一整体法与隔离体法
- 格式:docx
- 大小:38.88 KB
- 文档页数:1
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
1.对整体法和隔离法的理解整体法是指将相互关联的各个物体看成一个整体的方法。
整体法的优点在于只需要分析整个系统与外界的关系,避开了系统内部繁杂的相互作用。
隔离法是指将某物体从周围物体中隔离出来,单独分析该物体的方法。
隔离法的优点在于能把系统内各个物体所处的状态、物体状态变化的原因以及物体间的相互作用关系表达清楚。
2.整体法和隔离法的使用技巧当分析相互作用的两个或两个以上的物体整体的受力情况,或者分析外力对系统的作用时,宜用整体法;而在分析系统内各物体,或者一个物体的各部分间的相互作用时,常用隔离法.整体法和隔离法不是独立的,对一些较复杂的问题,通常需要多次选取研究对象,交替使用整体法和隔离法。
(2013北京卷)倾角为α、质量为M的斜面体静止在水平桌面上,质量为m的木块静止在斜面体上.下列结论正确的是A.木块受到的摩擦力大小是mg cos αB.木块对斜面体的压力大小是mg sin αC.桌面对斜面体的摩擦力大小是mg sin α cos αD.桌面对斜面体的支持力大小是(M+m)g【参考答案】D【试题解析】对木块受力分析可知,木块受到的摩擦力f=mg sin α,A错误;斜面体对木块的支持力N=mg cos α,B错误;对木块与斜面体整体受力分析可知,桌面对斜面体的摩擦力为零,支持力大小等于(M+m)g,C错误,D正确.【名师点睛】一道题能使用整体法求解,也必然能使用隔离法求解。
隔离多物体进行受力分析,并列式整理后,与用整体法受力分析所列关系式一致.隔离法与整体法的关系,相当于方程组及其联立后得到的方程,使用整体法对力的分析较少,就相当于方程联立消元的效果。
1.如图所示,A、B两长方体木块放在水平地面上,它们的高度相等,长木板C放在它们上面。
用水平力F拉木块A,使A、B、C一起沿水平面向右匀速运动,则A.A对C的摩擦力向右B.B对C的摩擦力向右C.C对B的摩擦力向左D.地面对B的摩擦力向左2.如图所示,两个等大的水平力F分别作用在物体B、C上,物体A、B、C都处于静止状态,各接触面与水平地面平行.物体A、C间的摩擦力大小为f1,物体B、C间的摩擦力大小为f2,物体C与地面间的摩擦力大小为f3,则A.f1=f2=f3=0 B.f1=0,f2=f3=F C.f1=F,f2=f3=0 D.f1=f3=0,f2=F 3.如图所示,物块A放在直角三角形斜面体B上面,B放在弹簧上面并紧挨着竖直墙壁,初始时A、B静止,现用力F沿斜面向上推A,但A、B仍未动。
专题整体法和隔离法1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
体之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
但并非所有情况都可以用整体法,当要求出物体之间的相互作用力时,则必须用隔离法求出物体间的相互作用力,因为整体法不能暴露出物体之间的相互作用力。
整体法和隔离法的应用整体法和隔离法是管理学中常用的两种管理模式,它们在企业管理的实践中,被广泛应用。
从理论上说,两种管理模式都有其优点和劣势,但具体的管理应用则需要根据企业的实际情况和管理目标来选择。
本文将从整体和隔离的定义、特点、优缺点等方面,分别探讨两种管理模式的应用。
一、整体法整体法是指将企业看作一个整体来进行管理。
它强调企业的内部各项职能和部门之间的密切合作,以提高企业的整体效益和竞争力。
整体法的特点是以全局为导向,注重协同合作,提高整体效益。
应用方面,在实践中,企业如果希望采用整体管理模式,需要有以下几个方面需要考虑:1、打破各部门之间的隔阂,加强协同合作。
不同部门之间通常存在着比较严重的信息堵塞和合作协调的问题,这需要通过制定相关流程和机制,以及分配任务和责任来解决。
2、加强内部沟通,建立健康和谐的工作环境。
企业内部的交流和沟通是很重要的,如果内部信息流通不畅,部门之间缺少合作和协作,很容易导致企业目标的不一致,甚至是内部矛盾的发生。
