泰勒级数展开式3.泰勒级数应用正文:泰勒级数(Taylor series)是以英国数学家布鲁克·泰勒(Brook Taylor)的名字命名的,是一种在给定点附近近似计算函数值的方法。
泰勒级数展开式是将函数展开为一个无穷级数,该级数的每一项都与该点的各阶导数有关。
泰勒级数在许多数学和工程领域具有广泛的应用,例如在数值分析、近似计算、泛函分析等方面都有重要的作用。
泰勒级数展开式通常表示为:f(x) ≈ f(a) + f"(a)(x - a) + (f""(a)/2!)(x - a)^2 + ...+ (f^n(a)/n!)(x - a)^n + ...其中,f(x) 是要展开的函数,a 是展开点,f"(a)、f""(a)、...、f^n(a) 分别表示函数f 在点a 处的一阶导数、二阶导数、...、n 阶导数,x 是离a 点很近的一个变量。
为了更好地理解泰勒级数展开式,我们可以从一个简单的例子入手。
假设我们有一个函数f(x) = e^x,我们要在x = 0 处展开泰勒级数。
首先计算各阶导数:f"(x) = e^xf""(x) = e^xf^3(x) = e^x...然后将各阶导数除以相应的阶乘,并乘以(x - a)^n,得到泰勒级数展开式:f(x) ≈ 1 + x - (1/2!)x^2 + (1/3!)x^3 - (1/4!)x^4 + ...可以看到,泰勒级数展开式是一个无穷级数,通过计算有限项可以得到一个在展开点附近很好的近似值。
需要注意的是,泰勒级数的收敛性取决于函数和展开点,有些函数的泰勒级数在某个区间内收敛,有些函数的泰勒级数在全域内收敛,还有一些函数的泰勒级数在某些点不收敛。
泰勒级数在许多领域都有广泛的应用,如在数值分析中,泰勒级数展开式可以用来近似计算积分、求和等;在近似计算中,泰勒级数可以用来逼近函数,例如在插值和拟合问题中;在泛函分析中,泰勒级数可以用来研究函数空间等。
1、绪论泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结。
由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明。
使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识。
只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧。
2、布鲁克·泰勒简介布鲁克·泰勒(1685年8月18日出生于英格兰密德萨斯埃德蒙顿,1731年11月30日逝世于伦敦)是一名英国数学家,他主要以泰勒公式和泰勒级数出名。
他的母校为剑桥大学圣约翰学院。
进入大学之前,他一直在家里读书,他的全家尤其是他的父亲都喜欢音乐和艺术,并且经常在家里招待艺术家。
这对泰勒一生的工作造成了极大的影响,这从他的俩个主要科学研究课题:弦振动问题及透视画法就可以看出来。
1701年布鲁克·泰勒进入剑桥大学圣约翰学院,1709年他获得法学学士、1714年获得法学博士学位。
他也学习数学。
1708年他获得了“振荡中心”问题的一个解决方法,但是这个解法直到1714年才被发表。
因此导致约翰·白努利与他争谁首先得到解法的问题。
他1715年发表的《Methodus Incrementorum Directa et Inversa》为高等数学添加了一个新的分支,今天这个方法被称为有限差分方法。
除其它许多用途外他用这个方法来确定一个振动弦的运动。
他是第一个成功地使用物理效应来阐明这个运动的人。
在同一著作中他还提出了著名的泰勒公式。
直到1772年约瑟夫·路易斯·拉格朗日才认识到这个公式的重要性并称之为“导数计算的基础”(le principal fondement du calcul différentiel)。