2019年重庆中考专题训练第17题(行程问题)
- 格式:docx
- 大小:261.83 KB
- 文档页数:6
2019中考数学专题练习-一元一次方程的实际应用-行程问题(含解析)一、单选题1.甲乙二人在400米的环形跑道上练习同向竞走.乙每分钟走80米,甲每分钟走100米,现在甲在乙前100米,多少分钟后两人相遇?()A. 5分钟B. 20分钟C. 15分钟D. 10分钟2.A,B两站间特快列车需要行驶3小时30分钟,早6时两站同时对发首次列车,以后每隔1小时发一次车.那么,上午9时从A站发出的特快列车将与B站出发的列车相遇的次数是()A. 5次B. 6次C. 7次D. 8次3.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A. x﹣1=5(1.5x)B. 3x+1=50(1.5x)C. 3x﹣1=(1.5x)D. 180x+1=150(1.5x)4.一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,则这列火车的长为()A. 190米B. 400米C. 380米D. 240米5.甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A. 7x=6.5x+5B. 7x+5=6.5xC. (7﹣6.5)x=5D. 6.5x=7x﹣56.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A. 7.5秒B. 6秒C. 5秒D. 4秒7.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A. 2B. 2或2.25C. 2.5D. 2或2.58.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A. B. C. D.9.在长400米的环形跑道上,小明和小亮在同一地点同时同向出发,小明每分钟跑280米,小亮每分钟跑230米,若设两人x分钟第一次相遇,所列方程是()A. 280x+230x=400B. 280x+230x=400×2C. 280x﹣230x=400D. 280x﹣230x=400×210.父子二人早上去公园晨练,父亲从家出了跑步到公园需30分钟,儿子只需20分钟,如果父亲比儿子早出发5分钟,儿子追上父亲需()A. 8分钟B. 9分钟C. 10分钟D. 11分钟11.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A. B. C. D.12.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x小时,则可列方程得()A. B. C. 5(x﹣)=4xD.13.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是()秒A. 60B. 50C. 40D. 3014.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A. 2或2.5B. 2或10C. 10或12.5D. 2或12.5二、填空题15.甲乙两人骑自行车同时从相距65km的两地相向而行,2h相遇.若甲比乙每小时多骑2.5km,乙的速度是________km/h.16.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________.17.甲乙两地相距250km, 某天小颖从上午7: 50由甲地开车前往乙地办事.在上午9: 00, 10: 00, 11: 00这三个时刻, 车上的导航仪都进行了相同的提示: 如果按出发到现在的平均速度继续行驶,那么还有1个小时到达乙地. 如果导航仪的提示语都是正确的,那么在上午11:00时,小颖距乙地还有________km.18.京﹣沈高速铁路河北承德段通过一隧道,估计从车头进入隧道到车尾离开隧道共需45秒,整列火车完全在隧道的时间为32秒,车身长180米,设隧道长为x米,可列方程为________ .19.A、B两动点分别在数轴﹣6、12两位置同时向数轴负方向运动,它们的速度分别是2单位长度/秒、4单位长度/秒,另一动点C也在数轴12的位置向数轴负方向运动,当遇到A 后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A 时,C立即停止运动.若点C一直以8单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是________ 个单位长度.20.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为 ________21.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为 ________22.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若船在静水中速度为26km/h,水流速度为2km/h,则A港和B港相距________ km.三、解答题23.甲乙两地之间相距30km,A同学从甲地骑自行车去乙地,B同学从乙地骑自行车去甲地,两人同时出发,相向而行,经过2小时相遇;相遇后,A同学就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有4km.求:A、B骑车的速度各是多少?24.A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。
