韦达定理练习
- 格式:doc
- 大小:13.00 KB
- 文档页数:4
韦达定理练习题一、选择题A. x1 + x2 = b/aB. x1 x2 = b/aC. x1 x2 = √(b^2 4ac)/aD. x1 x2 = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两根为x1和x2,则x1 x2的值为?A. 5B. 6C. 5D. 63. 若一元二次方程2x^2 4x + 1 = 0的两根为x1和x2,则x1 + x2的值为?A. 2B. 4C. 2D. 4二、填空题1. 已知一元二次方程x^2 3x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
2. 若一元二次方程3x^2 6x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
3. 已知一元二次方程4x^2 + 8x 9 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。
三、解答题1. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
2. 设一元二次方程x^2 (k+3)x + 2k = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
3. 已知一元二次方程x^2 (a+b)x + ab = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
4. 若一元二次方程x^2 (m+n)x + mn = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
5. 已知一元二次方程x^2 (2a1)x + a^2 a = 0的两根为x1和x2,求x1 + x2和x1 x2的值。
四、应用题1. 在一个一元二次方程中,两根的和是10,两根的积是21,请写出这个方程。
2. 如果一元二次方程的两根分别是方程系数的倒数,且两根的积是1/6,求这个方程。
3. 有一个一元二次方程,它的两根的和是它们积的3倍,且两根的积是12,求这个方程。
韦达定理练习题一、选择题1. 已知二次方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和 \( x_2 \),根据韦达定理,下列哪个选项是错误的?A. \( x_1 + x_2 = -\frac{b}{a} \)B. \( x_1x_2 = \frac{c}{a} \)C. \( x_1 + x_2 = \frac{c}{a} \)D. \( x_1x_2 = -\frac{b}{a} \)2. 对于二次方程 \( x^2 - 5x + 6 = 0 \),使用韦达定理,下列哪个选项是正确的?A. 根的和为 5B. 根的积为 -6C. 根的和为 3D. 根的积为 63. 如果二次方程 \( 2x^2 - 4x + 1 = 0 \) 的一个根是 \( x = 1 \),那么另一个根是:A. 0.5B. 2C. -2D. 1二、填空题4. 假设二次方程 \( 3x^2 - 6x + 2 = 0 \) 的根为 \( x_1 \) 和\( x_2 \),根据韦达定理,\( x_1 + x_2 \) 等于 ________。
5. 对于二次方程 \( x^2 + 4x + 4 = 0 \),其根的积 \( x_1x_2 \)等于 ________。
6. 如果二次方程 \( ax^2 + bx + c = 0 \) 的两个根相等,即\( x_1 = x_2 \),那么 \( b^2 \) 与 \( 4ac \) 之间的关系是\( b^2 \) ________ \( 4ac \)。
三、解答题7. 已知二次方程 \( x^2 - 7x + 10 = 0 \),求出它的两个根,并验证韦达定理是否成立。
8. 给定一个二次方程 \( 2x^2 - 12x + 10 = 0 \),使用韦达定理求出它的两个根,并计算根的和与积。
9. 如果二次方程 \( ax^2 + bx + c = 0 \) 的根的和为 5,根的积为 6,求出 \( a \)、\( b \) 和 \( c \) 的值。
韦达定理练习题初三韦达定理是初中数学中的重要定理之一,它为我们解决三角形中的问题提供了有效的工具。
在初三学习阶段,我们需要通过练习题的形式,巩固和应用韦达定理的知识。
下面是一些韦达定理练习题,帮助同学们更好地掌握这一知识点。
【题目一】已知△ABC中,AB = 6,AC = 8,BC = 10,求△ABC的高。
【解题思路】根据韦达定理,对于三角形ABC,有公式:a² = b² + c² - 2bc * cosA其中,a、b、c分别表示三角形的边长,A表示夹角。
根据已知条件,代入公式中可得:8² = 6² + 10² - 2 * 6 * 10 * cosA进一步计算可得:64 = 36 + 100 - 120cosA28 = -120cosAcosA ≈ -0.233由于A为锐角,cosA不可能为负数,因此此题无解。
