俄莫斯科大学力学数学专业教学计划-复旦大学精品课程
- 格式:pdf
- 大小:214.22 KB
- 文档页数:4
复旦大学数学系专业必修课介绍【实变函数】:主要讲Lebesgue测度和积分,比较难的一门课最重要定理:Lebesgue控制收敛定理、Fubini定理教材:自己印的讲义,不过可以参考夏道行的《实变函数论与泛函分析》上册,这本书内容太多,所以我们学的只是它的真子集= =。
实变函数还是很重要的,最重要的是给你一种测度和积分的观念,让你知道积分是定义在测度上面的,有个测度就可以定义一种积分;此外对后续的概率论的课程也很重要【复变函数】:主要讲复平面上的全纯函数,比实变简单= =。
最重要定理:Cauchy积分公式,以及全纯函数的3个等价定义,至于是哪3个大家学的时候总结吧,书上没有明确写出来教材:《复变函数论》张锦豪、邱维元著我旦本科的复变讲得还是比较简单的,调和函数不讲,解析延拓也不讲,以至于上数理方程课的时候老师抱怨“你们复变老师怎么什么都不讲?”= =。
【拓扑】:主要讲点集拓扑和基本群、覆盖空间最重要定理:万有覆盖定理;请务必把这个定理的证明完整背下来,期末考试已经连续考了两年了= =。
教材:自己印的讲义,以前的老教材,已经不出版了拓扑还是很重要的,相当于现代数学的语言,如果以后想继续做数学一定要搞清楚【数学模型】:水课,不像是数学课,不讲~~总结:大二的专业必修课分布是非常密集的,也很累,不过大家一定要坚持下去,到了大三下,基本就没什么特别耗精力的课了,大四就基本没什么课了大三:【泛函分析】:主要讲无限维线性空间以及其上的有界线性泛函和线性算子,和高代的区别就是一个有限维,一个是无限维;不过无限维的情况可比有限维复杂多了,也有意思多了最重要定理:开映射定理、闭图像定理、共鸣定理;这几个定理是相互等价的教材:自己印的,不过我们学的也是夏道行的《实变函数论与泛函分析》下册的真子集泛函是非常重要的数学基础课程,也有一定难度,要花时间,最好寒假预习一下【概率论】:主要就是讲概率论的;不过概率实际上是一个全有限测度,这也是为什么我说实变要好好学的原因之一,因为从精神上来讲,概率的全部结果,都可以用实分析的方法导出最重要定理:大数定律、中心极限定理教材:应坚刚老师的《概率论》概率论是统计和随机过程的基础,大家以后想学统计的、想做金融数学的,都必须把概率学好;此外本科的概率论实际上是初等概率论,所以也不算太难【微分几何】:主要讲三维欧氏空间中的光滑曲线、光滑曲面的局部几何性质和整体几何性质;事实上本科的微分几何并不是真正意义的微分几何,因为没有引入微分流形和微分流形上的度量的概念,R^3里面的东西也是比较古典的东西~~不过把简单的东西搞明白了也有助于进一步学习更复杂的概念最重要定理:曲线曲面基本定理;以及所谓高斯绝妙定理:曲面的高斯曲率只依赖于第一基本形式教材:自己印的讲义【数理方程】:主要讲波动方程、热传导方程、调和方程3类数学物理方程,也就是偏微分方程;不过这些都是古典的PDE,现代PDE类型和研究方法都有很大不同教材:谷超豪等著《数学物理方程》数理方程本人也正在学,只知道大概的框架,细节不知~~【基础力学】:鸡肋课程= =。
复旦大学课程教学大纲课程代码 MATH120008.09 编写时间 2011年08月更新课程名称 数学分析(I)英文名称 Mathematical Analysis(I)学分数 5 周学时 6任课教师* 谢锡麟 开课院系**力学与工程科学系预修课程 仅需普通高中相关数学基础;无特别先有基础要求。
课程性质:本课程可谓所有基础科学(包括数学、力学、物理、化学、生物等)、技术科学(包括航空航天、环境、材料、信息等)等专业最为基础和重要的数学基础课程,提供微积分的基本内容。
从知识体系的发展而言,微积分融合线性代数(这点特别反映在《数学分析(Ⅱ)》中)作为核心基础,一方面将为后续复变函数、实分析与泛函分析、常微分方程与偏微分方程、概率统计、微分几何等系统的数学知识体系的发展提供实质性的基础;另一方面,微积分和线性代数亦是理论力学、连续介质力学(包括流体力学、弹性力学)、振动力学、控制力学等力学知识体系的发展的坚实基础。
总体而言,本一年制的数学分析课程将结合面对的对象(适用于非数学类的几乎所有的专业),提供系统的微积分知识体系,不仅注重微积分知识体系的核心基础特点,而且注重知识体系的现代化发展,力求学生具有坚实的基础并具有基于其上的自我学习的能力。
在教学的广度与深度上,我们力求课程所授的知识体系具有国内外一流化水平,且切实注重学生的实际接受水平。
本课程《数学分析(I)》将主要提供一元微积分的内容,包括常微分方程最为基础的若干思想及方法。
教学目的:2005年,学校在百年校庆时提出“走以内涵发展的道路”,以及现今所致力于探索和推广的“通识教育、精英教育”的理念,结合力学以及数学间相辅相成、紧密相连的关系,而考虑本门课程的具体教学。
以下反映一些基本的观点,这将指导具体的教学。
✧虽然数学分析是数学课程,但我们学习的是“认识自然的系统的思想和方法”——许多实践和成就表明,数学对于我们认识自然是极其有效的——许多数学机制具有鲜明的力学和物理背景。
复旦大学数学学院学生选课指南选课是大学和中学最大的不同之一,学生在大学学习阶段需要在一定的范围内自己决定学什么课程,这对习惯中小学按学校安排课程学习的学生来说经常会面临选择困境。
从2015年开始,数学学院对教学方案作了较大的调整,主要是增加了学生选课的自由度和灵活度,这自然增加了学生选课的难度,因此学院组织撰写选课指南帮助学生选课,请每个学生在选课之前仔细阅读。
大学数学课程的内容和难度都是中学数学不能比拟的,而且这个内容和难度随着年级的增加以很大的加速度增加,所以除了上课时间外,学生平均需要付出两三倍于上课的时间进一步学习巩固,留有足够多的思考时间对学好数学是非常重要的,不投入相当的时间精力是不可能学好任何一门数学课程的,肤浅地学一门数学是没有什么意义的。
所以我们建议学生一个学期选的数学专业的课程应该在每周15个课时左右(注意是课时,不是学分,课时通常是大于等于学分的),不可超过18个课时。