2019年重庆数学中考填空、选择难点题专题复习讲座四——一次函数与行程问题【例题】在一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止.在甲车出发的同时,乙车也从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶.若AB两地相距300千米,在两车行驶的过程中,甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在两车出发后经过_____小时相遇.【答案】【分析】观察函数图像可知A、C两地的间距,由速度=路程÷时间可求出乙车的速度,结合甲、乙两车速度间的关系可求出甲车的速度,再求出乙车从A地返回时两车的间距,依据相遇时间=4+两车的间距÷两车的速度和,即求出甲、乙两车相遇的时间.【详解】解:最总两车相距400km, A、C两地相距400km,乙车的速度为(300+400)÷(8-1)=100km/h,甲车的速度为100-120÷3=60 km/h,乙车从A地返回时,两车的间距为300-60×4=60km,∴两车相遇的时间为4+60÷(100+60)=.故答案为:.巩固练习:1、甲骑自行车从A地到B地,甲出发1分钟后乙骑平衡车从A地沿同一条路线追甲,追,甲继续上甲时,平衡车电量刚好耗尽,乙立即手推平衡车返回A地,速度变为原速度的13向B地骑行,结果甲、乙同时到达各自的目的地并停止行进.整个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分关系如图所示,则A,B两地相距的路程为米.1、解:设A、B两地间的路程为x千米,根据题意得: (x-36)/(10-8)=(36+36)/(12-10)解得:x=108.答:A、B两地间的路程为108千米.2、一辆客车和一辆货车沿着同一条线路以各自的速度匀速从甲地行驶到乙地,货车出发3小时后客车再出发,客车行驶一段时间后追上货车并继续向乙地行驶,客车到达乙地休息1小时后以原速按原路匀速返回甲地,途中与货车相遇.客车和货车之间的距离(千米)与客车出发的时间(小时)之间的关系的部分图象如图所示.当客车返回与货车相遇时,客车与甲地相距________千米.2、【答案】【解析】根据图象求出货车和客车的速度,求出客车开始返程至遇见货车用时,进而求出两地的距离.详解:货车3小时行驶270千米,可知货车速度为,客车9小时追上客车,可知客车速度为,客车开始返程至遇见货车用时,客车与甲地相距故答案为:.点睛:考查一次函数的实际应用问题,此类题是今几年中考热点,关键是根据一次函数的性质和图象结合实际问题求解.3、甲从A地到B地,1分钟后乙沿同一条路线也从A地道B地,在A、B之间的C地乙追上甲,甲立即返回A地,乙继续向B地前行,两人到达各自目的地后停止行走,在整个过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟之间的关系如图所示,则乙到达B地时,甲与A地相距的路程是米。
2018重庆中考数学第17题(行程问题)专题练习1.甲、乙两车分别从A ,B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A 地300千米的C 地(中途休息时间忽略不计)。
设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则当甲车到达B 地时,乙车距A 地______千米。
2. 如图:小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中。
如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图。
则小明的家和小亮的家相距 米3.甲、乙两车分别从A ,B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A 地300千米的C 地(中途休息时间忽略不计).设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则当甲车到达B 地时,乙车距A 地 100 千米.4.甲乙两车分别从A 、B 两地出发相向而行,甲车出发1小时后乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,当甲车到达B 地后,立即调头以原速度去追赶乙车,乙车到达A 地后也立即调头以原速度继续行驶,直到两车再次相遇,停止运动(甲、乙两车调头所需时间忽略不计).如图所示是甲乙两车之间的距离S (千米)与甲车所用时间t (小时)之间的函数图象,则甲乙两车再次相遇时,乙车离A 地的距离为____9809 千米.5.有一个进、出水管的容器,某时刻起4分钟只开进水管,此后进水管,出水管同时开放,经过8分钟注满容器,随后只开出水管,得到时间x (分钟)与水量y (升)之间的函数关系如图,那么容器的容积为 升.6.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙。