【题目二】已知△ABC中,AB = 12,BC = 18,AC = 24,求△ABC的面积。
【解题思路】根据韦达定理,我们可以先通过余弦定理求得角BAC的值。
cosA = (b² + c² - a²) / 2bccosA = (18² + 24² - 12²) / 2 * 18 * 24cosA ≈ 0.5由于韦达定理中的角A为夹角,无法直接计算面积,我们需要进一步计算角B、角C。
角B = arcsin(b * sinA / a)角B = arcsin(18 * sin(0.5) / 12)角B ≈ 0.573 rad角C = π - A - B角C = π - 0.5 - 0.573角C ≈ 2.068 rad根据三角形面积公式S = 0.5 * a * b * sinC,代入已知条件可得:S = 0.5 * 12 * 18 * sin(2.068)S ≈ 110.4所以,△ABC的面积约为110.4平方单位。
韦达定理练习题一个伟大的发现—韦达定理【知识要点】1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根分别为1x , 2x ,则:1x +2x =-b/a ;1x .2x =c/a2.若1x , 2x 是某一元二次方程的两根,则该方程可以写成:x 2-(1x +2x )x+1x 2x =0.【经典例题】【例1】已知1x ,x2为方程x 2+px+q=0的两根,且1x +x 2=6, 1x 2+2x 2=20,求p 和q 的值.【例2】已知:方程12212+=x x 的两根为1x ,2x ,不解方程求下列各式的值:(1)(x1-x2)2;(2) 321231x x x x +【例3】已知:关于x 的方程x 2-3x+2k-1=0的两个实数根的平方和不小于这两个根的积,且1+2k>0,求满足上述条件的k 的整数值.【例4】已知方程组-==+--)12(0212x k y y x kx (x,y 为未知数),有两个不同的实数解 ====2211,y y x x y y x x (1)求实数k 的取值范围; (2)若,3112121=++x x y y 求实数k 的值.【例5】已知,关于x的方程(n-1)x2+mx+1=0①有两个相等的实数根.(1)求证:关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根;(2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n+12n的值.【方法总结】1.利用韦达定理求一元二次方程的两根之和与两根之积.(1)容易忘记除以二次项系数;(2)求两根之和时易弄错符号.2.已知两根,求作一元二次方程时,也容易弄错一次项系数的符号.3.应用韦达定理时,注意不要忽略题中的隐含条件,比如隐含的二次方程必有实数根的条件. 【经典练习】一、选择题1.下列说法中不正确的是 ( )A.方程x2+2x-7=0的两实数根之和为2B.方程x2-3x-5=0的两实数根之积为-5C.方程x2-2x-7=0的两实数根的平方和为18D.方程x2-3x-5=0的两实数根的倒数和为3/52.若x1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )A.5/4B.9/4C.11/4D.73.已知关于x的一元二次方程X2-mx+2m-1=0的两个实数根的平方和为7,那么m的值是( )A.5B.-1C.5或-1D.-5或14.方程x2-3x-6=0与方程x2-6x+3=0的所有根的乘积为 ( )A.-18B.18C.-3D.35.若一元二次方程ax2+bx+c=0的两根为-3和-1,则抛物线y=ax2+bx+c的顶点横坐标为( )A.-2B.2C.3D.-16.已知:a 、b 、c 是△ABC 的三条边长,那么方程cx 2+(a+b)x+c/4=0的根的情况是 ( )A.无实数根B.有两个不相等的正实根C.有两个不等的负实根D.有两个异号的实根二、填空题1.请写出一个二次项系数为1,两实根之和为3的一元二次方程:。
韦达走理练习1、已知关于X的一元二次方程x+x+1二0有两个不相等的实数根,则k的取值范围是5、已知x1、x2是方程x+6x+3二0的两个实数根,则6、如果关于x的一元二次方程x - 6x+c=0没有实根,那么c 的取值范围是_________ 、7、已知关于x的一元二次方程x+2x-m二0有两个相等的实数根,则m的值是8、方程x - 2x - 1=0的两个实数根分别为xl, x2,则二9、已知a, 0是一元二次方程x-4x-3二0的两实数根,则代数式二________ 、10、已知x二2是方程x+mx-2二0的一个解,则方程的另一个解为11、用指定的方法解方程22 - 25=0 x+4x - 5=0[1 **********]的值等于-10+25=04) 2x - 7x+3=012、+3+2=013、已知关于x的一元二次方程x+2x+m二0、当m二3时,判断方程的根的情况;当m=- 3时,求方程的根、14、当实数k为何值时,关于x的方程x-4x+3-k二0有两个相等的实数根?