概率论第一章
- 格式:doc
- 大小:211.50 KB
- 文档页数:11
第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。
举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。
随机试验£的所有可能结果的集合称为£的样本空间,记作0。
样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。
上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验£样本空间。
第一章随机事件及其概率一、内容提要 (一).随机事件的概率1.随机试验:(i )在相同的条件下可以重复进行;(ii )试验有多种可能结果(iii )所有可能结果可以明确,但试验前不能事先预知哪个结果出现。
记为E2.随机事件:与随机试验结果有关的命题, 简称事件.记为A,B,C……不可能事件和必然事件也视为为随机事件分别记为 φ和Ω.3.基本事件:按照试验的目的和要求所确定的随机试验E 的一个直接可能结果ω称为基本事件或样本点.4.样本空间(基本事件集):试验E 的所有样本点ω构成的集合称为E 的样本空间或基本事件集,记为Ω.即 Ω.={ω}(二).随机事件的关系和运算1.事件的包含: 若事件A 发生必然导致B 发生.则称A 包含于B 记作 A ⊂B.2.事件的相等:对两个事件A,B.若A ⊂B.且B ⊂A.则称A 与B 相等.记作A=B3.事件的并:“事件A 与B 中至少有一个发生”的事件称为A 与B 的并(或和),记作A B 。
“n 个事件中至少有一个发生”的事件称为这个事件的并(或和).记作12....n A A A 简记为1n i i A =4.事件的差: “事件A 发生而B 不发生”的事件称为A 与B 的差记作A-B5.事件的交(积): “事件A 与B 都发生” 的事件称为A 与B 的交(积).记作A Bn 个事件12,...n AA A 都发生”的事件称为这个事件的交(或积).记作12...n A A A .6. 事件的互斥(互不相容):事件A 与事件B 不能同时发生,则称互斥.即AB φ=7. 事件的互逆(对立): 事件A 与事件B 必有一个发生,但不能同时发生,则称A 与B 互逆,记作A B =或B A = 即满足A B =Ω AB φ=8.完备事件组:若事件12,,,n A A A 必有一个发生,且12,,,n A A A 两两互不相容,即 12,n A A A =Ω ,且(, 1.2...,,)i j A A i j n i j φ==≠(三).概率的概念1.概率的古典定义:设E 为古典概型,其样本空间Ω包含n 样本点,事件A 含k 样本点,则称k/n 为 事件A 的概率,记作()/P A k n =2.概率的统计定义设在相同条件下重复进行同一试验,n 次试验中事件A 发生的次数为μ,如果随着试验次数的增大,事件A 发生的频率/n μ 仅在某个常数(01)p p << 附近有 微小变化,则称数p 是事件A 的概率, 即()P A p =.3.概率的公理化定义设A 为随机事件, ()P A 为定义在所有随机事件组成的集合上的实函数且满足下列三条公理:公理1 对任一事件A,有0()1P A ≤≤公理2 ()1P Ω= ()0P φ=公理3.对于两两互斥的可数个随机事件12,,,n A A A ..., 有1212(......)()()...()...n n P A A A P A P A P A =++++ 则()P A 称为事件A 的概率.(四).概率的性质1. ()1P Ω= ()0P φ=2. 对任意两个事件A ,B.有()()()()P A B P A P B P AB =+-若AB φ=,则()()()P A B P A P B =+3.对任意事件A,有()1(P A P A =-)4.对任意个事件12,,...,n A A A .有12(...)n P A A A 11()()n i i j i i j n P A P A A =≤<≤=-∑∑+1()i j k i j k n P A A A ≤<<≤∑-...+12(1)(...)n n P A A A -(-1)若i j A A φ= (,1,2...,)i j n i j =≠ 则121(...)()n n i i P A A A P A ==∑5.若B A ⊂,则()()()P A B P A P B -=-,且()()P A P B ≥(五).条件概率、 乘法公式1.条件概率 设A ,B 为随机试验E 的两个事件。
概率论第一章知识点总结
概率论第一章主要介绍了以下几个知识点:
1. 随机试验:指具有以下三个特征的试验:可以进行多次独立重复;每次试验只有两个可能结果中的一个发生;每次试验发生的概率相同。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用S表示。
3. 事件:样本空间的任意子集称为事件,通常用A、B等大写字母表示。
4. 概率:事件A发生的概率定义为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
5. 概率的性质:对于任意事件A和B,有以下性质:
(1) 0 ≤ P(A) ≤ 1
(2) P(S) = 1
(3) P(A∪B) = P(A) + P(B) - P(A∩B)
(4) 若A和B互不相容(即A∩B=),则P(A∪B) = P(A) + P(B) 6. 条件概率:事件B在事件A发生的条件下发生的概率称为条件概率,记为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
7. 乘法公式:对于任意事件A1,A2,…,An,有P(A1∩A2∩…∩An) = P(A1)P(A2|A1)P(A3|A1∩A2)…P(An|A1∩A2∩…∩An-1)。
8. 全概率公式和贝叶斯公式:全概率公式和贝叶斯公式是基于条件概率的重要公式,用于计算复杂事件的概率。
其中全概率公式为:
P(B) = Σi=1,2,…,nP(Ai)P(B|Ai),贝叶斯公式为:P(Aj|B) = P(Aj)P(B|Aj)/Σi=1,2,…,nP(Ai)P(B|Ai)。
第一章随机事件及其概率习题一1 举出几个必然事件、不可能事件和随机事件的例子.解(1)设v10为10次射击命中次数,则{5<v10≤8=——随机事件,{v10≤10}——必然事件,{v10>10}——不可能事件;(2)掷一枚骰子试验中,{出现偶数点}——随机事件,{出现i点}(i=1,2,…,6)——随机事件,{出现点数小于7}——必然事件,{点数不小于7}——不可能事件;(3)盒中有2个白球,3个红球,从盒中随机取出3球,则{取出的3个球中含有红球}——必然事件,{取出的3个球中不含红球}——不可能事件.2 互不相容事件与对立事件的区别何在?说出下列各对事件的关系:(1)|x-a|<δ与x-a≥δ;(2)x>20与x≤20;(3)x>20与x<18;(4)x>20与x≤22;(5)20个产品全是合格产品与20个产品中只有一个废品;(6)20个产品全是合格产品与20个产品中至少有一个废品.解对立事件一定是互不相容事件,但互不相容事件不一定是对立事件.对立事件和互不相容事件的共同特点是事件间没有公共的样本点,但两个对立事件的并(和)等于样本空间,即若A与__A是两个对立事件,则A__A=Φ,A+__A=Ω;而两个互不相容事件的并(和)被样本空间所包含,即若A与B是两个互不相容事件,则AB=Φ,且A+B⊂Ω.(1)由于{x||x-a|<δ=∩{x|x-a≥δ}=Φ,且{x||x-a|<δ=∪{x|x-a≥δ}⊂R,所以事件|x-a|<δ与x-a≥δ是互不相容事件;(2)由于{x|x>20}∩{x|x≤20}=Φ,且{x|x>20}∪{x|x≤20}=R,所以事件x>20与x≤20是对立事件;(3)由于{x|x>20}∩{x|x<18}=Φ,且{x|x>20}∪{x|x<18}=R,所以事件x>20与x<18是互不相容事件;(4){x|x>20}∩{x|x≤22}≠Φ,所以事件x>20与x≤22是相容事件;(5)设事件A={20个产品全是合格品},事件B={20个产品中只有一个废品},显然AB=Φ,A+B⊂Ω={20个产品},所以A与B是互不相容事件;(6)设事件A={20个产品全是合格品},事件B={20个产品中至少有一个废品},显然AB=Φ,A+B=Ω={20个产品},所以A与B是对立事件.3 写出下列随机试验的样本空间.(1)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(2)生产产品直到得到10件正品,记录生产产品的总件数;(3)测量一汽车通过给定点的速度.解(1)将3只次品都取出,至少要抽取3次,而最多抽取10次即可,故所求样本空间Ω={3,4,…,9,10};(2)最理想的情形是开始生产的10件产品都是正品,故所求样本空间Ω={10,11,12,…};(3)若不考虑汽车的运动方向,则所求样本空间Ω={v|v>0}.若考虑汽车的运动方向,θ表示该运动方向与正东方向之间的夹角,则所求样本空间 Ω={(vcosθ,vsinθ)|v>0,0≤θ<2π=.4 事件A表示在三件被检验的仪器中至少有一件为废品,事件B表示所有的仪器为合格品,问事件(1)A∪B;(2)A∩B各表示什么意义?