重庆中考17题----行程问题1.甲、乙两车分别从A,B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则B,C两地相距千米.2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有.3.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.4.点A、B、C表示同一笔直公路上的三个不同的车站,甲,乙两人分别从A、B车站同时出发,匀速直线运动到C站,到达C站就停下来.甲、乙两人与B站的距离y(千米)与时间(小时)之间的函数关系如图所示,则当甲出发小时时,甲乙两人距离为5千米.5.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入(城区与入口的距离忽略不计),并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,已知甲车以90千米/时的速度匀速行驶.两车之间的距离s(千米)与行驶时间x(小时)之间的关系如图.给出下列结论:①A、B两城相距300千米②乙车与甲车相遇之前速度为60千米/时③C点的横坐标为④两车相遇时距离A城180千米⑤乙车与甲车相遇后,速度改为90千米/时以上结论中正确的是(填序号)6.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.7.在同一条直线上依次有A、B、C三地,甲、乙二人同时分别从A、B两地同向去C地,若甲、乙二人x小时候与B地的距离分别为y1千米、y2千米,且其图象如图所示,则甲、乙相遇时,甲走了千米.8.一名考生步行前往考场,10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了分钟.9.李明骑自行车去上学途中,经过先上坡后下坡的一条路段,在这段路上所走的路程s(米)与时间t(分钟)之间的函数关系如图所示,若李明放学后按原路返回,且往返过程中,上坡的速度相同,下坡的速度也相同,问李明返回时走这段路所用的时间为分钟.10.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲米.11.“国际龙舟节”在岳阳汩罗江举行.某龙舟队在1000米比赛项目中,路程y(米)与时间x(分钟)之间的函数图象如图所示.根据图中提供的信息,该龙舟队的比赛成绩是分钟.12.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙埋正好用了2小时,已知摩托车行驶的路程S(千米)与行驶的时间t(小时)之间的函数关系由如图的图象ABCD给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油量升.13.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1B.2C.3D.414.甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a=750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是()A.1个B.2个C.3个D.4个15.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个16.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个17.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米:②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个18.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.19.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.20.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前小时到达B地.21.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.22.如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.23.设甲、乙两车在同一直线公路上相向匀速行驶,相遇后两车停下来,把乙车的货物卸到甲车用了100秒,然后两车分别按原路原速返回.设x秒后两车之间的距离为y米,y关于x的函数关系如图所示,则a=米.24.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站如乙下车,最后步行到学校(在整个过程中小丽步行的速度不变).图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)小丽步行的速度为;(2)写出y与x之间的函数关系式:.25.某校八年级的学生到距学校6千米的郊外旅游,一部分学生步行,另一部分学生骑自行车沿相同线路前往,如图,l1、l2分别表示步行和骑车的学生前往目的地所走的路程y(千米)与所用的时间x(分钟)之间的函数图象,给出下列判断:①骑车的学学比步行的学生晚出发30分钟;②步行的速度是每小时6千米;③骑车的学生从出发到追上步行的学生用了20分钟;④骑车的学生和步行的学生同时到达目的地.