并求出这两个相等的实数根、15、阅读材料:如果xl, x2是一元二次方程ax+bx+c=O的两根,那么有xl+x2= - , xlx2二、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例xl, x2是方程x+6x-3二0的两根,求222222xl+x2的值、解法可以这样:Vxl+x2=6, xlx2=-3 则xl+x2=-2xlx2-2X =42、请你根据以上解法解答下题:已知xl, x2是方程x - 4x+2=0 的两根,求:的值;222222222 的值、16、已知xl, x2是方程3x+2x - 1=0的两根,求xl+x2的值、17、已知关于x的一元二次方程x+kx - 1=0,求证:方程有两个不相等的实数根;设方程的两根分别为xl, x2,且满足xl+x2二xl・x2,求k的值、18、已知x1、x2是一元二次方程2x - 2x+l - 3m=0的两个实数根,且x1、x2满足不等式xl・x2+2>0,求实数m的取值范围、19、已知xl, x2是方程x-2x-2二0的两实数根,不解方程求下列各式的值:20、已知一元二次方程X - 2x+m二0、若方程有两个实数根,求m的范围;若方程的两个实数根为xl, x2,且xl+3x2=3,求m的值、2222222;、21、阅读材料:如果x1、x2是一元二次方程ax+bx+c二0的两根,那么,名的韦达定理、现在我们利用韦达定理解决问题:2已知m与n是方程2x - 6x+3二0的两根填空:m+n= ________ , m* n= _________ ;计算22、已知关于x的一元二次方程x-2x-0二0、如果此方程有两个不相等的实数根,求a的取值范围;如果此方程的两个实数根为xl, x2,且满足23、已知关于x的一元二次方程kx- 2x+k - 1=0有两个不相等的实数根xl, X2、求k的取值范围;是否存在实数k,使+二1成立?若存在,请求出k的值;若不存在,请说明理由、222,、这就是著的值、,求a的值、。
韦达定理练习题初三一、选择题1. 若一个一元二次方程的两个根分别是α和β,则下列选项中正确的是()A. α + β = 0B. αβ = 1C. α + β = b/aD. αβ = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两个根为x1和x2,则x1 x2的值为()A. 5B. 6C. 5D. 63. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,则下列说法错误的是()A. x1 + x2 = b/aB. x1 x2 = c/aC. 若a > 0,则方程有两个实数根D. 若b^2 4ac < 0,则方程有两个不相等的实数根二、填空题1. 已知一元二次方程2x^2 4x + 1 = 0的两个根为x1和x2,则x1 + x2 = _______。
2. 若一元二次方程x^2 3x + k = 0有两个实数根,则k的取值范围是_______。
3. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两个根为x1和x2,则x1 x2 = _______。
三、解答题1. 已知一元二次方程x^2 (k+3)x + 2k = 0的两个根为x1和x2,且x1 x2 = 6,求k的值。
2. 已知一元二次方程x^2 (a+2)x + a = 0的两个根为x1和x2,且x1 + x2 = 4,求a的值。
3. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,且x1 + x2 = 5,x1 x2 = 6,求a、b、c的关系。
4. 已知一元二次方程x^2 4x + m = 0的两个根为x1和x2,且x1和x2是两个连续的正整数,求m的值。
5. 已知一元二次方程x^2 (k+2)x + k^2 5 = 0有两个实数根,求k的取值范围。
四、应用题1. 小华解一元二次方程x^2 (3a+1)x + 2a^2 = 0时,发现两个根的和是7,请问a的值是多少?2. 在一个三角形中,三边的长度分别是x、x+1和x+2,已知x是方程x^2 (a+3)x + 6 = 0的一个根,求a的值。
韦达定理练习题韦达定理,也称作维特定理或者勒让德-费尔马定理,是解决几何问题的一种重要方法之一。
该定理通过运用面积比较,可以在一定条件下求得未知的长度或者位置关系。
本文将通过一系列的练习题,来帮助读者更好地理解和运用韦达定理。
练习题一已知三角形ABC的顶点坐标分别为A(2,3),B(-1,4),C (1,-2),求BC边的长度。