解(1)A∪B=Ω; (2)A∩B= .5 设A,B,C为三个随机事件,试将下列事件用A,B,C来表示:(1)仅仅A发生;(2)三个事件都发生;(3)至少有两个事件发生;(4)恰有一个事件发生;(5)没有一个事件发生;(6)不多于两个事件发生.解(1)A__B__ C;(2)ABC;(3)AB∪AC∪BC;(4)A__B__C∪__AB__C∪__A__BC;(5)__A__B__C;(6) AB__ C.7 袋内装有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率. 解随机试验是从8个球中任取2个,样本空间所包含的样本点总数为n=C28.设事件A={取出两个球均为白球},此时,事件A包含的样本点数为k=C25,故P(A)= k / n = C25 / C28≈0.357.8 一批产品共200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个全是废品的概率.解随机试验是从200个产品中任取3个,样本空间所包含的样本点总数为n=C3200. 设事件A i={取出的3个产品中含有i个废品},i=1,3,事件B={这批产品的废品率}.若取出的3个产品中含有i个废品,则i个废品必须从6个废品中获得,3-i个合格品必须从194 个合格品中获得,从而事件A i所包含的样本点数为k i=C i6C3-i194 ,i=1,3.故P(B)= 6 / 200 =0.03,P(A1)=k1 / n=C16C2194/C3200≈0.086,P(A3)=k3 /n=C36/C3200≈0.000 02.9 两封信随机地向四个邮筒投寄,求第二个邮筒恰好投入一封信的概率.解将两封信随机地投入四个邮筒,共有4×4=16种投法,即n=16.设 A={第二个邮筒恰好投入一封信},此时,需将两封信中的一封放入第二个邮筒,共有2种放法,剩下的一封放入其他三个邮筒中的一个,共有3种放法,从而事件A包含的样本点数为k=2×3=6,故P(A)=k/n=6/16=3/ 8.10 在房间里有10个人,分别佩带着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解设事件A={最小号码为5},事件B={最大号码为5},则P(A)=C25/C310=1/12,P(B)=C24 /C310=1/20.11 把10本书任意地放在书架上,求其中指定的三本书放在一起的概率.解设事件A={指定的三本书放在一起},将指定的三本书作为一个整体,10本书成为8本,故P(A)=k/n=A33A88/A1010≈0.067.12 甲、乙二人约定1点到2点之间在某处会面,约定先到者等候10分钟即离去.设想两个人各自随意地在1点到2点之间选一个时刻到达该处,问“甲乙二人能会面”这事件的概率是多少?解记事件A={两人能会面},以x,y分别表示两人到达时刻,则两人能会面的充要条件为|x-y|≤10, 即A={(x,y):|x-y|≤10}.这是一个几何概率问题,样本空间为Ω={(x,y):0≤x,y≤60},P(A)=L(A)/L(Ω)=602-502/602=11/36.13 在一间房里有四个人,问至少有两人的生日是在同一个月的概率是多少?解四个人在12个月中任一月出生的可能性是相等的,故基本事件的总数为124.设事件A={四个人生日均不在同一个月},则P(__A)=1-P(A)=1-A412/124=738/1728=41/96.14 设有10件样品,编以号码0~9,随机地抽取1件样品,以B表示“取到号码为偶数的样品”;A1表示“取到号码为1的样品”,A2表示“取到号码为2的样品”,A3表示“取到号码大于7的样品”,分别求A1,A2,A3的概率和A1,A2,A3对B的条件概率,并将条件概率与无条件概率做一比较.解由题设可知:P(A1)=1/10,P(A2)=1/10,P(A3)=2/10=1/5,P(A1|B)=0,P(A2|B)= 1/5,P(A3|B)= 1/5 .15 某人忘了电话号码的最后一个数字,因而随意拨号,不超过三次而接通所需要电话的概率是多少?如果已知最后一个数是奇数,那么此概率是多少?解(1)设A={三次中至少有一次接通}, __A={三次每次都不通},A i={第i次接通}(i=1,2,3).易知,__A=__A1__A2__A3,故P(__A1)=9/10, P(__A2__A1)=8/9,P(__A3|__A1__A2)=7/8,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 9/10×8/9×7/8=7/10.故P(A)=1- P(__A)=1-7/10=3/10.