高中物理竞赛-电磁学3
- 格式:pptx
- 大小:887.94 KB
- 文档页数:19
高中物理竞赛试题分类汇编―电磁学全国中学生物理竞赛分类汇编电磁学第21届预赛三、(15分)测量电子电荷质量比(电荷Q与质量MQ/m之比)的实验装置如图所示。
真空玻璃管中阴极K的电能子,经阳极a与阴极k之间的高电压加速后,形成一束很细的电子流,电子流以平行于平板电容器极板的速度进入两极板c、d间的区域。
若两极板c、d间无电压,则离开极板区域的电子将打在荧光屏上的o点;若在两极板间加上电压u,则离开极板区域的电子将打在荧光屏上的p点;若再在极板间加一方向垂直于纸面向外、磁感应强度为b的匀强磁场,则打到荧光屏上的电子产生的光点又回到o点。
现已知极板的长度l=5.00cm,c、d间的距离d=l.50cm,极板区的中点m到荧光屏中点o的距离为l=12.50cm,u=200v,p点到o点的距离y?op?3.0cm;b=6.3×104t。
试求电子的荷质比。
(不计重力影响)。
-五、(15分)如图所示,两条平行的长直金属细导轨kl、pq固定于同一水平面内,它们之间的距离为l,电阻可忽略不计;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨良好接触,并可沿导轨滑动时没有摩擦。
两个杆的阻力均为r。
杆CD的中点用一根轻绳绑住,绳子的另一端绕过轻固定滑轮,悬挂一个质量为M的物体。
滑轮和转轴之间的摩擦被忽略,滑轮和杆CD之间的轻绳处于水平直线状态,与导轨平行。
导轨和金属细杆都处于均匀的磁场中,磁场的方向与导轨所在的平面垂直,磁感应强度为B。
此时,两根杆和悬浮液开始从静止状态移动。
当AB棒和CD棒的速度分别达到V1和V2时,两个棒的加速度是多少?8、(17点)在图中所示的电路中,每个电源的内阻为零,其中B点和C点为1.0?阻力和2.0?电阻连接到无限组合电路。
在图表中110? 连接在F电容器和E点之间的电极板上的电荷量。
rp2a第21届复赛五、(20点)如图所示,接地空心导体球壳的内径为r,电量为Q1和Q2的点电荷放置在空腔中直径为Q1=Q2=q的P1和P2处,两个??ap1r点电荷到球心的距离均为a.由静电感应与静电屏蔽可知:导体空腔内表面将出现感应电荷分布,感应电荷电量等于-2q.空腔内部的电场是由q1、q2和两者在空腔内表面上的感应电荷共同产生的.由于我们尚不知道这些感应电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感应电荷对腔内电场的贡献,可用假想的位于腔外的(等效)点电荷来代替(在本题中假想(等效)点电荷应为两个),只要假想的(等效)点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,? 与Q1一起在原腔中产生的电场是Q1在原腔内表面上感应的虚(等效)点电荷,Q1内表面位置的每个点的电势为0;Q2在原始空腔内表面上诱发的假设电荷(等效)?与q2共同产生的电场在原空腔内表面所在位置处各点的电势皆为0.这样确定点电荷q2的假想电荷叫做感应电荷的等效电荷,而且这样确定的等效电荷是唯一的.等效电荷取代?、问题2?Q1和Q2计算时空腔中存在原始导体的任何点的感应电荷,可以使用等效电荷Q1电势或场强?、q2?的位置及电量.1.试根据上述条件,确定假想等效电荷q12.求空腔内部任意点a的电势ua.已知a点到球心o的距离为r,oa与op1的夹角为??.七、(25分)如图所示,有二平行金属导轨,相距l,位于同一水平面内(图中纸面),处在磁感应强度为b的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量将odbxycyav0为M的两根金属棒AB和CD放置在导轨上,并与导轨垂直。
中学奥林匹克竞赛物理教程电磁学篇摘要:一、引言1.奥林匹克竞赛简介2.中学物理竞赛的重要性3.电磁学篇内容概述二、电磁学基本概念1.电荷与电场2.电流与电路3.磁性与磁场三、电磁学定律与原理1.库仑定律与电场强度2.电场与电势差3.欧姆定律与电路分析4.安培定律与磁场5.电磁感应定律四、电磁学典型问题解析1.电场问题2.电路问题3.磁场问题4.电磁感应问题五、竞赛题型与解题技巧1.选择题解题技巧2.计算题解题技巧3.实验题解题技巧六、电磁学相关竞赛题库1.历年竞赛真题解析2.模拟试题训练3.拓展阅读与参考资料七、结语1.电磁学篇学习重要性2.参赛者素质要求3.持续学习与实践的建议正文:一、引言随着科学技术的不断发展,奥林匹克竞赛在我国日益受到重视,其中中学物理竞赛作为基础学科竞赛之一,具有极高的选拔性和实用性。
本文将重点介绍中学奥林匹克竞赛物理教程电磁学篇,帮助广大师生更好地掌握电磁学相关知识,提高竞赛水平。
电磁学篇主要包括电荷与电场、电流与电路、磁性与磁场等基本概念,以及电磁学定律与原理。