则正确的判断有个.26.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.27.甲、乙两车都从同一地点沿同一路线驶向同一目的地,甲车先行,一段时间后,乙车开始行驶,甲车到达目的地后,乙车走完了全程的,下图反应的是从甲车开始行驶到乙车到达目的地整个过程中两车之间的距离与时间的函数关系图象,则a=.28.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为千米.29.甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为km.30.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是分钟.31.甲、乙两名自行车爱好者准备在一段长为3400m的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面,他们同时出发,匀速前进,已知甲的速度为15m/s,设甲、乙两人之间的距离为y(米),比赛时间为x(秒),图中的折线表示从两人出发至乙先到达终点的过程中y (米)与x(秒)的函数关系,根据图中信息,乙到终点时,甲离终点还有米.32.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象.当快车到达甲地时,慢车离甲地的距离为千米.33.甲、乙两人同时从A地出发到B地去,已知甲骑自行车,乙步行,甲到达B地后用半小时办完事后按原速返回.甲、乙两人之间的距离y(单位:千米)与行驶时间t(单位:时)之间的函数关系如图所示,则图中a的值是.34.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.35.在一平直公路上依次有A、C、B三地,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车2小时可到达途中C站,14小时到达A地,客车需6小时到达C站.已知客车、货车到C站的距离与它们行驶时间x(小时)之间的函数关系如图所示,客车的速度比货车的速度快千米/小时.36.甲乙两人在一笔直的公路上,沿同一方向骑自行车同时出发前往A地,到A地后停止,他们距A地的路程ykm 与甲行驶的时间x小时之间的关系如图所示,则出发小时甲乙二人相距5km.37.已知A、B、C是同一条笔直公路上的三个不同的车站,甲、乙两人分别从A、B车站同时出发,匀速直线运动到C站,到达C站就停下来,甲、乙两人与B站的距离y(千米)与时间x(小时)之间的函数关系的图象如图,当甲出发小时,甲、乙两人相距5千米.38.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y(千米)与慢车行驶的时间为x(小时)之间的函数关系如图所示,则快车到达乙地时慢车离乙地距离为.39.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.如果小明两次经过途中某一地点的时间间隔为0.12h,那么该地点离甲地km.40.甲地宏达物流公司的快递车和货车同时从甲地出发,以各自的速度沿快速通道向乙地匀速行驶,快递车到达乙地后,卸完物资并另装货物共用了45分钟,然后按原路以另一速度返回,直至与货车相遇,已知货车行驶速度为60km/h,两车间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示给出以下四个结论:①快递车从甲地到乙地的速度是100km/h②甲、乙两地之间的距离是80km③图中点B的坐标为(2,35)④快递车从乙地返回时的速度为90km/h其中正确的是(填序号)41.小华和爷爷在一环形跑道上匀速跑步,两人在同一起点顺时针出发,两人离起点较近的环形距离y与时间t之间关系如图所示,出发后小华第一次与爷爷相遇的时间为分.42.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育馆的路程S(米)与所用时间t(分钟)之间的函数关系,骑自行车和步行的速度始终保持不变,则小明在比赛开始前分钟到达体育馆.43.甲、乙两车从A地出发以各自的速度匀速开往450km外的B地,甲车先行0.5h后乙车出发,乙车到达B地后原地休息.甲、乙两车的距离s与乙车行驶的时间t之间的函数关系如图,则此次行程中,甲、乙两车两次相遇的时间间隔为h.44.如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A、B两地向正北方向匀速直行,他们的距离s (千米)与所用的时间t(小时)之间的函数关系分别如图中的射线OC和ED,当他们行走4小时后,他们之间的距离为千米.45.学校组织学生外出踏青,学生队伍从学校先步行出发,一段时间后王老师从学校骑车追赶学生,追上学生时接到电话要求王老师返回,因此王老师又立即按原速返回,当王老师回到学校时,学生还在继续前行,直到目的地.设王老师和学生队伍间的距离为y米,从王老师出发开始计时,设时间为x分钟,图中折线表示y与x的函数关系,则王老师的速度是米/分.46.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲乙两船行驶的时间为x(h),与B港的距离为y(km),它们间的函数关系如图所示,若两船的距离不超过10km时能够相互望见,则甲乙两船可以互相望见的时间共有小时.47.