(2)若已知最后一个数字是奇数,从0到9有十个数,其中五个是奇数,则P(__A1)=4/5, P(__A2__A1)=3/4,P(__A3|__A1__A2)=2/3,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 4/5×3/4×2/3=2/5.故P(A)=1- P(__A)=1-2/5=3/5.16 考察甲、乙两地出现春旱的情况,以A,B分别表示甲、乙两地出现春旱这一事件.根据以往气象记录知P(A)=0.2,P(B)=0.15,P(AB)=0.08,求 P(A|B),P(B|A)及P(A∪B).解由题设可知:P(A|B)=P(AB)/P(B)=0.08/0.15=8/15,P(B|A)=P(AB)/P(A=0.08/0.2=2/5,P(A∪B)=P(A)+P(B)-P(AB)=0.2+0.15-0.08=0.27.17 掷三个均匀骰子,已知第一粒骰子掷出幺点(事件B),问“掷出点数之和不小于10”这个事件A的条件概率是多少?解设事件B={第一粒骰子掷出幺点},事件A={掷出点数之和不小于10},由题设可知,若第一粒掷出幺点,第二粒可能掷出3、4、5、6点;若第二粒掷出3点,第三粒必掷出6点;第二粒掷出4点,第三粒可能为5、6点;第二粒掷出5点,第三粒可能掷出4、5、6点;第二粒掷出6点,第三粒可能掷出3、4、5、6点,则P(A|B)=P(AB)/P(B)=10/36=5/18.18 甲、乙二人射击,甲击中的概率为0 8,乙击中的概率为0 7,二人同时射击,并假定中靶与否是独立的,求:(1)中靶的概率;(2)甲中、乙不中的概率;(3)甲不中、乙中的概率.解设A、B分别表示甲中靶、乙中靶两事件,则事件A与B独立,又P(A)=0.8,P(B)=0.7,于是,所求概率为(1)P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8+0.7-0.7×0.8=0.94;(2)P(A__B)=P(A)P(__B)=0.8×(1-0.7)=0.24;(3)P(__AB)=P(__A)P(B)=(1-0.8)×0.7=0.14.19 从厂外打电话给这个工厂某一车间要由工厂的总机转进,若总机打通的概率为0.6,车间的分机占线的概率为0.3,假定二者是独立的,求从厂外向该车间打电话能打通的概率.解设A,B分别表示从厂外打电话总机打通、分机打通两事件,则事件A,B独立,又P(A)=0.6,P(B)=1-0.3=0.7,所求概率为P(AB)=P(A)P(B)=0.6×0.7=0.42.20 设事件A,B的概率均不为0,证明事件A与B独立及互不相容不会同时成立.证若P(A)>0,P(B)>0,则有(1)因A,B两事件相互独立,且P(A)>0,P(B)>0,有P(AB)=P(A)P(B)> 0,故AB≠Φ,即A、B不互不相容;(2)因AB=Φ,故P(AB)=P(Φ)=0,而P(A)>0,P(B)>0,故P(A)P(B)>0, 于是P(AB)≠P(A)P(B),即A与B不相互独立.21 有四个大小质地一样的球,分别在其上写有数字1,2,3和“1,2,3”,令A i={随机抽出一球,球上有数字i}(i=1,2,3).试证明A1,A2,A3两两独立而不相互独立.证由题设可知P(A1)=1/2,P(A2)=1/2,P(A3)=1/2,且P(A1A2)=1/4= 1/2×1/2,P(A1A3)=1/4= 1/2×1/2,P(A2A3)=1/4= 1/2×1/2 .以上等式说明A1,A2,A3两两独立.但P(A1A2A3)=1/4≠1/2×1/2×1/2=P(A1)P(A2)P(A3).可见事件A1A2A3不相互独立.22 加工某一零件共需四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解设Ai={第i道工序出次品},i=1,2,3,4.又设A={零件为次品},则有A=A1∪A2∪A3∪A4.由题知,A1,A2,A3,A4相互独立,__A1 ,__A2 ,__A3 ,__A4也相互独立,于是P(A)=P(A1∪A2∪A3∪A4)=1-P(________________________4321AAAA⋃⋃⋃)=1-P(__A1__A2__A3__A4)=1-P(__A1)P(__A2)P(__A3)P(__A4)=1-0.98×0.97×0.95×0.97≈0.124.23 掷三枚均匀骰子,记B={至少有一枚骰子掷出1},A={三枚骰子掷出的点数中至少有两枚一样},问A,B是否独立?解考虑P(A|__B),若__B发生,则三枚骰子都不出现幺点,那么,它们都只有5种可能性(2,3,4,5,6),比不知__B发生时可能取的点数1,2,3,4,5,6少了一个.