A.数学学院毕业学分要求:共144学分1. 通识课程:41学分。
2. 大类必修课:18 学分数学分析I,数学分析I,大学物理B(上), 大学物理B (下)。
3. 专业必修课: 24学分数学分析III,高等代数(上), 高等代数(下),解析几何,抽象代数I,拓扑I(内容包括欧氏空间拓扑). 高等数学A(上下)再加数学分析原理可以代替数学分析I,II,III.毕业论文: 4 学分, 按A,B,C,D方式给成绩, 申请A类成绩的学生需教师推荐, 递交论文并答辩.4. 限定必修课:27学分从下面12门课程中选9门(27个学分), 超过9门可以算成专业选修课: 常微分方程,泛函分析, 概率论, 拓扑II, 微分几何,基础力学, 数理方程, 抽象代数II, 复变函数, 实变函数, 数学建模,微分方程数值解.5. 专业选修课: 15 学分, 从培养方案所列选修课程中选(信息与计算专业有课程要求), 通常是5门课程. 包括限定必修课中的课程.6. 任意选修课: 15学分, 可选全校任意课程(包括数学学院专业选修课程). 包括专业选修课中的课程.B.学生选课指导:数学学院的学生需要修的数学课总数大约是:2门大类课程+6门专业必修9门专业限定必修+4门专业选修+4门任意选修+毕业论文,共25门课程加一个毕业论文,平均每个学期3门。
莫斯科大学计算数学系立思辰留学360介绍,计算教学与控制论系是人类知识急剧发展的应用数学和信息学领域主要教学与科研中心。
本系培养与教育、科学、工业、经济和管理的计算技术应用相关的众多问题专家。
现该系有250多位教授和教师,其中80位国家博士,8位俄罗斯科学院院士和10位通讯院士。
系主任:俄罗斯科学院通讯院士德巴科斯托马罗夫教授教研室:基础数学数学物理计算方法科研自动化非线性动态系统与控制过程运筹学数理统计最优控制数学控制论系统分析数学预测学算法语言计算机系统自动化系统程序设计量子信息学外语学士学位:4年头两年大学生学习基础学程,只要有现代应用数学,计算机和信息学。
主要课程:数学分析,线性代数,解析几何,离散数学,微分方程,概率论,数理统计学,信息学概论(MS-DOS),算法及算法语言(PASCAL),计算系统的结构及汇编程序语言(INTEL),系统语言(C语言),操作系统(UNIX;WINDOWS),应用软件,计算机制图。
上课时间:每周32个教学小时应用数学和统计学资格:数学家-程序设计者专修科:数学物理学数学模拟计算机诊断数值方法计算数学最优控制数理统计计算机科学计算机科学和信息技术资格:信息程序员专修科:系统程序设计数学控制论系统和网络(INTERNET)算法语言信息安全数据库信息学和操作(每周24课时)资格:程序员-分析师专修科:金融数学商业信息学管理信息系统系统控制局域网(INTERNET)系统分析硕士学位:2年应用数学和信息学(每周16课时)课程设置:数学物理数学模拟计算诊断数值方法概率论和数理统计运筹学和系统分析优化和最优控制数学控制论网络程序设计系统程序设计对计算机和计算机的系统软件设计设计经济和金融活动的数学和信息学支持博士学位:3年(每周8堂课)专业:数学物理计算教学数学控制论数理统计微分方程式数学模拟计算技术在科研中的运用计算机数学应用软件数值方法与程序集子系统与网络数据库和鉴定系统运筹学及系统分析。
复旦大学课程教学大纲课程代码 MECH130106编写时间 2016年03月更新课程名称 应用实变函数与泛函分析基础 注:本课程为本科生、研究生共享课程英文名称 Fundamentals of Real and Functional Analysis学分数 3 周学时 54任课教师* 谢锡麟 开课院系**航空航天系(原力学与工程科学系)预修课程 一元微积分(面对一元函数所建立的微分学与积分学)课程性质:力学类本科生、研究生可作为专业选修课;非力学类本科生、研究生可作为任意选修课。
教学目的:数理观点图1(左)谈镐生先生的观点;(右)V.I.Arnold的观点我国著名科学家谈镐生先生,认为“按照近代观点,物理、化学、天体物理、地球物理、生物物理可以全部归纳为物理科学。
力学是物理科学的,数学又是所有学科的共同工具,力学和数学原是科学发展史上的孪生子,因此形象地可以认为,物理科学是一根梁,力学和数学是它的两根支柱”,如图1(左)所示。
俄著名数理学家V.I.Arnold,在其《论数学教学》中开门见山地指出“数学是物理的一部分;物理是自然科学,且是实验科学;数学是物理中‘做实验’比较‘便宜’的那部分”,如图1(右)所示。
图2 力学与数学为认识自然世界(广义范畴的物理科学)及非自然世界(社会、经济、管理等科学)提供基本的思想及方法归纳力学、数学以及物理学的核心知识体系(对应相关专业的主干课程),笔者绘制图2以表现三学科之间的关系:力学与数学为我们认知自然及非自然世界提供了基本而又系统的思想及方法;同时数学又为我们构建理性世界(认知世界)提供了基本的表述形式;此处的自然世界为谈镐生先生所指的具有广义范畴的物理科学,非自然世界指社会、经济、管理等科学。
研究对象及目标笔者持“数理观点”—— 基于坚实数理基础之上的“融会贯通、触类旁通”,以此实现“学问”向“能力”的进阶;表现为按数量方式,认知自然世界及非自然世界的一种具有统一性的世界观。
俄罗斯数学教材选译2007年03月16日星期五 18:15微积分学教程 (共三卷)(第8版)(俄罗斯)Г.М.菲赫金哥尔茨本书是一部卓越的数学科学与教育著作。
自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字,在世界范围内广受欢迎。
.本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。
本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。
..本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。