3、优化管理流程,减少不必要的环节。
企业需要将发现的问题及时上报到高层管理层,以及给出相应的解决方案。
在流程中需要规范突发事件的处理流程,根据事件情况及时给出处理办法。
二、隔离法隔离法是指将不同区域和功能划分为不同的管理部门,形成相对独立的管理体系,最终达到优化管理、提高效率的目的。
隔离法的特点是区域和职能相对独立,能够减少不必要的干扰和影响,提高工作效率。
应用方面,在实践中,企业采用隔离法通常需要考虑以下几个方面:1、运营过程需要规划清晰,在工作制度和流程上需要有所约束。
各项工作的执行必须遵循明确的流程和标准,对于工作细节等相关信息必须进行严密监管,任何不符合标准的行为都将被严肃处理。
2、管理部门要加强沟通和合作。
不同管理区域和功能之间一定要密切合作,以保证企业目标的协调性和一致性。
在实践中,这需要建立适合企业的沟通和合作机制,加强信息和资源共享。
3、制定合理的考核制度,以及加强员工培训。
整体法和隔离法1. 整体法:指对物理问题中的整个系统进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
2.隔离法:隔离法是指对物理问题中的单个物体进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
在解答过程较为复杂的综合题时,常常将整体法与隔离法交叉地、联合地使用.或者叫做不拘一格灵活运用,怎样有利就怎样用.1.整体法例1. 如图所示,放置在水平地面上的斜面M上有一质量为m的物体,若m在沿斜面F的作用下向上匀速运动,M仍保持静止,已知M倾角为θ。
求地面对M的支持力和摩擦力。
解:整体受力分析建立直角坐标系如图由平衡条件可得:Fcosθ-Ff=0Fsinθ+FN-(M+m)g=0∴Ff=Fcos θ FN=(M+m)g-Fsinθ2.整体法和隔离法交替使用例题2如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为:( )A .4mg 、2mgB .2mg 、0C .2mg 、mgD .4mg 、mg【解析】设左、右木板对砖摩擦力为f1,第 3块砖对第2块砖摩擦为 f2,则对四块砖作整体,画出受力图:由平衡条件有: 2f1=4mg ∴ f1=2mg 对1、2块砖画出受力图:平衡,有:f1+f2=2mg ∴ f2=0 故B 正确.例3 如图6所示,人重600N ,平板重400N ,若整个系统处于平衡状态,则人必须用多大的力拉住绳子?(滑轮和绳的质量及摩擦不计)解析:设定滑轮两边绳中的张力为F 1,动滑轮两边绳中的张力为F 2,板对人的支持力为F N解法1:以人为研究对象,受力如图,由平衡条件得①以板为研究对象,受力如图,由平衡条件得② 又 ③④ 解①②③④可得解法2:选人和板构成的系统为研究对象,受力如图所示,由平衡条件得f 2①② 由①②可解得例4有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 上套有小环P ,OB套有小环Q ,两环质量均为m ,两环间由一根质量可以忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO 杆对P的支持力FN 和细绳上的拉力FT 的变化情况是:( ) A .FN 不变,FT 变大 B .FN 不变,FT 变小C .FN 变大,FT 变大D .FN 变大,FT 变小解析:选择环P 、Q 和细绳为研究对象.在竖直方向上只受重力和支持力FN 的作用,而环动移前后系统的重力保持不变,故FN 保持不变.取环Q 为研究对象,其受力如图示.FTcos α = mg ,当P 环向左移时,α将变小,故FT 变小,正确答案为B 。
高三年级物理学案 使用时间:第 周第 课时总 课时 制作人:仪忠凯 班级 姓名 评价 组长签字:整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