从5个数字取3个(可重复取),其中有两个一样的可能性,应比6个数字中取3个时,有两个一样的可能性要大些,即P(A)<P(A|__B).由此推出P(A)>P(A|B),故A,B不独立.24 一批玉米种子,其出芽率为0 9,现每穴种5粒,问“恰有3粒出芽”与“不大于4粒出芽”的概率是多少?解设A={恰有3粒出芽了},B={不大于4粒出芽}.把穴中每一粒种子是否发芽看作一次试验,而各粒种子发芽与否是互不影响的,所以5次试验是相互独立的,故P(A)=b3(5,0.9)=C35×0.93×(1-0.9)2=C35×0.93×0.12≈0.073,P(B)=1-b5(5,0.9)=1-C55×0.95×(1-0.9)0=1-0.95≈0.41.25 某一由9人组成的顾问小组,若每个顾问贡献正确意见的百分比是70 % ,现在该机构对某事件可行与否个别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.解显然本问题是:如果9人中超过4人作出正确决策,则可对该事件可行与否作出正确决策,从而设事件A={作出正确决策},由题设知,n=9,p=0.7,q=0.3,于是bk(n,p)=bk(9,0.7)=Ck9×0.7k×0.39-k(k=5,6,7,8,9),所以5次试验是相互独立的,故P(A)=∑=95kCk9×0.7k×0.39-k≈0.901.26 电灯泡使用寿命在1 000小时以上的概率为0 2,求3个灯泡在使用1 000小时后,最多只有一个坏了的概率.解利用二项概型,有P n(k≤1)=b0(3,0.8)+b1(3,0.8)=C03×0.80×0.23+C13×0.81×0.22=0.104.27 用三台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解设事件A、B、C分别表示三台机床加工的产品,事件E表示合格品.依题意,P(A)=0.5,P(B)=0.3,P(C)=0.2,P(E|A)=0.94,P(E|B)=0.9,P(E|C)=0.95,由全概率公式P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C) =0.5×0.94+0.3×0.9+0.2×0.95=0.93.28 12个乒乓球中有9个新的,3个旧的,第一次比赛时,同时取出了3个,用完后放回去.第二次比赛时,又同时取出3个,求第二次取出3个球都是新球的概率.解以A i(i=0,1,2,3)表示事件“第一次比赛从盒中任取的3个球中有i个新球”.可知A0,A1,A2,A3是样本空间Ω的一个划分.以B表示事件“第二次取出的球都是新球”.则P(A0)=C33/C312=1/220,P(A1)=C19C23/C312=27/200,P(A2)=C29C13/C312=27/55,P(A3)=C39/C312=21/55,P(B|A0)=C39/C312=21/55,P(B|A1)=C38/C312=14/55,P(B|A2)=C37/C312=35/220,P(B|A3)=C36/C312=1/11.由全概率公式,得P(B)=∑=3iP(Ai)P(B|Ai)=1/220×21/55+27/220×14/55+27/55×35/220+21/55×1/11=1746/12100≈0.14629 发报台分别以概率0.6和0.4发出信号“·”和“-”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率0 8及0 2收到信号“·”和“-”;当发出信号“-”时,收报台以概率0 9及0 1收到信号“-”和“·”.求:(1)收报台收到信号“·”的概率;(2)当收报台收到信号“·”时,发报台确系发出信号“·”的概率.解设事件B={收到信号“·”},A0={发出信号“·”},A1={发出信号“-”}.显然A0,A1构成一个完备事件组,且P(A0)=0.6,P(A1)=0.4,P(B|A0)=0.8,P(B|A1)=0.1.(1)应用全概率公式,有P(B)=∑=1iP(Ai)P(B|Ai)=0.6×0.8+0.4×0.1=0.52.(2)应用贝叶斯公式有P(A0|B)=P(A0)P(B|A0)/∑=1iP(Ai)P(B|Ai)=0.6×0.8/0.52≈0.923.30 设某种病菌在人口中的带菌率为0.83.当检查时,带菌者未必检出阳性反应,而不带菌者也可能呈阳性反应,假定P(阳性|带菌)=0.99,P(阴性|带菌)=0.01,P(阳性|不带菌)=0.05P(阴性|不带菌)=0.95.设某人检出阳性,问他“带菌”的概率是多少?解设A={某人检出阳性},B1={带菌},B2={不带菌}.