一次越野跑中,当小明跑了1000米时,小刚跑了800米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.48.如图,小明从A地出发向B地行走,同时小亮从B地出发向A地行走,线段l1,l2分别表示小明、小亮离B 地的距离与已用时间之间的关系,当x=h时,小明与小亮相距7.7km.49.周末,小华骑自行车从家里出发到植物园游玩,从家出发0.5小时后,因自行车损坏修理了一段时间后,按原速前往植物园,小华离家1小时20分钟后,爸爸开车沿相同路线前往植物园,如图是他们离家的路程y(km)与小华离家时间x(h)的函数图象.已知爸爸开车的速度是小华骑车速度的3倍,若爸爸比小华早10分钟到达植物园,则从小华家到植物园的路程是km.50.沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:①甲船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④图中P点为两者相遇的交点,P点的坐标为();⑤如果两船相距小于10km能够相互望见,那么,甲、乙两船可以相互望见时,x的取值范围是<x<2.其中正确的结论有.51.甲乙两地相距50千米,星期天上午8:00小明同学骑山地自行车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系如图所示,则小明父亲出发小时后,行进中的两车相距24千米.52.某渔船计划从码头出发到指定海域捕鱼,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该渔船加快速度仍匀速前进,结果恰好准点到达,如图是该渔船行驶的路程y(海里)与所用时间t(小时)的函数图象,则该渔船从码头到捕鱼海域的路程是海里.53.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的结论是.54.甲、乙两人都从光明学校出发,去距离光明学校1500m远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚出发4min.设甲行走的时间为t(单位:min),甲、乙两人相距y(单位:m),表示y与t的函数关系的图象如图所示,根据图中提供的信息,下列说法:①甲行走的速度为30m/min②乙在距光明学校500m处追上了甲③甲、乙两人的最远距离是480m④甲从光明学校到篮球馆走了30min正确的是(填写正确结论的序号).55.一辆货车从甲地匀速驶往乙地用了2.7小时,到达后用了0.5小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示,则a=(小时).56.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).57、甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为米,乙行驶的时间为秒,与之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发_____▲_____秒.58、如图:小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中。
2019年重庆中考专题训练第17题(行程问题)【例1】(2018重庆中考A卷)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障.修车耗时20分钟。
随后,乙车车速比发生故障前减少了10千米小时(仍保持匀速前行),甲、乙两车同时到达B地,甲乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.【变式】(重庆巴蜀中学2019下期)如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图.则小明的家和小亮的家相距米.【例2】(重庆巴蜀中学2018下期期中)一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以另一速度跑完全程,两人到达终点时均停止跑步。
如图,折线图表示改变速度后两人之间的距离y(单位:米)与改变速度后跑步所用的时间x(秒)之间的关系,则这次越野赛跑的全程为米。
【变式】(2017重庆八中4月一模)小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵。
然后,小兵以原速继续上学,爸爸也以原速返回家,爸爸到家后,过一会小兵才到达学校。
两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示,则家与学校相距米。
【例3】(2016重庆一中月考)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计)。