解答:根据韦达定理的原理,我们可以得出以下公式:BC² = (AC² + AB²) - 2(AC × AB × cos∠CAB)首先,我们需要计算AC、AB两条边的长度:AC = √[(x₂ - x₁)² + (y₂ - y₁)²]= √[(1 - 2)² + (-2 - 3)²]= √[1 + 25]= √26AB = √[(-1 - 2)² + (4 - 3)²]= √[9 + 1]= √10接下来,我们可以计算∠CAB的余弦值:cos∠CAB = [( (AC² + AB²) - BC² ) / 2AC × AB ]将AC、AB的值代入公式,得:cos∠CAB = [( (26 + 10) - BC² ) / 2× √26 × √10 ]由于我们已知∠CAB的余弦值为正值,所以∠CAB是锐角,也就是说∠CAB的余弦值在(0,1)之间。
根据余弦函数的性质,我们可以推出BC²的最大值为36,最小值为0。
因此,我们可以将推导出的余弦值的范围带入公式,计算BC²的区间:0 ≤ [( (26 + 10) - BC² ) / 2× √26 × √10 ] ≤ 1经过计算,得到:0 ≤ [36 - BC² / 2× √26 × √10 ] ≤ 1通过推导和计算,我们得出BC边的长度满足以下条件:0 ≤ BC ≤ 6练习题二已知平行四边形ABCD,AB边长为5,AD边长为9,对角线AC 的长度为12,求BC和CD两条边的长度。
18、设21,x x 是方程()031222=-+--m x m x 的两个实数根。
(1)当m 取何值时,21x x ≠;(2)当42221=+x x 时,求m 的值。
19、已知关于x 的一元二次方程()()002122>=-+--m m x m mx(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为21,x x 且()()m x x 53321=--,求m 的值.20、已知关于x 的方程:x m x m 22240---=() (1)求证:无论m 取什么实数值,这个方程总有两个相异实根;(2)若这个方程的两个实根x 1、x 2满足x x 212=+,求m 的值及相应的x 1、x 2。
《韦达定理》练习2一 填空题:1、如果()51222+++-m x m x 是一个完全平方公式,则=m ______。
2、已知x 的二次方程04422=++k kx x 的一个根是–2,那么k=__________3、已知关于x 的一元二次方程02=++q px x 的两根为2和3,则q p +=________.4、已知关于x 的一元二次方程02=--k x x 无实数恨,则k 的取值范围是=_________5、关于x 的一元二次方程()01122=-+++k x k kx 有两个实数根,则k 的取值范围是______。
6、若m 、n 是方程0120022=-+x x 的两个实数根,则mn mn n m -+22的值是 .7、如果关于x 的一元二次方程022=+-m x x 有两个相等的实数根,那么m =________。
8、如果关于x 的方程022=+-k x x 的两根的差等于6,那么k=___________9、若关于x 的方程0122=-+kx x 的两根均是整数,则k 的值可以是________。
(只要求写出两个)。
10、已知α,β是方程0522=-+x x 的两个实数根,则ααβα22++的值为=_________二.选择题:11、若关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是。
韦达定理初三练习题韦达定理是解决三角形问题的重要定理之一,在初中数学学习中起着关键的作用。
在本篇文章中,我们将通过一些实际的练习题来巩固和应用韦达定理的知识。
请您认真阅读题目,并按照题目要求进行解答。
练习一:已知三角形的两个边长和夹角,求第三边的长度。
1. 已知一个三角形的两条边长分别为5cm和8cm,夹角为60度。
请计算第三边的长度。
解答:根据韦达定理,我们可以使用以下公式求解:c² = a² + b² - 2abcosC。
其中,c代表第三边,a和b分别代表已知的两个边长,C代表已知的夹角。
根据题目信息,已知的两条边分别为5cm和8cm,夹角为60度。
我们可以将这些数据代入韦达定理的公式中进行计算。
c² = 5² + 8² - 2 × 5 × 8 × cos60°= 25 + 64 - 80 × 0.5= 89 - 40= 49因此,第三边的长度为√49,即7cm。
练习二:已知三角形的两个边长和一条高的长度,求另一条高的长度。
2. 已知一个三角形的两边长分别为6cm和10cm,其中一条高的长度为8cm。
请计算另一条高的长度。
解答:我们可以利用韦达定理的性质来求解这个问题。
首先,我们需要找到一个关系式来表示两条高的长度。
根据韦达定理,我们可以得到以下关系式:(a² - b²)/ (a² + b²)= (h₁² - h₂²)/ (h₁² + h₂²)。
其中,a和b代表已知的两边长,h₁和h₂分别代表已知的两条高的长度。
根据题目中的信息,已知两边长分别为6cm和10cm,其中一条高的长度为8cm。
假设另一条高的长度为h₂。
根据关系式,我们可以将这些数据代入,得到以下等式:(6² - 10²)/ (6² + 10²)= (8² - h₂²)/ (8² + h₂²)我们可以通过化简这个等式,解得h₂的值。
