整体法与隔离法(绝对经典)
- 格式:docx
- 大小:58.54 KB
- 文档页数:2
专题整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。
隔离法与整体法都是物理解题的基本方法。
隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。
整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。
隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。
这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。
【例 1】在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为 m1 和 m2 的两个木块 b 和 c,如图所示,已知m1> m2,三木块均处于静止,则粗糙地面对于三角形木块()b cA.有摩擦力作用,摩擦力的方向水平向右m1m2 B.有摩擦力作用,摩擦力的方向水平向左aC.有摩擦力作用,但摩擦力的方向不能确定D.没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D.【点评】本题若以三角形木块 a 为研究对象,分析 b 和 c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为 b、c 两个物体均匀速下滑,想一想,应选什么?P 【例 2】有一个直角支架AOB, AO水平放置,表面粗糙, OB AO竖直向下,表面光滑,AO上套有小环 P,OB上套有小环Q,两环质量均为 m,两环间由一根质量可忽略、不可伸展的细绳相连,Q并在某一位置平衡,如图。
专题:整体法与隔离法【要点】1、系统(连接体):几个相互联系的、在外力作用下一起运动的物体系。
相互作用的物体称为系统或连接体,由两个或两个以上的物体组成。
2、内力与外力:系统内物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。
3、方法选取原则:研究系统内力,用隔离法;当研究系统外力时优先考虑整体法;对于复杂的动力学问题,采用二者相结合。
【经典题型训练】例1、向右的水平力F作用在物体B上,AB匀速运动,则地面对B的摩擦力为多少?若F作用在A上,结果如何?【变式】滑块和斜面均处于静止状态,斜面倾斜角为,滑块的质量为m,斜面的质量为M,求地面对斜面的支持力和摩擦力的大小。
例2、如图:在两块相同的竖直木板间,有质量均为m的两块相同的砖,用两个大小相同均为F的水平力压木板,使砖静止不动,则第一块砖对第二块砖的摩擦力为多少?【变式】两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,(1)木板对第1块砖和第4块砖的摩擦力(2)第2块与第3块间的摩擦力(3)第3块与第4块间的摩擦力例3.甲图所示的两小球静止,对a球施加一个左偏下30°的恒力,对b球施加一个右偏上30°的同样大的恒力,再次静止时乙图中哪张正确?【变式】两个质量相等的小球用轻杆连接后斜靠在竖直墙上处于静止状态,已知墙面光滑,水平面粗糙。
现将A球向上移动一段距离,两球再次达到平衡,将两次比较,地面对B球的支持力Fn和轻杆受到的压力F的变化情况是()A:Fn变小,F不变 B:Fn不变,F变大C:Fn变大,F变大 D:Fn不变,F变小例4.人的质量为60Kg,木板A的质量为30Kg,滑轮及绳的质量不计,一切摩擦不计,若人通过绳子拉住木板不动,则人的拉力的大小及人对木板的压力为多少?【变式】人的质量是m,木板的质量为M,木板与地面间的动摩擦因数为,在人的拉力作用下,人与木板一起向右匀速运动,求木板对人的摩擦力多大?【变式】质量为M的木板悬挂在滑轮组下,上端由一根绳C固定在横梁下,质量为m的人手拉住绳端,使整个装置保持在空间处于静止的状态(滑轮质量不计)。
整体法与隔离法1基本方法: 整体法与隔离法(1)整体法:把物体组看成一个整体,作为一个物体来分析,这样就可以不用考虑物体之间的相互作用。
(2)法:把物体组中的某一个物体单独隔离出来研究。
这是分析物体间的力必须用的方法 一般做题思路是:优先整体;然后隔离;建立方程组求解。
2.整体的牛顿第二定律:整体的牛顿第二定律:2211a m a m F +=合 或者x 方向:x x x a m a m F 2211+=合y 方向:y y y a m a m F 2211+=合一.常见模型 (一)绳连模型例1.光滑水平面上质量分别为m 1,m 2的物体在水平拉力F 的作用下向右匀加速运动,求m 2对m 1的拉力?练习:如图,水平面上两个物体m 1,m 2经一细绳相连,在水平力F 的作用下处于静止状态,则连接两物体的绳的张力可能为( )A.零.B.2F C.接近F D.大于F例2.质量分别为M 和m (M>m )的两个物体通过细绳连接,跨过光滑的定滑轮,某时刻由静止释放两个物体,求细绳的拉力?.(二)滑轮和绳模型例1.地面光滑,M 和m 在拉力的作用下一起向右运动试判断:(1)M=m 时,f 的方向 (2M<m 时,f 的方向? (3)M>m 时,f 的方向?例2板的质量.M=40㎏,人的质量m=60㎏(1)若系统静止,求人对板的压力。