本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。
...经典力学的数学方法(第四版)(俄罗斯)В.И.阿诺尔德本书以最优美的现代数学形式讨论经典力学问题,它本是数学或力学专业的学生学习理论力学的教材,但实际上,它的范围已经远远超越理论力学,是现代数学的一个重要方面——辛几何。
原书被译为多国文字出版,并由Springer收入GTM丛书,以英文广泛发行。
本书已修订为第4版,主要内容包括牛顿力学、拉格朗日力学和哈密顿力学三大部分,通过经典力学的数学工具,考察了动力学的所有基本问题。
特别是16个附录,使原书的主题更为鲜明:辛几何与辛拓扑,它们反映了几十年来数学科学在一个方面的发展。
这些附录都属于专题介绍性质,是作者和他的学生们在有关方面近年来研究工作的总结。
.本书可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。
...常微分方程(第6版)(俄罗斯)Л.C.庞特里亚金本书是Л.C庞特里亚金院士根据他多年在莫斯科大学数学力学系所用的讲义编成的一本教材。
复旦大学数学一级学科研究生课程简介复旦大学数学一级学科研究生课程简介MATH6001 代数拓扑基础Algebraic Topology: An Introduction开课院系:数学研究所任课教师:傅吉祥副教授开课学期:第一学分:3 周学时:3 总学时:54课程性质:硕士学位基础课适用专业:数学各专业本课程的教学目的系统学习奇异同调与上同调理论。
教学内容及基本要求教学内容:1、同调理论的定义与基本性质;2、一些中间的同调群的计算及应用;3、cw复列的同调;4、任意系数群的同调;5、乘积中间的同调;6、上同调理论;7、同调与上同调中的积。
基本要求:1、弄清同调与上同调理论中的一些基本概念;2、学会计算同调与上同调的一些基本方法;3、计算一些简单拓扑中间的同调与上同调群。
考核方式及要求考试。
闭卷考试。
学习本课程的前期课程要求点集拓扑学、代数学的基础知识。
教材及主要参考书目、文献与资料李元熹、张国樑,《拓扑学》;Willian S. Massey, Algebraic Topology; An introduction; Willian S. Massey, Singular Homology Theory; B. A. Dubrown, A. T. Fomenko, S. P. Norikov, Modern Geonetry-Methods and Applications PartⅡ Introduction to Homology Theory.MATH6002 现代微分几何概论(I)MATH6025 现代微分几何概论(II)Introduction to Modern Differential Geometry开课院系:数学研究所任课教师:东瑜昕教授开课学期:第一和二学分:3+3 周学时:3+3 总学时:54+54课程性质:硕士学位基础课适用专业:数学各专业本课程的教学目的1、介绍现代微分几何的基本知识,涉及微分流形、多重线性代数,向量场、外微分、流形上stokes 公式、纤维丛(向量丛)初步。
上海市教育委员会关于公布2003年度上海高等学校教学质量与教学改革工程精品课程名单的通知文章属性•【制定机关】上海市教育委员会•【公布日期】2003.10.17•【字号】沪教委高[2003]42号•【施行日期】2003.10.17•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】中等教育正文上海市教育委员会关于公布2003年度上海高等学校教学质量与教学改革工程精品课程名单的通知(沪教委高[2003]42号)各高校:根据《上海市教育委员会关于2003年度高校精品课程申报评审工作的通知》(沪教委高[2003]32号)的精神,2003年度上海高校精品课程评选工作已经结束。
这项工作得到全市高校的普遍重视,各高校相继启动了本校精品课程建设工作,共建设校级精品课程1500余门。
在此基础上,经学校按比例推荐,上海市教育评估院组织专家评审和我委审定,共评出复旦大学《数学模型系列课程》等79门课程为市级精品课程,现将课程名单予以公布并将有关事项通知如下:一、精品课程建设是“高等学校教学质量与教学改革工程”的重要组成部分,目标是具有一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理等特点的示范性课程,其建设成果将作为高校教学评估和教学名师奖的重要内容之一。
我委将在市教委网站公布这些课程名单并授予“市级精品课程”荣誉证书。
二、学校要切实加大和保障对精品课程建设的经费投入,应从事业费拨款中安排一定比例用于精品课程建设并对市级获奖的精品课程参与人员给予相应的奖励。
三、精品课程要使用网络进行教学与管理,对入选的市级精品课程相关的教学大纲、教案、习题、实验指导、参考文献目录等逐步上网并免费开放。
在适当的时间组织现场交流会进行交流和研讨。
四、对2003年度市级精品课程,我委将于明年根据精品课程的各项指标组织检查,检查不合格的课程取消“市级精品课程”荣誉称号,且不能重新申报市级精品课程和申报优秀教学成果奖。
俄罗斯大学数学教学掠影2006年6月,我们随高等教育出版社俄罗斯考察团去莫斯科和圣彼得堡访问。
为了解决高等教育出版社出版的《俄罗斯数学教材选译》中一些教材的版权问题,我们拜访了7位莫斯科大学的教授和有关的几家出版社,从某些侧面看到了俄罗斯大学的数学教学状况。
由于这次出访主要不是了解俄罗斯大学的数学教学全景,因此只能掠影式地来介绍所见所闻。
一、教授重视教学、认真写书俄罗斯有崇尚知识、俄罗斯的大学有重视教学的优良传统,这是早有耳闻的。
这次,通过拜访教授和参观学校,有了许多感性的认识。
我们拜访的7位科学家(其中3位院士),除了现任的莫斯科大学校长萨多夫尼齐院士因为太忙,只礼节性地接待我们外,其他几位都花了一定的时间与我们交谈。
他们热爱教学、认真写书的精神给我们留下了很深刻的印象。