3.整体和局部是相对统一相辅相成的隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则五、针对训练:1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起。
当框架对地面压力为零瞬间,小球的加速度大小为A.gB.m m M - gC.0D. mm M +g2.如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为A .都等于2gB .2g 和0 C .2g M M M B B A⋅+和0 D .0和2g M M M B B A ⋅+ 3..如图,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于A .0B .k xC .(M m )kD .(mM m )k x 4.质量为 m 的物块B 与地面的动摩擦因数为μ,A 的质量为2 m与地面间的摩擦不计。
描写青少年运动的句子唯美(篇一)1. 草地上,阳光如诗,青少年们奔跑着,无忧无虑地释放自己的热情。
2. 国家队中的年轻球员们,汗水滴落在地面上,成就一场场壮丽的胜利。
3. 风拂过青少年脸庞,带来雨后的清新气息,更添他们的活力与自信。
4. 结结实实的踢出一脚,球在夕阳下撞击着网,青少年的梦想也在此刻得以绽放。
5. 眼神坚定,心境纯净,他们拼尽全力,为自己和团队争取胜利的机会。
6. 青少年运动场上的欢呼声,仿佛是自由的鸟儿在天空中展翅翱翔的歌声。
7. 舞动的身姿,凝结的汗水,体现出青少年们对于运动的热爱与追求。
8. 静谧的星空下,他们奋力拼搏,用青春和汗水书写属于他们的篇章。
9. 运动场上,那些渴望成为下一个奥运冠军的年轻人,正展现出无比的魄力与激情。
10. 空气中弥漫着青春的气息,他们的运动是对自由的追求,是对激情的释放。
11. 队友之间默契的配合,如同绚烂的烟火,在比赛场上绽放着绝妙的光芒。
12. 那一刻,忘却了所有的疲惫和压力,只感受到运动带来的快乐和自由。
13. 穿越时光的钟摆,我们看到的是青少年们不断超越自我的坚韧与勇敢。
14. 青少年运动的舞台上,不仅有精彩的比赛,更有友谊的搏击与团结的力量。
15. 落日余晖照亮了他们的背影,青春在运动的世界中鲜活而绚烂。
16. 他们伴随着汗水的横流,一次次超越自我,成就自己的运动传奇。
17. 青少年们拥有运动为伴,他们选择在奔跑的世界中寻找属于自己的快乐。
18. 球场上的青年军,用青春的力量创造属于自己的辉煌与荣耀。
19. 运动既是青少年的一种形态,更是他们追求完美的态度。
20. 每一次流汗都是一次向梦想进军的道路,青少年在运动中发现自己的无限潜力。
21. 青年们奔腾在运动场上,他们的希望与梦想在默默沉淀。
22. 球类在青少年手中翩翩起舞,他们的天赋与努力交织成动人的乐章。
23. 运动是他们的信仰,也是他们实现自己价值的一座桥梁。
24. 学习与运动并行,青少年们在不断奋斗中绽放出学富五车的光芒。
整体法和隔离法的正确用法整体法和隔离法是物理学中常用的两种方法,它们在解决复杂系统的运动和相互作用问题时非常有用。
下面将介绍整体法和隔离法的正确用法。
一、整体法整体法是指将多个物体组成的系统作为一个整体进行研究的方法。
这种方法在解决一些涉及多个物体相互作用的问题时非常有效。
整体法的优点是可以减少研究对象的数量,从而简化问题的复杂性。
1. 适用范围整体法适用于以下情况:(1)多个物体组成的系统具有相同的运动状态,可以作为一个整体进行研究;(2)多个物体之间的相互作用力可以忽略不计,或者只考虑它们之间的外部力;(3)需要研究系统整体的力学性质,如加速度、动量等。
2. 解题步骤使用整体法解题的一般步骤如下:(1)明确研究对象,将多个物体组成的系统作为一个整体进行研究;(2)分析整体受到的外力,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出整体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。