由题设知P(B1)=0.83,P(B2)=1-0.83=0.17,P(A|B1)=0.99, P(A|B2)=0.05,故所求的概率为P(B1|A)=P(AB1)/P(A)=P(B1)P(A|B1)/∑=2jP(B j)P(A|B j)=(0.83×0.99)/(0.83×0.99+0.17×0.05)=0.8217/(0.0085+0.8217)≈0.9898.31 设有五个袋子,其中两个袋子(品种A1)每袋有两个白球和三个黑球,另外两个袋子(品种A2)每袋有一个白球和四个黑球,还有一个袋子(品种A3)中有四个白球和一个黑球,(1)从五个袋中任挑一袋,并从这袋中任取一球,此球为白球的概率;(2)从不同品种的三袋中任挑一袋,并由其中任取一球,结果是白球(事件B),问这球由三个品种的袋子中取出的概率各是多少?解(1)设事件B表示“取到白球”,A i表示“从五个袋中取到A i品种袋子”(i=1,2,3),故P(A1)=2/5, P(A2)=2/5,P(A3)=1/5,P(B|A1)=2/5,P(B|A2)=1/5,P(B|A3)=4/5,利用全概率公式,所求概率为P(B)=∑=31iP(A i)P(B|A i)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2/5×2/5+2/5×1/5+1/5×4/5=10/25=2/5 .(2)设事件B={取到白球},A i={从不同品种三袋中取到品种A i袋子} (i=1,2,3),根据题设,欲求下述三个条件概率P(B|A1),P(B|A1),P(B|A1). 于是P(A1)=1/3 ,P(A2)=1/3,P(A3)=1/3,P(B|A1)=2/5 ,P(B|A2)=1/5,P(B|A3)=4/5. 利用全概率公式,取到白球概率为P(B)=∑=31iP(A i)P(B|A i)=1/3×2/5+1/3×1/5+1/3×4/5=7/15.再由贝叶斯公式,有P(A1|B)=P(A1)P(B|A1)/∑=31iP(Ai)P(B|Ai)=(1/3×2/5)/7/15=2/7.P(A2|B)=P(A2)P(B|A2)/∑=31iP(Ai)P(B|Ai)=(1/3×1/5)/7/15=1/7.P(A3|B)=P(A3)P(B|A3)/∑=31iP(Ai)P(B|Ai)=(1/3×4/5)/7/15=4/7.。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。
2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。
3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。
事件关系及其运算是本章的重点和难点,概率计算是本章的重点。
注意事件与概率之间的关系。
本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。
近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。
相当一部分考生对本章中的古典概型感到困难。
大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。
考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。
应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。
【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。
三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是“记忆量大”。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。
第一章 随机事件与概率1.从0,1,2,,9十个数字中,先后随机取出两数,写出下列取法中的样本空间:(1)放回时的样本空间1Ω(2)不放回时的样本空间2Ω 解:(1)100 01 02 0910 11 12 1990 91 92 99⎧⎫⎪⎪⎪⎪Ω=⎨⎬⎪⎪⎪⎪⎩⎭,(2)201 02 03 0910 12 13 1990 91 92 98⎧⎫⎪⎪⎪⎪Ω=⎨⎬⎪⎪⎪⎪⎩⎭ 2.一个袋内装有4个白球和5个红球,每次从袋内取出一球,直至首次取到红球为止。