《微分几何与拓扑学简明教程》、《现代几何学》(三卷)作者之一的福明柯院士现在是莫斯科大学数学力学系微分几何教研室的教授。
他39岁就当选为俄罗斯科学院院士,是莫大数学力学系的科学院院士中当选年龄最轻的一位。
他向我们介绍了他自1967年开始撰写的31本教材与专著,其中大部分都被翻译成英文在西方出版。
在不到40年的时间里写了31本高水平的书,其敬业精神和所付出的艰辛是可想而知的。
伊里因院士是苏联时期当选的科学院院士。
77岁高龄的他,目前是莫斯科大学大物理系计算数学教研室的教授,在从事石油系统使用偏微分方程和控制理论研究的同时,还在第一线进行本科生的教学。
这位被称为莫大教材之“王”的他,写过8本教材,其中使用面最大的一种高等数学教材,印数达几千万。
谈起教学生涯,他口若悬河,激情洋溢,当他向我们讲到他的教学工作时,居然高声朗诵起普希金的一首爱情诗,以爱情来比喻和表达他对教学工作的深厚感情。
面对这样一位德高望重的教授,我们的尊敬之情油然而生。
写《理论力学》的马尔契夫教授是一个具有典型俄罗斯民族性格的学者,他豪爽、坚韧、充满激情,当他看到我们带去的他的书的中文版时,毫不掩饰地兴奋地反复吻着那本书。
柯尔莫哥洛夫龚光鲁清华大学柯尔莫哥洛夫,A.H.(АндрейНиколаевичКолмогоров)1903年4月25日生于俄国坦波夫(Тамбов);1987年10月20日卒于苏联莫斯科.数学、大气力学.柯尔莫哥洛夫的父亲卡塔也夫(НиколайМатвеевичКатаев)是农艺师兼作家,母亲柯尔莫哥洛娃(МарияЯковлевнаКолмогорова)出身贵族.他们并没有办结婚手续,所以柯尔莫哥洛夫从母姓.十月革命后,卡塔也夫主持农业人民委员部教育部门,在1919年A.И.邓尼金(Деникин)进攻时死于南方战线.柯尔莫哥洛夫生后十天母亲就去世,他由姨妈薇拉(Вира)与娜捷日达(Надежда)抚育,生活在沿伏尔加河的雅洛斯拉伏尔(Ярославлъ)下游约20公里的图诺斯那村(Туношна).她们都有民主思想,卒于50年代初.在柯尔莫哥洛夫幼年,两个姨妈努力引导他对书本和自然的兴趣,开拓他的好奇心,带他去田野、森林,给他讲花草树木的知识、星星与宇宙演化的故事、安徒生的童话…….她们办了一个有十个不同年龄的孩子组成的家庭学校,以适应当时新的教育模式.五六岁的他负责家庭杂志《春燕》(BeсенниеЛасточки)的数学部分.在1963年发表的文章《我是如何成为数学家的》(КатЯсталматематиком)中写道:“在五六岁时我就领受到数学‘发现’的乐趣,我观察到1=12,1+3=22,1+3+5=321+3+5+7=42等等.我的发现被刊在《春燕》上,在那里还发表了我发明的算术问题(其中例如:要固定一个有四孔的扣子至少要用线缝合两个孔,问有多少种不同的固定办法?).”孩子们还参加农庄劳动、收集柴火、自己缝扣子等等.1910年他进入莫斯科列普曼(Лепман)文法学校预班.该校崇尚自由,着重因材施教,学生可以自由选听高年级的课程,还采用了很多试验教学.在女性环境中成长的他特别珍视男孩特点的培养,诸如淘气、嬉闹、大胆、果敢、灵巧等.在该校他结识了A.Д.叶戈洛娃(АннаДемитриевнаЕгорова).她是通讯院士、历史学家П.H.叶戈洛夫(Егоров)之女,后于1942年在莫斯科与柯尔莫哥洛夫成婚,她卒于1988年.少年时他对生物、物理、历史、社会学、数学、俄国艺术、林业学都有浓厚的兴趣,在14岁就自习高等数学,还梦想在荒漠中创建法律至上的公社,并为此起草了宪法.1920年他毕业于第23高中(即前列普曼文法学校).他曾向往学冶金,因为在那时候人们认为工程比纯科学更为重要和必需.他同时在国立莫斯科大学物理数学系和门捷列夫(Менделеев)化工学院冶金系注册.但是不久以后他就下决心以数学为职业.他在莫斯科大学学习的同时又在门捷列夫化工学院数学部学习了一段时间,还参加了莫斯科大学历史系教授C.V.巴赫罗欣(Вахрушин)的讨论班.17岁的他对历史发生了兴趣,他曾对俄国诺夫格勒(Новгород)地区在15—16世纪房地产登记的资料,用数理统计进行科学分析并写出论文,得到了巴赫罗欣的赞赏.但是当他问能否发表时,得到的回答是:只有一个论据是不够的,必须有五个不同的论据.以后他专心致力于数学,因为数学问题只需一个证明就足够了.在进入大学之前,他已有相当多的数学知识,他从《数学的新概念》(Новыеидейвматематике)一书中知道了集合论基础,他从《勃洛克豪斯与杰弗朗百科全书》(Brockhaus and Jefronencyclopedia)中学了很多专题,并用自己的语言改写了这些过于浓缩的内容.进入莫斯科大学后,他立刻通过了集合论和射影几何的免修考试.当时鲁金学派正处于顶峰时期,1921年他在H.H.鲁金(Луэин)的解析函数论课上,对鲁金的一个猜测举出了反例,得到П.C.乌里松(Урысон)的赞扬,成为乌里松的学生.在听了П.C.亚历山德罗夫(Александров)的课后,他发表了“作用于集合上的算子的理论”(Теорииоперацийнадмножествами),推广了E.波莱尔(Borel)、R.贝尔(Baire)、H.勒贝格(Lebesgue)、亚历山德罗夫和M.苏斯林(Суслин)等人的研究.1921年秋,他参加了B.B.斯捷班诺夫(Стенпанов)的三角级数讨论班,这对他以后的事业有特殊的重要性.1922年他解决了鲁金提出的构造一个系数收敛到零的任意慢的傅里叶级数问题.此后他又定期向鲁金学习,从而又成为鲁金的学生.在三角级数讨论班上,他还与Д.E.门晓夫(Меншов)建立了友谊.1922年,他取得了突出的成果,构造了几乎处处发散的傅里叶级数,它立刻使这位大学三年级的学生扬名世界(到1926年他进而构造了一个处处发散的傅里叶级数),并开始了他长达60多年的高强度与高创造性的时期.1925年他毕业于莫斯科大学后成为鲁金的研究生,并开始与鲁金的另一个学生A.Я.