(2)若系统以加速度a=2m/s2向上加速运动,求人对板的压力。
例3.位于水平桌面的物体P,由跨过定滑轮的轻绳与物体Q相连,从滑轮到P和Q的两段绳都是水平的,已知Q与P之间以及P与桌面之间动摩擦因数都是µ,两物体的质量都是m,滑轮的质量,滑轮轴上的摩擦都不计。
若用一水平向右的力F拉P使它做匀速运动,则F 的大小为多少?例4.如图,物体A、B的质量m A=m B=6㎏,A和B、B和水平地面间的动摩擦因数都等于0.3,且最大静摩擦力等于滑动摩擦力,水平力F=30N,那么B对A的摩擦力和水平桌面对B的摩擦力各为多大?(三).摩擦力模型1.确定以下情况下B的摩擦力方向。
整体法与隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.1.隔离法:(1)定义:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法.(2)原则:把相连接的各物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来.当然,对隔离出来的物体而言,它受到的各个力就应视为外力了.2.整体法:(1)把相互连接的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法.(2)原则:①当整体中各物体具有相同的加速度或都处于平衡状态(即a=0)时考虑运用整体法.②试题要分析的是外力,而不是分析整体中各物体间的相互作用(内力)时考虑运用整体法.整体法和隔离法不是完全独立的,很多情况下需要整体法和隔离法交替使用来解决问题,比如连接体问题,一般既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交替运用方法,当然个别情况也可按先隔离(由已知内力解决未知内力)再整体的顺序运用.3.整体法和隔离法的使用要点整体和部分是相对的,二者在一定条件下可以相互转化.一定层次上的整体是更大系统中的一个部分,具有部分的功能;一定层次上的部分也是由更小层次上的部分所组成的系统,具有整体的功能.由于整体和部分是辩证的统一,所以解决问题时不能把整体法和隔离法对立起来,而应该灵活地把两种方法结合起来使用;既可以先从整体考虑,也可以先对某一部分进行隔离,从整体到部分,由部分再回到整体,应据具体问题灵活选取研究对象,多方位、多角度地展开思路.【例1】在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的支持力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中( )A.F1保持不变,F3缓慢增大B.F1缓慢增大,F3保持不变C.F2缓慢增大,F3缓慢增大D.F2缓慢增大,F3保持不变【解析】本题考查物体的平衡和隔离法、整体法分析受力等知识点.把AB看做整体,在竖直方向由平衡条件得F+m A g+m B g=F,,据此可知当,缓慢增大时,F3缓慢增大.隔离物体B分析受力,物体B 受到竖直向下的重力m B g、力F、水平向右的墙对B的作用力F1,斜向左上方的A对B的作用力F2′,设F2′的方向与竖直方向夹角为α,由平衡条件得F2′cosα=F+m B g,F2′sinα=F1,由这二式可知当F缓慢增大时,F2′缓慢增大,由牛顿第三定律可知,B对A的作用力F2也缓慢增大,F1也缓慢增大.所以正确选项是C.【练习1】半圆柱体P放在粗糙的水平面上,其右端有竖直挡板MN,在P和MN之间放一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图是这个装置的纵截面图,若用外力使MN保持竖直且缓慢地向右移动,在Q落到地面前,P始终保持静止.此过程中,下列说法正确的是(A.挡板MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C. P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大【解析】小圆柱体Q受重力、挡板MN对Q的弹力、P对Q的弹力作用处于平衡状态,即Q所受合力为零,由于重力大小方向不变,挡板MN对Q的弹力方向不变,对Q的动态变化过程分析可判断出挡板MN对Q的弹力逐渐增大,P对Q的弹力逐渐增大.运用整体法分析可知地面对P的摩擦力大小应等于挡板MN对Q的弹力,所以地面对P的摩擦力逐渐增大.答案:B【例2】两刚性球a和b的质量分别为m a和m b直径分别为d a和d b(d a>d b).