根与系数的关系(韦达定理)练习题一、填空:1、 如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ;(3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0(B )正数(C )-8(D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31 (C )3 (D) -3(A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )(A )5或-2 (B) 5 (C )-2 (D)-5或2 6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B)-6 (C )21(D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、 若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.9、设21x x ,是方程03422=-+x x 的两根,利用根与系数关系求下列各式的值:)1)(1()1(21++x x 、 2111)2(x x +、 2112)3(x x x x +、 121212)4(x x x x ++、10、设方程03742=+-x x 的两根为21x x ,,不解方程,求下列各式的值:(1) 2221x x + (2) 21x x - (3)21x x + (4)21x x -11、已知21x x ,是方程01322=-+x x 的两个根,利用根与系数的关系,求下列各式的值:(1) )32)(32(21--x x ; (2)321231x x x x +12、实数s、t分别满足方程0199192=++s s 和且099192=++t t 求代数式t s st 14++的值。
韦达定理练习
1、已知关于x的一元二次方程x+x+1=0有两个不相等的实数根,则k的取值范围是
5、已知x
1、x2是方程x+6x+3=0的两个实数根,则
6、如果关于x的一元二次方程x﹣6x+c=0没有实根,那么c 的取值范围是 _________ 、
7、已知关于x的一元二次方程x+2x﹣m=0有两个相等的实数根,则m的值是
8、方程x﹣2x﹣1=0的两个实数根分别为x1,x2,则=
_________ 、
9、已知α,β是一元二次方程x﹣4x﹣3=0的两实数根,则代数式= _________ 、
10、已知x=2是方程x+mx﹣2=0的一个解,则方程的另一个解为
11、用指定的方法解方程
22﹣25=0 x+4x﹣5=0
[1**********]的值等于
﹣10+25=04)2x﹣7x+3=0
12、+3+2=0
13、已知关于x的一元二次方程x+2x+m=0、
当m=3时,判断方程的根的情况;
当m=﹣3时,求方程的根、
14、当实数k为何值时,关于x的方程x﹣4x+3﹣k=0有两个相等的实数根?并求出这两个相等的实数根、
15、阅读材料:如果x1,x2是一元二次方程ax+bx+c=0的两根,那么有x1+x2=﹣,x1x2=、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x+6x﹣3=0的两根,求222222x1+x2的值、解法可以这样:∵x1+x2=6,x1x2=﹣3则x1+x2=﹣2x1x2﹣2×=
42、
请你根据以上解法解答下题:已知x1,x2是方程x﹣4x+2=0的两根,求:
的值;
222222222的值、
16、已知x1,x2是方程3x+2x﹣1=0的两根,求x1+x2的值、
17、已知关于x的一元二次方程x+kx﹣1=0,
求证:方程有两个不相等的实数根;
设方程的两根分别为x1,x2,且满足x1+x2=x1•x2,求k的值、
18、已知x
1、x2是一元二次方程2x﹣2x+1﹣3m=0的两个实数根,且x
1、x2满足不等式x1•x2+2>0,求实数m的取值范围、
19、已知x1,x2是方程x﹣2x﹣2=0的两实数根,不解方程求下列各式的值:
20、已知一元二次方程x﹣2x+m=0、
若方程有两个实数根,求m的范围;
若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值、
2222222;、
21、阅读材料:
如果x
1、x2是一元二次方程ax+bx+c=0的两根,那么,名的韦达定理、现在我们利用韦达定理解决问题:
2已知m与n是方程2x﹣6x+3=0的两根
填空:m+n= _________ ,m•n= _________ ;
计算
22、已知关于x的一元二次方程x﹣2x﹣a=0、
如果此方程有两个不相等的实数根,求a的取值范围;
如果此方程的两个实数根为x1,x2,且满足
23、已知关于x的一元二次方程kx﹣2x+k﹣1=0有两个不相等的实数根x1,x
2、
求k的取值范围;
是否存在实数k,使 +=1成立?若存在,请求出k的值;若不存在,请说明理由、222,、这就是著的值、,求a的值、。