辛钦(Хинчин)一起从事概率论的研究.1929年研究生学习结束后,他成为莫斯科大学数学力学研究所助理研究员.1934年在苏联首次建立了博士学位制度,翌年他被授予数学物理学博士学位.1930年1月他与亚历山德罗夫一起对德国和法国进行了10个月的访问.格丁根在当时是数学的“麦加圣地”,研究人员少而精,只有D.希尔伯特(Hilbert)、E.兰道(Landau)、R.柯朗(Courant)与S.N.伯恩斯坦(Bernstein)4位教授,那里的助教有K.O.弗里德里希(Friedrichs),F.雷列希(Rellich).H.莱维(Lewy)和E.诺特(Noether)的学生B.L.范·德·瓦尔登(Van der Waerden)等.希尔伯特时已66岁,即将退休,H.外尔(Weyl)已内定取代他的位子.柯尔莫哥洛夫与这些人广泛交往,与柯朗探讨了极限定理的领域,与外尔讨论了直觉逻辑,与兰道交换了对函数论领域的看法.继而,他前往慕尼黑与C.卡拉特奥多雷(Carathéodory)交谈自己关于测度论与积分论的思想.后者对前者的测度论思想很喜欢,坚持要他尽快发表,但是对他的推广的积分论反应冷淡.在法国,他与M.弗雷歇(Fréchet)讨论了马尔科夫链,与P.勒维(Levy)进行了长时间的科学讨论,并与老一辈数学家勒贝格、波莱尔等建立了联系.1931年柯尔莫哥洛夫任莫斯科大学教授,开始指导研究生.1933年任莫斯科大学数学力学研究所所长(至1939年1月,后来在1951—1953年又任此职).他在数学力学系创建了如下教研室:概率论(1935年,任主任至1966年),数理统计(1976年,任主任至1980年),数理逻辑(1980年,任主任至逝世),概率统计方法(1960年,任顾问至1966年,任主任从1966年到1976年).他对数学教学结构的形成起了很大作用,他创建了许多新课程,如数学分析Ⅲ、概率论、数理逻辑等.他教过的课程有数学分析、常微分方程、复函数与概率论、数理逻辑、信息论等.在这些课程中有的附有非常有趣的实践练习,如用多项式逼近函数、范特波尔(Vander Pol)型方程的积分、微分方程的奇点、最小二乘法、用网络来研究偏微分方程的积分等.他于1953年任莫斯科大学数学会名誉会员,后任理事长(1964—1966,1973—1985).1954—1958年任莫斯科大学数力系主任.1939年,他被选为苏联科学院数理部院士、主席团委员、数理部科学秘书(1939—1942)、科学院斯捷克洛夫(Стеклов)数学研究所所长(1939—1958,1980至逝世).在30年代末至40年代初,他研究湍流,随后在苏联科学院地球物理研究所创建了大气湍流实验室(1946—1949),以后该室发展成该所的主体部门.在卫国战争中,他与M.B.凯尔迪希(Келдыш)一起研究枪炮的火力与轰炸的理论.1949年,柯尔莫哥洛夫任《大百科全书》数学部主任与编委.他长期任期刊《数学科学的进展》(УспехиМатемдтическихRussian Mathematical Surveys)的主编.他创办了期刊《概率论及其应用》(ТеорииВероятностиииеёпременении)及以中学生为对象的杂志《量子》(KBaHT).他还主持撰写了数理系列丛书.从1963年至逝世,他主要致力于文法学校的数学教学改革:编写教科书、编制教学大纲.1963—1968年,他任科学院科教委员会数学部主任.1968—1978年任教育部中学教科书委员会委员及数学部主任.他是莫斯科大学物理数学寄宿学校的创建人之一(1963),而第18寄宿学校则以他命名.他与辛钦关于随机过程的研究成果在1941年获国家奖,他与A.И.阿诺尔德(Арнолд)关于经典力学的研究在1965年获列宁奖.他两次获得科学院奖——1951年与Б.B.格涅坚科(Гнеденко)一起获车贝雪夫奖,1986年获罗巴切夫斯基奖.1963年,他荣获苏维埃劳动英雄称号.他还曾被授予十月革命勋章(1983)、劳动红旗勋章(1940)、七枚列宁勋章(1944—1975)及“在伟大的爱国战争中英勇劳动”奖章、金星奖章(1963)等.他获得的国际荣誉称号有:巴黎大学名誉博士(1955),罗马科学院通讯院士(1956),波兰科学院外国院士(1956),国际统计学研究所名誉成员(1957),波士顿美国艺术与科学院名誉院士(1959),斯德哥尔摩大学名誉科学博士(1960),加尔各答印度统计研究所名誉科学博士(1962),荷兰皇家科学院外国院士(1963),伦敦皇家科学院外国院士(1964),罗马尼亚科学院名誉院士(1965),匈牙利科学院名誉院士(1965),美国国家科学院外国院土(1967),法国科学院外国院士(1968),匈牙利“荣誉事业”(Honoris causa)科学博土(1973),历史科学国际科学院名誉院士(1977),民主德国科学院外国院士(1977),联邦德国“有成就”(Pour le Mérite)勋章学会外国会员(1977),芬兰科学院外国院士(1983),等等.他得到的国际奖有:国际巴尔桑(Balzan)奖(1963),美国气象学会奖章,民主德国科学院赫姆霍兹(Helmholtz)奖章(1976),匈牙利旂帜奖章(1975),1980年鉴于他“在调和分析、概率论、遍历论和动力系统深刻而开创性的发现”而获得沃尔夫(Wolf)奖.20世纪初以来,由于采用了集合论观点研究函数,从而推广了测度与积分、函数构造等概念,这就大大扩大了数学家们的视野.波莱尔、勒贝格等人为此都做出了重大贡献.苏联的Д.T.叶戈洛夫(Егоров)、鲁金、苏斯林进一步把函数与集合的研究推向新的高潮.柯尔莫哥洛夫正是在20—30年代鲁金学派的顶峰时期成长的.鲁金学派造就了苏联举世闻名的一批数学大师,柯尔莫哥洛夫是其中最杰出的代表.在这个时期,数学领域还出现了大量极有挑战性的问题,新思想、新方法、新探索、新成就相继出现,其中包括:H.庞加莱(Poincare)关于太阳系发展的永恒性问题(庞加莱称它为动力学基本问题)的提出,引导到哈密顿(Hamilton)系统在微扰下的稳定性的研究;L.