中考数学总复习《行程问题(一次函数实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?2.一辆快车从甲地出发驶向乙地,在到达乙地后,立即按原路原速返回到甲地,快车出发一段时间后一辆慢车从甲地驶向乙地,中途因故停车1h后,继续按原速驶向乙地,两车距甲地4的路程kmy与慢车行驶时间()h x之间的函数图象如图所示,请结合图象解答下列问题:(1)甲乙两地相距______km,快车行驶的速度是______ km/h,图中括号内的数值是______ ;(2)求快车从乙地返回甲地的过程中,y与x的函数解析式;(3)慢车出发多长时间,两车相距120km3.甲、乙两地之间是一条直路,王明跑步从甲地往乙地,陈星骑自行车从乙地往甲地,两人同时出发,陈星先到达目的地,设两人的在行进过程中保持匀速,两人之间的距离()km y 与运动时间()h x 的函数关系大致如图所示,请你根据图形进行探究:(1)王明和陈星的速度分别是多少?(2)请写出线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围. 4.某次无人机展演活动中,Ⅰ号无人机从海拔10m 处出发,以12m/min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以()m/min a 的速度匀速上升,经过5min 两架无人机位于同一海拔高度()m b .无人机海拔高度()m y 与时间()min x 的关系如图.两架无人机都上升了15min .(1)求b 的值及Ⅱ号无人机海拔高度()m y 与时间()min x 的关系式; (2)问无人机上升了多少时间,两无人机高度相差32m .5.现有A 、B 两种品牌的共享电动车,收费y (元)与骑行时间(min)x 之间的函数关系如图所示,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y .(1)直接写出A 品牌收费方式对应的函数关系式为 .(2)如果小致每天早上需要骑共享电动车去上班,已知两种品牌共享电动车的平均行驶速度均为30km /h ,小致家到学校的距离为6km ,那么小致选择 (填“A 品牌”或“B 品牌”)的共享电动车更省钱.(3)求出两种收费相差0.5元时x 的值.6.如图,小李和小赵相约去农庄游玩.小李从甲小区骑电动车出发,同时小赵从乙小区开车出发,途中去超市购物,购物后仍按原速继续驶向农庄,甲乙小区、超市和农庄之间的路程如图①所示,图②中线段OD 、BC 分别表示小李、小赵行驶中离甲小区的路程()km s 与出发时间t (分)之间的函数图象(或部分图象).根据图象回答问题:(1)分别求出线段OD 、BC 的函数表达式;(2)请补全小赵离甲小区的路程为()km s 与出发时间t (分)的函数图象,并写出小赵在超市购物,用时______分钟.7.甲、乙两人同时开车从A 地出发,沿同一条道路去B 地,途中都以两种不同的速度1V 与212()V V V >行驶.甲前一半路程以速度1V 匀速行驶,后一半路程以速度2V 匀速行驶;乙前一半时间以速度匀速2V 行驶,后一半时间用以速度1V 匀速行驶.(1)设甲乙两人从A 地到B 地的平均速度分别为V 甲和V 乙,则V =甲___________;___________(V =乙用含1V 、2V 的式子表示).2(1)当04t<≤时,求2v关于t的函数关系式;(2)求图中a的值;(3)小明每次踢球都能使球的速度瞬间增加6m/s,球运动方向不变,当小明带球跑完200m,写出小明踢球次数共有____次,并简要说明理由.10.已知甲、乙、丙三地依次在同一直线上,乙地离甲地260km,丙地离乙地160km.一艘游轮从甲地出发,途经乙地前往丙地.当游轮到达乙地时,一艘货轮沿着同样的线路从甲地出发前往丙地.已知游轮的速度为20km/h,离开甲地的时间记为t(单位:h),两艘轮船离甲地的距离y(单位:km)关于t的图象如图所示(游轮在停靠前后的行驶速度不变).货轮比游轮早2.6h到达丙地.根据相关信息,解答下列问题:(1)填表:游轮离开甲地的时间/h 6 13 16 22 24游轮离甲地的距离/km120 260(2)填空:①游轮在乙地停靠的时长为_______h;②货轮从甲地到丙地所用的时长为_______h,行驶的速度为_______km/h;③游轮从乙地出发时,两艘轮船的距离为_______km.13.我国已取得脱贫攻坚的全面胜利,国家已进入乡村振兴实施阶段,现代物流的高速发展,为乡村振兴的实施提供了良好条件.某物流公司的汽车在市区行驶20km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地,汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,回答下列问题:(1)汽车在乡村道路上行驶的平均速度是______ km/h;(2)求汽车在高速路上行驶的路程y与行驶的时间x之间的函数关系式,并写出自变量x的取值范围;(3)当该物流车行驶到距离出发地120km时,请问该车再过1.5小时能不动达目的地,如果能,写出计算过程;如果不能,直接写出1.5小时后该车离目的地还有多远?14.甲、乙两车分别从相距15km的大连北站和大连广播电视中心同时匀速相向而行.甲车出发10min后,由于交通管制,停止了2min,再出发时速度比原来减少15km/h,并安全到达终点.甲、乙两车距大连北站的路程y(单位:km)与两车行驶时间x(单位:h)的图象如图所示.(1)填空: a______;(2)求乙车距大连北站的路程y与两车行驶时间x的函数解析式,并直接写出自变量x的取值范围;(3)求甲、乙两车相遇时,乙车距大连北站的路程.15.随着疫情的消失,三年的管控使人们的消费和旅游在2023年的“五一”假期得以全面释放.小明和小军分别骑车和驾车从本村出发,沿同一条公路去东门外生态公园游玩.