写出下列两种取法的样本空间: (1)不放回时的样本空间1Ω(2)放回时的样本空间2Ω解:(1)Ω1={红,白红,白白红,白白白红,白白白白红}(2)Ωn 个2={红,白红,,白白白红}5.设样本空间{0,1,2,,9},A Ω=事件={2,3,4},B={3,4,5},C={4,5,6},求: (1)AB(2)()AB C解:(1) {2,3,4,5}AB AB AB ===(2)()(){4,5}{0,1,5,6,7,8,9}{4,5}{0,1,4,5,6,7,8,9}ABC A BC A ====11.小何买了高等数学、高等代数、解析几何、和大学英语四本书放到书架上,问各册自左向右或自右向左排列恰好是上述次序概率。
解:214!12P ==15.在整数0-9中,任取4个,能排成一个四位偶数的概率。
解:4105040n A ==,311294882296k A C C A =+= 22960.465040k p n ∴===14. 设n 个人排成一行,甲与乙是其中的两个人,求这n 个人的任意排列中,甲与乙之间恰有r 个人的概率。
如果n 个人围成一圈,试证明甲与乙之间恰有r个人的概率与r 无关,都是11n -(在圆排列中,仅考虑从甲到乙的顺时针方向)。
解:(1)基本事件数为!n ,设甲排在第i 位,则乙排在第i+r+1位,1,2,,1i n r =--,共1n r --中取法,其余n-2个位置是n-2个人的全排列,有(n-2)!种,甲乙位置可调换,有12C 种,故有利事件数由乘法原理有12C (n-r-1)(n-2)!,由古典概型的计算公式,得122(1)(1)C n r P n n --==-(n-r-1)(n-2)!n! 甲乙相邻的概率为:12(1)!2!C n P n n -==另解1:先固定甲,有n 种,再放置乙,有n-1,基本事件数有(1)n n -,有利事件数为2(n-r-1).故有2(1)(1)n r P n n --=-另解2:先在甲乙之间选出r 个人,然后将甲乙与这r 个人看成一个整体与剩下的n-r-2个人作全排列.212212(1)!(1)r n r n n r A A A n r P n n n -------==-(2)环排列:甲乙按顺时针方向排列,中间相隔r 个人的基本事件数是 n 个位置取2个人的排列,共有2n A 种,而甲的位置选取有n 种选法,故由古典概型的计算有211n n P A n ==-甲乙相邻的情形:设甲乙合一个位置,甲乙可互换,则甲乙相邻有2(2)!n -种排列,故2(2)!2(1)!1n P n n -==--. 另解:一圈有n 个位置,甲占一个后,乙还有n-1个,与甲相邻的共2个,故21P n =-(只考虑乙)16.口袋内有2个伍分,3个贰分,5个壹分的硬币,任取其中5个,求总值超过一角的概率.解: 基本事件数为510252n C ==,有利事件数为1) 2个伍分,其他任意,有232856C C = 2) 1个伍分,2个贰分:12223560C C C = 3) 1个伍分,3个贰分: 13123510C C C =故56601012522k P n ++===17:箱中有α个白球和β个黑球,从其中任意地接连取出k+1(1k αβ+≤+)球,如果每次取出后不放回,试求最后取出的是白球的概率. 解:令{1()}A k =+第次最后取出的是白球,则+1+1+(+1)!(+1)!(A)=(+)!A +(+1)!kA k P k ααβαβαβαααβαβαβαβ----==--1k C另解:只考虑第k+1次取球的情况,显然每个球都可能排列在第k+1个位置,基本事件数为αβ+,有利于A 的基本事件数为α,故()P A ααβ=+18.一架电梯开始有6位乘客并等可能地停于10层楼的每一层,求下列事件的概率:(1)某一层有两位乘客离开。
(2)没有两位及两位以上乘客在同一层离开。
(3)恰有两位乘客在同一层离开。
(4)至少有两位乘客在同一层离开。
解:(1) 某有2位乘客离开,6个乘客选2名有26C 种选法,其余4人在其余9层下有49种,故共有:2466910C p =(2) 没有2人或2人以上的乘客在同一层离开,即只有一个人在某层离开,从而610610A P = (3) 恰好有2位乘客在同一层离开基本事件数为610n =.考虑有利事件数,“有2位乘客在同一层”种数为12106C C ,其余4人有以下几种情况a) 其余9层,4个人单独在某层下,有49A 种。
b) 4人一起在其余9层中的某层下,有19C 种。
c) 9层中的某层下3人,其余8层下1人,共有131948C C C所以1241131106999486[]10C C A C C C C P ++=(4) 为(2)的逆事件,从而6106110A P =- 19.一列火车共有n 节车厢,有k n ≥个旅客上火车并随意地选择车厢,求每一节车厢内至少有一个旅客的概率。