巴舍利艾(Bache-lier)、A.爱因斯坦(Einstein)、M.V.斯摩罗霍夫斯基(Smo-luchowski)、N.维纳(Wiener)及勒维等长期研究的布朗运动的数学特性,揭示了随机过程的基本规律;大气物理的研究提出了湍流的统计规律刻画;格丁根学派领导人希尔伯特在20世纪初提出了23个对数学发展具有决定性影响的问题;当时函数论的研究正在从有限维扩展为无穷维,这就需要把函数论、拓扑与代数等结合起来以产生新概念、新学科.以上种种背景是柯尔莫哥洛夫从学生时代开始在数学上面临的一些客观使命.他一生共写学术论文(包括合作)488篇,给《大百科全书》写114条,给科普报刊撰写57篇文章.他是本世纪苏联最有影响的数学家,也是本世纪世界上为数极少的几个最有影响的数学家之一.他所有的开创性工作是俄罗斯民族的骄傲,也是世界人民的宝贵财富.他研究的领域非常广泛,几乎遍及一切数学领域,包括:函数的距离理论、描述集合论、数理逻辑与数学基础、概率论及随机过程、数理统计及其应用、几何、泛函分析、拓扑、微分方程、湍流理论、(武器的)火力理论、演算学与自动机、动力系统与经典力学、函数的迭合理论、信息论、算法概率论、遍历论、诗韵中的统计学等.他在这些领域的研究成果不仅被应用于数学本身的发展和开辟新的领域,而且在物理、化学、生物、地球物理、冶金学、结晶学、人工神经网络等学科中都有极重要的应用.他的开创性研究可分三个时期.第一个时期开始于1921年秋.大学二年级的他开始研究三角级数与集合上的算子等一系列复杂问题.1926年他构造了处处发散的一个傅里叶级数,直到1966年瑞典数学家L.卡勒逊(Carle-son)及1967年美国数学家R.亨特(Hunt)又证明了对p>1,L p函数的傅里叶级数处处收敛到这个函数,这就彻底解决了三角级数的发散问题(鲁金问题).他于1922年定义的在集合上的δS运算是描述集合论中的基本运算.他对三角级数和正交级数的兴趣贯彻终生,不时地返回到这个领域,并安排年轻人继续进行研究,在这方面他发表的10篇文章中的每一篇都是延续至今的研究的起点.在这时期他在微分、积分、可测集等方面都做了重要的工作.此后他又转向数理逻辑与数学基础.20世纪以来,数学家对逻辑律的适用性、数学本质及集合论悖论发生了无休止的争论,产生了直观主义者,他们否认排中律在超限归纳中的有效性.柯尔莫哥洛夫在1925年证明:超限地使用排中律所得到的有限结论都是对的,而且都可以不用排中律来证明.他还构造了他的直观演算系统,从而创造了直观逻辑的另一种解释.1925年他证明了希尔伯特变换的一个车贝雪夫型不等式,这是M.里斯(Riesz)、A.济格蒙德(Zygmund)、G.H.哈代(Hardy)等著名数学家关于奇异算子弱型概念研究的起点.作为柯尔莫哥洛夫开创性成果的核心部分之一是概率论与随机过程.这一研究起始于他大学的第四年(1924年),他与辛钦一起研究独立随机变量组成的级数的收敛性,得到了以后被称为柯尔莫哥洛夫三级数定理的成果,其中他首次使用了以后用他命名的不等式以及相应的下限估计,开创了概率论研究中的新方法.1928年他得到了独立随机变量列遵从大数律的必要且充分的条件.1930年他又得到了独立随机变量列遵从强大数律的一个非常一般的充分条件.这些结果至今是概率论教科书中的标准内容.1929年他又得到了独立同分布随机变量列的重对数律.他的结果和创用的方法是许多作者用来作为研究的泉源,其中如J.马辛凯维茨(Marcinkiewicz)和济格蒙德1937年证明了柯尔莫哥洛夫的结果中的一个小O条件不能改为大O;1941年P.哈特曼(Hartman)与维纳改进了柯尔莫哥洛夫的条件;1965年V.斯特拉森(Strassen)将其推广为泛函类型的重对数律.20世纪初,G.波尔曼(Bohlmann)曾企图给概率论建立一个公理系统.为此,波莱尔A.隆尼斯基(Lomnicki)、维纳相继在概率论中运用测度论,伯恩斯坦、R.冯·米赛斯(vonMises)也都企图建造概率论的公理化基础,但是都不很成功.柯尔莫哥洛夫在他1929年发表的文章“概率论与测度论的一般理论”(General measure theory and calculus of probabilities),首次给出了测度论基础的概率论公理结构.5年以后该文编写成单行本,即如今在数学界众所周知的经典著作《概率计算的基本概念》(Grundbegriffe der Wahrscheinlichkeitsrechnung).概率论的公理化是他的巨大贡献,它使概率论从自然哲学领域真正转到数学的范围,使概率论被确认为数学的一个分支,并且日渐与其他数学分支相互渗透.著名日本数学家伊籐写道“读了柯尔莫哥洛夫的小册子《概率论基本概念》,我信服地认为概率论可以用测度论来发展,并且它也与其他数学分支一样地严格”.柯尔莫哥洛夫在这单行本的序言中还列出了无穷维空间的概率分布、条件期望,指出这些都源自物理问题.事实上它们也是随机过程论的必要基础.在50多年以后的今天,它的意义就更明显了,它是概率论划时代的著作,柯尔莫哥洛夫在1930夏完成的小册子《概率论中的解析方法》(ber,die analytischen Methoden in Wahrscheinlichkeitrechnung)开创了无后效随机过程(以后辛钦建议改名为马尔科夫过程)的一般理论的研究,把物理学家M.普朗克(Plank)、爱因斯坦、A.福克(Fokker)等在特殊情形得到的关于转移函数的一个积分方程一般化[以后称为恰普曼(Chapman)-柯尔莫哥洛夫方程],并且由此导出了时间向前与向后的两个偏微分方程(称为柯尔莫哥洛夫方程).在马尔科夫过程的发展中,他把傅里叶的传热理论、爱因斯坦与斯摩罗霍夫斯基的布朗运动理论、马尔科夫等人关于可几随机徘徊的描述与首次构造随机过程例子的巴舍利艾与维纳的思想结合在一起,抽象出了马尔科夫过程的一般模型.这个工作标志着概率论发展及其在物理、化学、生物、工程等方面的应用的新时期.