将a、b球依次放入一竖直放置、内径为d(d a<d<d a+d b)的平底圆筒内,如图所示.设a、b两球静止时对圆筒侧面的压力大小分别为f1和f2,筒底所受的压力大小为F.已知重力加速度大小为g.若所有接触都是光滑的,则A.F=(m a+m b)g,f1=f2B.F=(m a+m b)g,f1≠f2C.m a g<F<(m a+m b)g,f1=f2D. m a g<F<(m a+m b)g,f1≠f2【解析】本题考查物体的受力分析和整体法的应用,意在考查考生用受力分析和整体法综合分析物体受力情况的能力;以a、b整体为研究对象,其重力方向竖直向下,而侧壁产生的压力水平,故不能增大对底部的挤压,所以F=(m a+m b)g;水平方向,由于两球处于平衡状态,所以受力也是平衡的,因此力的大小是相等的,即f1=f2,故正确答案为A.【练习2】有一个直角支架AOB,AO杆水平放置,表面粗糙,OB杆竖直向下,表面光滑.AO杆上套有小环P,OB杆上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和摩擦力f的变化情况是( )A.F N不变,f变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小【解析】以两环和细绳整体为研究对象,可知竖直方向上始终受力平衡,F N=2mg不变;以Q环为研究对象,在重力、细绳拉力F和OB杆弹力N作用下平衡,如右图所示,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα将减小.再以整体为研究对象,水平方向只有OB 杆对Q的压力N和OA杆对P环的摩擦力,作用,因此,f=N,则f也减小.故选项B正确.答案:B【例3】如右图所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在其上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )A.直角劈对地面的压力等于(M+m)gB.直角劈对地面的压力大于(M+m)gC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力【解析】方法1:隔离法先隔离物体,物体受重力mg、斜面对它的支持力N、沿斜面向上的摩擦力f,因物体沿斜面匀速下滑,所以支持力N和沿斜面向上的摩擦力f可根据平衡条件求出.再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力N′,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力N′和沿斜面向下的摩擦力f′,直角劈相对地面有没有运动趋势,关键看f′和N′在水平方向的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定.对物体:建立坐标系如图甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力N =mgcos θ,摩擦力f =mgsin θ.对直角劈:建立坐标系如图乙所示,由牛顿第三定律得,N =N′,f =f′,在水平方向上,压力N′的水平分量N ′sin θ=mgcos θsin θ,摩擦力f′的水平分量f′cosθ=mgsinθcos θ,可见f′cosθ=N ′s inθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力.在竖直方向上,整体受力平衡,由平衡条件得:N 地=F′sinθ+N ′cos θ+Mg =mg +Mg.所以正确答案为:AC.方法2:整体法 直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等,方向相反。
整体法与隔离法经典习题1.粗糙水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的动摩擦因数均为μ,木块与水平面间的动摩擦因数相同,可认为最大静摩擦力等于滑动摩擦力.现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块一起匀速前进。
则需要满足的条件是( )A.木块与水平面间的动摩擦因数最大为B.木块与水平面间的动摩擦因数最大为C.水平拉力F 最大为2μmgD.水平拉力F 最大为6μmg2.如下图所示,重为G 的匀质链条挂在等高的两钩上,并与水平方向成角,试求:(1)链条两端受到的力。
(2)链条最低处的张力。
3.吊篮重300N ,人重500N ,绳子质量及其与滑轮摩擦不计,要使吊篮离地上升,则人的拉力至少多大?4.有一直角支架AOB ,AO 水平放置,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q 。