掌握这些知识对于理解现实生活中的物理现象以及参加物理竞赛具有重要意义。
二、电磁学基本概念1.电荷与电场:电荷是物质的基本属性,电场是电荷产生的周围空间的物理场。
了解电荷分布、电场线的特点有助于分析电场问题。
2.电流与电路:电流是电荷的定向运动,电路是电流流动的路径。
学会分析电路结构、计算电流电压等基本电路问题是解决电磁学问题的关键。
3.磁性与磁场:磁性是物质的基本属性,磁场是磁性物质产生的周围空间的物理场。
掌握磁场的性质和磁场线的变化,能帮助我们更好地解决磁场相关问题。
三、电磁学定律与原理1.库仑定律与电场强度:库仑定律描述了电荷之间的相互作用力,电场强度是描述电场力的物理量。
学会计算电场强度,能帮助我们更好地分析电场问题。
2.电场与电势差:电势差是描述电场能的物理量,与电场强度密切相关。
理解电势差的含义和计算方法,有助于解决电场与电路问题。
中学奥林匹克竞赛物理教程电磁学篇摘要:一、前言二、中学奥林匹克竞赛物理教程电磁学篇概述1.电磁学基本概念2.电磁学定律与原理3.电磁学应用及实验三、电磁学篇学习方法与建议1.学习目标与要求2.学习方法与策略3.知识梳理与巩固四、电磁学篇在中学奥林匹克竞赛中的应用1.竞赛试题分析2.解题技巧与策略3.竞赛实战演练五、总结与展望正文:一、前言中学奥林匹克竞赛物理教程电磁学篇,旨在帮助学生深入理解电磁学的基本概念、定律和原理,提高学生在奥林匹克竞赛中解决电磁学问题的能力。
本文将简要介绍电磁学篇的主要内容和学习方法,并结合竞赛实际应用进行分析。
二、中学奥林匹克竞赛物理教程电磁学篇概述电磁学篇主要包括以下内容:1.电磁学基本概念:库仑定律、电场、电荷分布、电势、电势差等;2.电磁学定律与原理:高斯定律、电场强度、电势强度、电通量、法拉第电磁感应定律等;3.电磁学应用及实验:静电场、静磁场、电磁感应、交流电路等。
三、电磁学篇学习方法与建议1.学习目标与要求:掌握电磁学的基本概念、定律和原理,能够运用所学知识解决实际问题;2.学习方法与策略:通过观察实例、分析模型、总结规律等方式,培养学生的抽象思维和空间想象力;3.知识梳理与巩固:多做习题,参加模拟竞赛,提高解题速度和准确度。
四、电磁学篇在中学奥林匹克竞赛中的应用1.竞赛试题分析:从历年竞赛试题中可以看出,电磁学篇的知识点占据了很大的比重,因此学生需要重点掌握;2.解题技巧与策略:熟练运用所学知识,结合实际情况进行分析,掌握解题技巧和方法;3.竞赛实战演练:通过模拟竞赛,提高学生在实际竞赛中的应对能力。
五、总结与展望中学奥林匹克竞赛物理教程电磁学篇,是学生参加竞赛的必备教材。
在学习过程中,学生需要掌握电磁学的基本概念、定律和原理,并能够运用所学知识解决实际问题。
高中物理竞赛辅导教程(新大纲版)一、力学部分1. 运动学- 基本概念:位移、速度、加速度。
位移是矢量,表示位置的变化;速度是描述物体运动快慢和方向的物理量,加速度则反映速度变化的快慢。
- 匀变速直线运动公式:v = v_0+at,x=v_0t+(1)/(2)at^2,v^2-v_{0}^2 = 2ax。
这些公式在解决直线运动问题时非常关键,要注意各物理量的正负取值。
- 相对运动:要理解相对速度的概念,例如v_{AB}=v_{A}-v_{B},在处理多个物体相对运动的问题时很有用。
- 曲线运动:重点掌握平抛运动和圆周运动。
平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动;圆周运动中要理解向心加速度a =frac{v^2}{r}=ω^2r,向心力F = ma的来源和计算。
2. 牛顿运动定律- 牛顿第二定律F = ma是核心。
要学会对物体进行受力分析,正确画出受力图。
- 整体法和隔离法:在处理多个物体组成的系统时,整体法可以简化问题,求出系统的加速度;隔离法用于分析系统内单个物体的受力情况。
- 超重和失重:当物体具有向上的加速度时超重,具有向下的加速度时失重,加速度为g时完全失重。
3. 动量与能量- 动量定理I=Δ p,其中I是合外力的冲量,Δ p是动量的变化量。
- 动量守恒定律:对于一个系统,如果合外力为零,则系统的总动量守恒。
在碰撞、爆炸等问题中经常用到。
- 动能定理W=Δ E_{k},要明确功是能量转化的量度。
- 机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。
要熟练掌握机械能守恒定律的表达式E_{k1}+E_{p1}=E_{k2}+E_{p2}。
二、电磁学部分1. 电场- 库仑定律F = kfrac{q_{1}q_{2}}{r^2},描述真空中两个静止点电荷之间的相互作用力。
- 电场强度E=(F)/(q),电场线可以形象地描述电场的分布情况。
- 电势、电势差:U_{AB}=φ_{A}-φ_{B},电场力做功与电势差的关系W = qU。