在这个时期,他的另一文章“拉普拉斯-李雅普诺夫定理的推广”(An extention of Laplace-Lypunov theorem,1931),给出了获得独立随机变量和的上、下界概率的渐近展开的基本方法.柯尔莫哥洛夫开创工作的第二阶段始于1931年他被任为教授之后.这时期持续了1/4个世纪,在此期间他的研究兴趣极其广泛.1932年他发表了两篇关于几何的文章“射影几何证法”(Кобоснованиюпроективнойгеометри)和“拓扑几何”(Топологическойгеометрии),用拓扑、群的观点研究几何.在他建议下,Л.庞特里亚金(Понтрягин)证明了具有可数基的连通局部紧拓扑域一定是实数域、复数域或四元数广域之一.在代数拓扑领域中上同调群是一个核心的概念.1936年柯尔莫哥洛夫与美国数学家J.W.亚历山大(Alexander)相互独立地构造了上同调群,并在其上定义了乘积运算,使之成为环,这在以后的研究(特别是连续映射)中极为重要.他在拓扑上的第二个贡献是给出了局部紧空间闭集的对偶律.1937年,他给出了一个从一维紧集到二维紧集的开映射,引起了苏联拓扑学家对开映射的兴趣.这时期,概率论仍旧是他的主要专业之一,他非常重视随机过程的应用.1932年他积极参与了著名生物学家Д.Д.罗玛晓夫(Ромащов)领导的生物微演化的实验室.由于马尔科夫过程是动力系统在随机情形的对等物,两者互相渗透会产生很多新的概念和现象,所以马氏过程始终是许多研究的重点.1935年他又提出了可逆(对称)马氏过程的新模型,并给出了刻画其特征的充要条件.40多年后的今天,可逆马氏过程已成为统计物理、排队网络、模拟退火、人工神经网络、蛋白质结构等领域中十分常见的重要模型.在20年代末30年代初 B.德·菲乃蒂(de Finetti)提出了“无穷可分律”,指出了具有特征函数和同分布,柯尔莫哥洛夫在1932年对具有二阶矩的随机变量给出了它具有无穷可分律的充要条件.以后,勒维证明了有限方差这个限制可以取消,随后辛钦又证明了这一结果仍可用柯尔莫哥洛夫的方法得到(最终的表达式称为无穷可分律的勒维-辛钦典则形式).柯尔莫哥洛夫还解决了一系列生物学问题,由此得到了十分有意义的纯数学的成果.他与И,Г彼得洛夫斯基(Петровский)及H.C.比斯库诺夫(Пискунов)合作的有关生物学的文章(1937),首次构造了非线性扩散的行波型稳定解.他在其中的贡献是从物理方面定性地描述现象的图象,并把它表示为公式.生物学问题导致他提出了分枝过程的模型,并研究了它的灭绝概率(1947年).1939年,他由分析统计资料验证了基因遗传的“孟德尔(Mendle)律”(当时基因与孟德尔律在苏联生物学界被批判为“唯心主义”、“反科学”的).1937年,他给出了在金属随机结晶过程中一个给定的点属于结晶团的概率与平均结晶的数目,这一结果在金属结晶化理论中至今仍是基本的结论.1933年,他与M.A.列沃托维奇(Леотович)给出了A.K.伏拉索夫(Власов)提出的二维布朗质点为中心、半径为ρ的圆盘在t时刻前扫过的平均面积的渐近估计.1936—1937年,他给出了可数状态马尔科夫链的状态分类.在数理统计方面,1933年他定义了度量经验分布与理论分布最大偏差的(以后以他命名的)统计量,并推导了它的分布函数.这是分布拟合理论中拟合度的基本检验,已成为数理统计教科书的基本内容.1935年他首次给出了巴拿赫空间上概率测度的特征泛函这一概念,并指出它在发展非线性量子理论中的重要性.他在平稳随机过程方面的成就与维纳的成就并列为该领域最基本的成果.具连续谱的元阻尼随机运动是平稳过程的丰富源泉,平稳过程是概率特征不随时间变化的随机过程,常出现在无线电工程、自动控制等应用领域,是大量随机自然现象(大气、海洋等)的理想化.其中的一个重要问题是用过去的资料预测将来.他早于维纳(1941)得到了预测与内插的公式.维纳指出柯尔莫哥洛夫的研究是与控制学有关的信息统计理论相联系的.在柯尔莫哥洛夫的研究中应用了希尔伯特空间的几何理论.平稳过程与平稳增量过程的研究使他得到了局部迷向湍流的近似表达式.流体有确定性的规律,但是其运动特征又极端复杂,可以把它看成随机过程.20世纪著名的工程师G.L.泰勒(Tay-lor)与T.冯·卡门(von K r mn)引进了迷向湍流,然而其结论与实验不符,柯尔莫哥洛夫用局部迷向湍流得到了著名的“柯尔莫哥洛夫2/3次律”:在特定条件下,湍流中距离为r的两点的速度差的平方平均与r2/3成正比.这个2/3律至今还被大气物理界公认为几乎是关于湍流的所有结果中最与实际相近的.1962年他又作了更为精确的修正.他在概率论、随机过程与数理统计方面的贡献,说明他是随机数学领域的领导人.他不仅是一个多方面的数学家,而且是一个有惊人洞察力的应用数学家.1949年格涅坚科与他一起发表的《独立随机变量和的极限分布》(Пределъныетеолемыдлясуммнеэависимыхслучайныхвеличин)一书,总结了莫斯科学派当时在弱极限理论方面的世界领先的成果,成为弱极限理论的经典著作.在逼近论方面,1935—1936年他研究了光滑性与逼近度的关系,引进了一种逼近的度量(以后称为柯尔莫哥洛夫直径),开创了逼近论领域中的新方向.60年代以后柯尔莫哥洛夫直径受到了更大的重视.在泛函分析方面,他在1931年得到了L p空间中集合为紧的判别法.在1934年定义了线性拓扑空间与其中的有界集和凸集,得到了可正规化的经典判别法(存在0点的一个有界凸邻域).1938年柯尔莫哥洛夫与И.M.盖尔范德(Гелъфанд)合作的文章是后者以后开创赋范环理论的源泉.他们证明了两个满足第一可数公理的拓扑空间的同胚性与在它们上的连续函数环间的代数同构性等价.他的第三个开创性研究时期开始于50年代中期.这时,他的研究方向转向经典力学哈密顿系统、信息论、动力系统的遍历论、信息论与函数论的关系(ε熵)、希尔伯特第13问题和函数的迭合、有限自动机与复杂性理论等领域.50年代中期他与B.A.乌斯宾斯基(Успенский)对算法与自动机理论的基本对象给出了广泛的定义.在这时期他在动力系统方面的工作可分为两个系列.第一个系列是经典力学方面的.太阳系能否永恒发展而不会引起灾变?简单行星系是否只有三体系统才能稳定地运动?这个问题归结于研究近似可积系统的运动体系.庞加莱称它为哈密顿系统在微扰下的发展问题.它是动力学基本问题,可溯源到Ⅰ.牛顿(Newton)、P.S.拉普拉斯(Laplace)的研究.柯尔莫哥洛夫在50年代中期对具大量初始条件的情形解决了这个问题,开创了哈密顿系的微扰理论.从他的定理可推出:围绕木星作圆轨道转动的卫星,在经受沿椭圆轨道的木星运动的干扰下,并不能影响木星的椭圆轨道.他的理论还可用到大量力学、物理学问题中,解决了不对称刚体统定点高速旋转的稳定性、托卡马克(Токамак)型系统中磁面的稳定性等问题.他的思想后来被A.И.阿诺尔德(Арнолд)与J.莫泽(Moser)所发展,成为以他们三人命名的KAM理论.。