小明骑一段时间后,小军驾车出发,结果半路遭遇堵车,当小明迫上小军后,小军坐小明的自行车一起去生态公园(小军泊车时间忽略不计),如图是小明、小军两人在去生态公园过程中经过的路程()my与小明出发时间()s x之间的函数图像.请结合图像回答:(1)村与公园的距离为______ ,小明骑车速度是______ m/s.(2)小军在离开村多少公里处遭遇堵车?从小军遇到堵车到追上小明用了多长时间?(3)直接写出两人何时相距520m?16.甲、乙两地相距320km,A,B两辆货车同时分别从甲、乙两地相向而行,货车A先出发,一个小时后,货车B也出发,若它们都保持匀速行驶,货车A、货车B距乙地的距离()y km与时x h之间的关系如图所示.间()(1)求货车B距乙地的距离y与时间x的关系式;(2)求货车B到甲地后,货车A还需多长时间到达乙地.参考答案:1.(1)工厂离目的地的路程为880千米 (2)s 关于t 的函数表达式:()80880011s t t =-+≤≤ (3)t 的取值范围是254t ≤≤1522.(1)400,100,7(2)快车从乙地返回甲地的过程中,y 与x 的函数解析式为100400y x =-+ (3)慢车出发1小时或103小时或143小时,两车相距120km3.(1)王明跑步的速度为8km/h ,陈星的速度为16km/h . (2)()24241 1.5y x x =-≤≤ 4.(1)70 830y x =+(2)无人机上升了13min ,两无人机高度相差32m . 5.(1)10.2y x =(2)小明选择A 品牌的共享电动车更省钱 (3)两种收费相差0.5元时,x 的值为15或25;6.(1)线段OD 的函数表达式为()0.5020y x x =≤≤;线段BC 函数表达式为()81218y x x =-≤≤; (2)小赵在超市购物,用时10min . 7.(1)12121222VV V V V V ++,(2)乙(3)①1210050300V V S ===,,,②3.5小时 8.(1)20a = 140b =; (2)2020y x =+甲1550y x =+乙;(3)飞行1分钟或者11分钟时,两架航模飞行高度相差25米。
2019年重庆市初中毕业、升学考试数学A 卷(满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.(2019重庆A 卷,1,4)下列各数中,比-1小的数是 ( )A .2B .1C .0D .-2【答案】D .【解析】利用“正数大于负数,0大于负数,两个负数,绝对值大的反而小”的原则来判断,而1、2、0都比-1大,故选D .【知识点】实数的大小比较2.(2019重庆A 卷,2,4)如图是由4个相同的小正方体组成的一个立体图形,其主视图是 ( )【答案】A .【解析】因为从正面看该几何体,共有2列,第1列有两个小正方形,第2列有一个小正方形,所以选A . 【知识点】三视图3.(2019重庆A 卷,3,4)如图,△ABO ∽△CDO ,若BO =6,DO =3,CD =2,则AB 的长是 ( )A .2B .3C .4D .5【答案】C .【解析】∵△ABO ∽△CDO ,∴AB BO CD DO =.∵BO =6,DO =3,CD =2,∴623AB =.∴AB =4.故选C . 【知识点】图形的相似;相似三角形的性质4.(2019重庆A 卷,4,4)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C =50°,则∠AOD 的度数为 ( ) A .40° B .50° C .80° D .100°第2题图 A . B . C . D .从正面看ODCB A第3题图【答案】C【解析】∵AC是⊙O的切线,∴AC⊥AB.∵∠C=50°,∴∠B=90°-∠C=40°.∵OB=OD,∴∠B=∠ODB =40°.∴∠AOD=∠B+∠ODB=80°.故选C.【知识点】等腰三角形的性质;切线的性质5.(2019重庆A卷,5,4)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【答案】A.【解析】根据矩形的定义,易知选项A正确,另外,对角线互相平分且相等的四边形是矩形;三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.【知识点】四边形;矩形的判定6.(2019重庆A卷,6,4)估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【解析】∵原式=23×13+62×13=2+24,而162425<<,即4<24<5,∴2+4<2+24<5+2,即6<()123+623⨯<7.故选C.【知识点】实数的运算;二次根式的混合运算;估算7.(2019重庆A卷,7,4)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A.第4题图ODCB A【解析】根据“甲的钱+乙的钱的一半=50;甲的钱的23+乙的钱=50”可得方程组15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故选A .【知识点】二元一次方程组;古代问题8.(2019重庆A 卷,8,4)按如图所示的运算程序,能使输出y 值为1的是 ( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1【答案】D .