解:设{}A =每一节车厢至少有一个旅客,则{}A =存在空车厢{}i A i =存在节空车厢,1,2,,i n =,则1=1=n iI A A -,以下计算()i P A指定的i 节车厢空的概率为1ki n (-),(因为每个人进入其他n-i 节车厢的概率为1n i i n n -=-),所以()(1)(1,2,,1)ik i n i P A C i n n =-=-,利用多除少补原理,有121121()(1)(1)(1)(1),()1()k k n n kn n n n P A C C C P A P A n nn --=---++--=-注:错解:k k nn k A n P n -=(有重复情形) 20.某人从鱼池中捕得1200条鱼,做了记号后放回该鱼池中,经过一段时间后,再从池中捕1000条鱼,数得有记号的有100条。
试估计鱼池中共有多少条鱼? 解:设鱼池中共有n 条鱼,则,由古典概率的定义有:1200100120001000k p n n n ===⇒=21.将线段(0,a)任意折成三段,试求此三段能够成三角形的概率 解:设0x y a <<<,如图能够三角形,必须有y a y >-,即12y >.如图22.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内达到的时刻是等可能的,如果甲般的停泊时间是1小时,乙船停泊的时间是20 x y a X小时,求它们中的任何一艘都不需等待码头空出的概率。
解: 设x,y 分别表示甲乙船到达码头的时刻,024x y <<≤不需等待码头空出,若甲先到,则1y x ->,若乙先到,则2x y ->,如图2221(2322)20.8793424P +==23. 在一个半径为1的圆周上,男乙两人各自独立地从圆周上随机地各取一点,将两点连成一条弦L,求圆心到弦L 的距离不大于12这一事件A 的概率。
解:由运动的相对性,不妨将甲固定,则基本事件为“(乙可取的点)整个圆周”,有利于A 的事件对应为:(乙可取点)甲的左边13圆周和甲的右边13圆周,故232223p ππ==.24.解:三角形a,b,c 任一边与平行线相交的概率分别为222,,a b cd d d πππ, 而“三角形与平行线相交”等价于“任意两个边与平行线相交”。
故1222()2a b c a b c p d d d d ππππ++=++=28.一个袋内有n-1个黑球和一个白球,每次从袋中随机取出一球并换入一个黑球,这样继续下去,求第k 次取到黑球的概率。
2 244444解:记{}{}A k A k ==第次摸到黑球,则第次摸到白球,因为袋中只有一只白球,故了在第k 次摸到白球,则前面的k-1次不能摸到白球,只能摸到黑球,故11111(1)k k k N P A N N N --⋅=-⋅()=,111()1(1)k P A N N -=--⋅.34.袋中有编号为1,2,…,n 的n 个球,从中有放回地随机选取m 个,求取出的m 个球的最大号码为k 有概率。
并计算n=6,m=3,时,k=1和k=3的值。
解:基本事件的可能数为mn ,记k A ={取到这最大号码为k },k B ={取到的最大号码不超过k 这一事件},则有1,k k k A B B -=-又1,k k B B -⊂()mk mk p B n =,故有 1(1)()()(),1,2,,m mk k k mk k P A P B P B k nn ---=-==(1)0.00463p =,(2)0.421296p =36.n 个人参加同学聚会,每个人都带了一件礼物,并附上祝福词和签上自己的名字,聚会时每人从放在一起的礼物中随机取出一件礼品,至少有一人取到自己礼物的概率,并计算出当n=2和n=1000时的概率。
解:先求事件A={没有人取到自己的礼物}的概率。
令{}1,2,,i A i i n ==第个人取到自己的礼物,,由P46例1.4.4(配对问题)的结论,有01(1)()1()!knni k i P A P A k ==-=-=∑,1(1)111()1()11(1)!2!3!!k nn k P A P A k n -=-=-=-=-+++-∑,(2)0.05,(1000)0.73p p ==42 已知()0.3,(|)0.4,()0.5,P A P B A P A B ===求 P(B |A B )。
43.试证:如果(|)(),(|)()P A B P A P B A P B >>则 证:()(|)()()()()()()()()(|)()()()P AB P A B P A P AB P A P B P B P AB P A P B P B A P B P A P A =>⇒>∴=>= 44.一批产品共100件,对其进行抽象检查,整批产品看作不合格的规定如下:在被检查的5件产品中只要有一件是废品。
如果在该批产品中有5%是不合格品,试问该批产品被认为不合格的概率是多少?解:共100件产品,其中的5件废品,95件合格品。