3. 注意事项使用整体法时需要注意以下几点:(1)整体法只能考虑外部力,不能考虑内部相互作用力;(2)如果系统中有多个物体具有不同的运动状态,需要分别对它们进行受力分析;(3)在求解系统的加速度时,需要考虑各个物体之间的相互作用力。
二、隔离法隔离法是指将系统中的各个物体分别进行受力分析的方法。
这种方法在解决一些涉及相互作用力的问题时非常有效。
隔离法的优点是可以清晰地分析各个物体之间的相互作用关系。
1. 适用范围隔离法适用于以下情况:(1)需要研究系统中各个物体之间的相互作用力;(2)系统中各个物体具有不同的运动状态,需要分别进行分析;(3)需要求出各个物体受到的合外力。
2. 解题步骤使用隔离法解题的一般步骤如下:(1)明确研究对象,将系统中的各个物体分别作为研究对象;(2)对每个物体进行受力分析,包括重力、支持力、摩擦力等;(3)根据牛顿第二定律列方程,求出各个物体的加速度;(4)根据加速度求出各个物体的运动状态,如速度、位移等。
隔离法和整体法隔离法和整体法是两种常用的解决问题的思维方法。
隔离法是通过分解问题,将其拆分为多个独立的部分来解决;整体法则是将问题作为一个整体来考虑和解决。
本文将分别介绍隔离法和整体法的概念、应用场景以及优缺点。
一、隔离法隔离法是指将一个复杂的问题分解为多个相对独立的部分,然后分别解决每个部分的方法。
通过将问题进行隔离,我们可以更加集中精力解决每个独立的部分,从而提高解决问题的效率。
在实际应用中,我们可以将隔离法运用于各种领域。
例如,在软件开发中,一个复杂的功能可以被拆分为多个子功能,每个子功能独立开发和测试,最后再进行整合。
在项目管理中,可以将整个项目分解为多个阶段或任务,每个阶段或任务分配给不同的团队或个人负责。
这样可以有效地提高工作的并行性和协作效率。
隔离法的优点是可以使问题更加清晰明确,减少了复杂度,易于解决。
同时,通过将问题分解为多个部分,可以提高工作的并行性和解决问题的效率。
然而,隔离法也存在一些缺点。
例如,分解问题可能导致信息的丢失或不完整,从而影响解决问题的准确性。
此外,对于某些问题,隔离法可能会导致解决方案的整体性差,不够综合。
二、整体法整体法是指将一个问题作为一个整体来考虑和解决。
在运用整体法解决问题时,我们需要从整体的角度思考问题的本质、关联和影响,综合各个方面的因素,找出最优解决方案。
整体法在很多领域都有广泛的应用。
例如,在企业管理中,整体法强调整个企业的战略规划、组织结构、人力资源等各个方面的协同作用,以实现企业目标的最大化。
在市场营销中,整体法要求将产品设计、定价、推广和渠道管理等因素考虑在内,以达到市场竞争的优势。
在生态保护中,整体法强调人与自然的平衡和协调,以实现生态环境的可持续发展。
整体法的优点是可以从全局的角度思考问题,考虑各个方面的因素,并找出最优解决方案。
与隔离法相比,整体法更加综合和细致。
然而,整体法也存在一些挑战和局限。
例如,整体法需要对问题有全面的了解和把握,需要考虑的因素较多,可能需要投入更多的时间和资源。
一、什么是整体法与隔离法(一).整体法与隔离法的基本定义整体法——在研究物理问题时,当所研究的对象不是一个物体,而是有两个或两个以上物体构成的系统时,若不需要求出物体之间的相互作用力,可以将整个系统作为一个整体来研究;或者,一个物体的运动是由多个运动过程所组成,可以适当的组合某些运动过程或整个过程,以整体的运动情况来进行求解。
这两种情况所采取的方法均叫整体法。
隔离法——将系统中所研究的某个物体与其他物体隔离开,研究这个物体受其他物体对它的作用力;或者当物体运动是由多个运动过程组合而成时,逐个研究其运动过程,这两种情况所采取的方法叫做隔离法。
(二).整体法与隔离法在物理学发展中的作用高考越来越注重考能力,从一定意义上说方法是能力的基础。
但高考不会纯粹考方法。
方法的考查一般会采取隐性的形式,渗透在具体的物理问题中。
大纲明确指出:“要重视概念和规律的应用,使学生学会运用物理知识解释现象,分析和解决实际问题”,这就是说,不仅要运用物理知识解决实际问题,而且要有意识的领悟物理解题的思维方法。
物理学是一门研究物质世界及其运动规律的自然科学。
物理学的最小研究对象是数量级约为10-15m的微观粒子,最大研究对象是数量级约为(1026—1027)m 的宇宙。