两环质量均为m ,两环间由一根质量可忽略不可伸长的细绳相连,并在某一位置平衡,如图所示。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )不变,T 变大 不变,T 变小变大,T 变大 变大,T 变小 5.将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?6.如图所示,光滑的金属球B 放在纵截面为等边三角形的物体A 与坚直墙之间,恰好匀速下滑,已知物体A 的重力是B 重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A 与水平面之间的动摩擦因数μ是多少?A O BP Q7. 如图所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ.质量为m的光滑球B放在三棱柱和光滑竖直墙之间.A、B处于静止状态,现对B 加一竖直向下的力F,F的作用线过球心.设墙对B的作用力为F1,B对A的作用力为F2,地面对A的支持力为F3,地面对A的摩擦力为F4,若F缓慢增大而且整个装置仍保持静止,在此过程中 ( )A.F1保持不变,F3缓慢增大 B.F2、F4缓慢增大C.F1、F4缓慢增大D.F2缓慢增大,F3保持不变8.如图所示,质量为m的物体在与斜面平行向上的拉力F作用下,沿着水平地面上质量为M的粗糙斜面匀速上滑,在此过程中斜面保持静止,则地面对斜面 ( )A.无摩擦力 B.支持力等于(m+M)gC.支持力为(M+m)g-F sin θD.有水平向左的摩擦力,大小为F cos θ9.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面上,m2在空中),力F与水平方向成θ角.则m1所受支持力F N 和摩擦力F f正确的是 ( )A.F N=m1g+m2g-F sin θB.F N=m1g+m2g-F cos θC.F f=F cos θD.F f=F sin θ10.如图所示,重为8N的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N 的物体A相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=)。
Attitude determines altitude
专题:整体法与隔离法
【要点】
1、系统(连接体):几个相互联系的、在外力作用下一起运动的物体系。
相互
作用
的物体称为系统或连接体,由两个或两个以上的物体组成。
2、内力与外力:系统内物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。
3、方法选取原则:
研究系统内力,用隔离法;当研究系统外力时优先考虑整体法;对于复杂的动力学问题,采用二者相结合。
【经典题型训练】__
例1、向右的水平力F作用在物体B上, AB匀速运动,*
则地面对B的摩擦力为多少?若F作用在A上,结果B
如何?
【变式】滑块和斜面均处于静止状态,斜面倾斜角为 I,
滑块的质量为m,斜面的质量为M求地面对斜面的支持力和
摩擦力的大小。
例2、如图:在两块相同的竖直木板间,有质量均为m 的两
块相同的砖,用两个大小相同均为F的水平力压木板,使
砖静止不动,则第一块砖对第二块砖的摩擦力为多少?
【变式】两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,(1)木板对第1块砖和第4块砖的摩擦力(2)第2块与第3块间的摩擦力(3)第3块与第4块间的摩擦力
a球施加一个左偏下300的恒力,对b球施加再
次静止时乙图中哪张正确?
甲乙
例3.甲图所示的两小球静止,对
一个右偏上30。
的同样大的恒力,
Attitude determines altitude
【变式】两个质量相等的小球用轻杆连接后斜靠在竖直墙上处于静
止状态,已知墙面光滑,水平面粗糙。
现将A球向上移动一段距
离,两球再次达到平衡,将两次比较,地面对B球的支
持力Fn和轻杆受到的压力F的变化情况是()
A: Fn变小,F不变 B : Fn不变,F变大
C: Fn变大,F变大 D : Fn不变,F变小
例4.人的质量为60Kg,木板A的质量为30Kg,滑轮及绳的质量不
计,一切摩擦不计,若人通过绳子拉住木板不动,则人的拉力的大
小及人对木板的压力为多少?
【变式】人的质量是m,木板的质量为M木板与地面间的动摩
擦因数为卩,在人的拉力作用下,人与木板一起向右匀速运
动,求木板对人的摩擦力多大?
【变式】质量为M的木板悬挂在滑轮组下,上端由一根绳C固定
在横梁下,质量为m的人手拉住绳端,使整个装置保持在空间处于
静止的状态(滑轮质量不计)。
求(1)绳对人的拉力多大?(2)
人对木板的压力多大?
例5:质量为m顶角为口的直角劈和质量为M的正方体放在两竖直墙
和水平面之间,处于静止状态。
M与M接触不计一切摩擦,求(1)
水平面对正方体的弹力大小;(2)墙面对正方体的弹力大小
m。