复旦数学物理方法(实用版3篇)目录(篇1)1.复旦大学数学物理方法课程简介2.课程的主要内容3.课程的价值和意义4.如何学好复旦数学物理方法课程正文(篇1)复旦大学数学物理方法是一门面向复旦大学数学科学学院和物理学系的本科生和研究生开设的课程。
该课程旨在帮助学生掌握数学物理方法的基本理论和应用技巧,培养学生运用数学解决物理问题的能力。
课程的主要内容包括数学物理方程的导出和解析,数学物理方法在经典力学、量子力学、热力学和统计物理等领域的应用。
学生将学习到如何使用微分方程、积分方程、偏微分方程等数学工具解决物理问题。
复旦数学物理方法课程的价值和意义在于,它为学生提供了一种解决复杂物理问题的有效途径。
通过学习该课程,学生可以提高自己的数学素养和物理素养,为将来从事科学研究或工程技术工作打下坚实的基础。
要学好复旦数学物理方法课程,首先要具备扎实的数学和物理基础知识。
其次,要注重理论学习和实践应用的结合,多做习题和实践项目。
最后,要积极参与课堂讨论和学术交流,与老师和同学分享学习心得和研究成果。
总之,复旦数学物理方法课程是一门具有重要价值的课程,对于培养学生的数学物理素养和解决实际问题的能力具有重要意义。
目录(篇2)1.复旦数学物理方法的背景和意义2.复旦数学物理方法的研究内容3.复旦数学物理方法的研究成果4.复旦数学物理方法的发展前景正文(篇2)复旦数学物理方法是一门交叉学科,它结合了数学和物理学的理论和方法,旨在解决现代科学和工程领域中的各种问题。
复旦大学在这一领域拥有丰富的研究经验和卓越的研究成果,使其成为国内外广泛认可的重要学术中心。
复旦数学物理方法的研究内容涵盖了广泛的领域,包括非线性科学、统计物理学、凝聚态物理学、量子信息与量子计算、生物物理学等。
这些研究领域不仅具有深远的理论意义,也有广泛的应用价值。
复旦大学的研究人员通过深入研究这些领域,不断推动了数学物理方法的发展。
复旦数学物理方法的研究成果丰硕,其中一些成果已经成为了相关领域的经典理论。
复旦大学课程教学大纲“微积分的一流化进程”涉及的知识体系及其所属课程按上所述,我们对“具有一流化的微积分的知识体系”的追求对于今后高层次的学习以及研究等具有基础性的深远作用。
在明确目标后,结合复旦现有的课程及其学分设置,我们设想了“微积分一流化进程”的教学路径,现研究及实践的主要内容如上图所示:①大学一年级必修“数学分析”,主要涉及Euclid空间上微积分→②大一暑期选修课程《经典力学数学名著选讲》(有关微积分的深1本文涉及的数理知识体系,可以理解为:微积分+线性代数→常微分方程,偏微分方程;复变函数;概率统计等知识体系。
此知识体系,力学、数学、物理等理工专业均涉及,仅是要求程度有所不同。
2此事例引述自菲赫金哥尔茨所著《微积分教程》(俄罗斯数学教学选译之一)。
基本要求:.数学(数理知识体系)可理解为,按量化观点(包括定量与定性刻画),认识自然及非自然世界系统的思想和方法。
另一方面,对于数学作为的认识,取决于对数学自身的认识。
按上述观点,对于《数学分析(Ⅰ)》课程,需要学生系统、深入地掌握以一元函数为基本对象所开展的一元微分学与积分学,以及常微分方程基础,具体归纳为以下主要方法:1.数列极限的计算方法,包括典型的分析方法(涉及分部估计、Abel和式估计等);引入无穷小量的做法;处理带有和式的数列极限(Stolz定理、化为定积分);转为为函数极限处理。
2.无限小分析方法,主要为获得函数的局部高阶多项式逼近,以此可有效处理函数极限、数列极限。
方法主要包括基本初等函数的展开;技术性引理(逐项求导、逐项求积);Landau 符号的性质(表现为抓住主要矛盾忽略次要矛盾)。
如图6所示。
3.函数导数的计算方法,包括充分性方法(四则运算、链式求导);极限分析方法(针对分段函数)。
4.函数的定性作图方法,用于定性绘制平面Monge型曲线、一般参数曲线,涉及确定渐近线、单调区间、凹凸区间等。
5.一致连续性的分析方法,分为有界区间与无界区间上连续函数二类情形。
莫斯科师范大学数学入学考试
康复
【期刊名称】《中学数学月刊》
【年(卷),期】1999(000)007
【摘要】(俄)国立真斯科大学数学科目的入学考试,对于不同的系科有不同的要求与考试形式,例如,数学系既有笔试又有口试,物理、化学等系只有笔试,而社会学系则只有口试。
对于数学系来说,四月初举行一场数学奥林匹克,其优胜者可免试直升数学系;五月份为听过予备课程的学生举行入学考试;六、七月份分别对相关学校与其他学校的考生举行入学考试。
【总页数】3页(P48-50)
【作者】康复
【作者单位】
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.2010年莫斯科大学数学力学系入学考试试题解答 [J], 郑元禄(译)
2.莫斯科大学数学力学系2008年入学考试试题及解答 [J], 郑元禄
3.2009年莫斯科大学数学力学系入学考试试题与解答 [J], 郑元禄
4.2007年莫斯科大学数学力学系入学考试数学试题及简解 [J], 戎松魁
5.1998年莫斯科大学数学力学系入学考试口试试题和解答 [J], 康复
因版权原因,仅展示原文概要,查看原文内容请购买。