共跨越了42—43个数量级,可以说物理学的研究范围涉及到了我们所认识到的整个世界。
那么我们又如何从如此繁杂、庞大的体系中灵活恰当的选取我们研究的对象,就成了我们方便、简捷解决问题的前提。
整体法和隔离法的掌握正是培养我们具备这种素质的良好训练。
例如,使用整体法时,不必考虑所选系统物体间的相互作用,或不用考虑各个运动阶段的详细情况,运用整体法时,由于体系中的内力都是成对出现,因此其合力必为零,这样就减少了物理量的个数,从而简化了方程;忽略无关因素,抓住主要矛盾,这样可以使复杂问题简单化。
二、整体法和隔离法的特征(一).整体法与隔离法现象表现运用整体法解决问题的思维特点,在于把物理客体作为一个整体,以整体或全过程为研究对象,从整体上把握物理现象的本质和规律,这种思维叫做整体思维,又叫做系统思维。
一整体法与隔离体法
一:整体法与隔离体法
1o 应用牛顿运动定律解题的基本思路
(1) 取对象——根据题意确定研究对象;
(2) 画受力图——分析研究对象的受力情况,画出受力图;
(3) 定方向——规定正方向(或建立坐标系),通常以加速度方向为正方向较为适宜;
(4) 列方程一根据牛顿定律列方程,根据运动学公式列运动方程;
(5) 求解——统一单位,求解方程,对结呆分析检验或讨论。
2.解决动力学问题的常用方法
整体法与隔离法:在确定研究对象或物理过程时,经常使用的方法,整体法与隔离法是相对的。
例仁如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木 板和物块间有摩擦
•现用水平向右的拉力拉木板,当物块相对木板滑动了一段距离
但仍有相对运动时,撤掉拉力,此后木板和扬块相对于水平面的运动情况为(
) Ao 物块先向左运动,再向右运动 Bo 扬块向右运动,速度逐渐增大,直到做匀速运动
C.木板向右运动,速度逐渐变小,直到做匀速运动 Do 木板和物块的速度都逐渐变小,直到为零 例2:在北京残奥会开幕式上,运动员手拉绳索向上舉登,最终点燃了主火炬,体现了残疾运动员 坚韧不拔的意志和自强不息的精神。
为了探求上升过程中运动员与绳索和吊椅间的作用,可将过 程简化。
一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员 拉住,如图所示。
设运动员的质董为65 kg,吊椅的质量为15 kg,不计定滑轮与绳子间的摩擦, 重力加速度取^=10 m/s 2o 当运动员与吊椅一是正以加速度a=1 m/s?
上升时,试求:
(1) 运动员竖直向下拉绳的力:
(2) 运动员对吊椅的压力。
例3: 一箱装得很满的土豆以一定初速度在摩擦因数为“的水平地面上做匀减速运动(不计其它外力及空气阻 力)则其中一个质量为m 的土豆受到其它土豆的总作用力的大小是多少? 例4:示,菜
货场需将质量为朋= 100 kg 的货物(可视为质点)从高处运送 至地面,为避免货物与地
面发生撞击,现利用固定于地面的光滑四分之一圆 轨道,使货物由轨道顶端无初速度
滑下,轨道半径/?=1.8 mo 地面上紧靠轨 道依次排放两块完全相同的木板久5长度均为
/=2m,质量均为血=100 kg, 木板上表面与轨道末端相切,货物与木板间的动摩擦因数为
x/i,木板与地面 间的动摩擦因数 以=0・2 (最大卿摩擦力与滑动摩擦力大小相等,取
g=10 m/s')・
(1)求货物到达圆轨末端时对轨道的压力。
(2)若货扬滑上木板/!时,木板不动,而滑上木板〃吋,木板3幵始滑动,
(3) 若 厂=0.5,求货物滑到木板力末端时的速度和在木板力上运动的时间。
例5:示,一辆汽车力拉着装有集装箱的拖车3以速度k, = 30 m/s 进入向下 倾斜的直
车道.车道每100 m 下降2 mo 为使汽车速度在s=200 m 的距离内减到乃 = 10m/s,驾驶员
必须刹车。
假定刹车时地面的摩擦阻力是恒力,且该力的70%作用
于拖车(30%作用于汽车儿 已知的质董朋=2 000 kg, B 的质量处=6 000 kg 。
求汽车与拖车的连接处
沿运动方向的相互作用力.(取重力加速度g=10 m/s 2) 物块 求s 应满足的条件.。