【解析】∵m =1,n =1,∴y =2m +1=3;∵m =1,n =0,∴y =2n -1=-1;∵m =1,n =2,∴y =2m +1=3;∵m =2,n =1,∴y =2n -1=1.故选D . 【知识点】代数式的值;程序求值9.(2019重庆A 卷,9,4)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .40【答案】B .【解析】如答图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形, ∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°. ∴∠OAD =∠FBA . ∴△AOD ∽△BFA .∴OA ODBF AF=. ∵BD ∥x 轴,A (2,0),D (0,4), ∴OA =2,OD =4=BF .yxO EDCBA 第9题图输出y 的值y =2n -1y =2m +1否是m ≤n输入m ,n 第8题图∴244AF .∴AF=8.∴OF=10,E(5,4).∵双曲线y=kx过点E,∴k=5×4=20.故选B.【知识点】反比例函数;矩形的性质;相似三角形的判定与性质10.(2019重庆A卷,10,4)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A 的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD 与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【答案】C.【解析】如答图,延长DC交EA于点F,则CF⊥EA.∵山坡AC上坡度i=1:2.4,AC=26米,∴令CF=k,则AF=2.4k,由勾股定理,得k2+(2.4k)2=262,解得k=10,从而AF=24,CF=10,EF=30.在Rt△DEF中,tan E=DF EF,故DF=EF•tan E=30×tan48°=30×1.11=33.3,于是,CD=DF-CF=23.3,故选C.【知识点】解直角三角形;坡度问题第10题答图FEDC BAEDC BA第10题图第9题答图FyxO EDCB A11.(2019重庆A卷,11,4)若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B.【解析】原不等式组可化为5x ax≤⎧⎨<⎩,而它的解集是x≤a,从而a<5;对于分式方程两边同乘以y-1,得2y-a +y-4=y-1,解得y=32a+.而原方程有非负整数解,故32312aa+⎧≥⎪⎪⎨+⎪≠⎪⎩且32a+为整数,从而在a≥-3且a≠-1且a<5的整数中,a的值只能取-3、1,3这三个数,它们的和为1,因此选B.【知识点】一元一次不等式组;分式方程12.(2019重庆A卷,12,4)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC'与AB交于点E,连结AC',若AD=AC'=2,BD=3,则点D到BC'的距离为()A.233B.7213C.7D.13【答案】B.【解析】如答图,过点D作DM⊥BC'于点M,过点B作BN⊥DC'于点N,由翻折可知DC'=DC=AD=2,∠BDC=∠B DC'.∵AD=AC'=2,∴△ADC'是等边三角形,从而∠ADC'=∠B DC'=∠BDC=60°.在Rt△BDN中,DN=12BD=32,BN=332,从而C N'=12.于是,BC'=22133()()22+=7.∵BDCS'∆=1122DC BN BC DM''⋅=⋅,∴DM=DC BNBC'⋅'=33227⨯=3217.故选B.第12题图【知识点】翻折;等边三角形的判定与性质;勾股定理;解直角三角形;面积桥法.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.(2019重庆A 卷,13,4)计算:=+1-0213-)()(π . 【答案】3.【解析】因为原式=1+2=3,所以答案为3.【知识点】实数的运算;0指数幂;负整数指数幂.14.(2019重庆A 卷,14,4)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .【答案】2.56×107.【解析】因为25600000=2.56×10000000=2.56×107,故答案为2.56×107. 【知识点】科学记数法.15.(2019重庆A 卷,15,4)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 . 【答案】14. 【解析】记红球三个分别为a 1、a 2、a 3,白球两个分别为b 1、b 2,黄球为c ,现列表如下:(b 1,c )(b 1,b 2)(b 1,b 1)(b 1,a 3)(b 1,a 2)(b 1,a 1)(c ,c )(c ,b 2)(c ,b 1)(c ,a 3)(c ,a 2)(c ,a 1)(b 2,a 1)(b 2,a 2)(b 2,a 3)(b 2,b 1)(b 2,b 2)(b 2,c )(a 2,a 2)(a 2,a 1)(a 2,a 3)(a 2,b 1)(a 2,b 2)(a 2,c )(a 1,a 2)(a 1,a 1)(a 1,a 3)(a 1,b 1)(a 1,b 2)(a 1,c )(a 3,c )(a 3,b 2)(a 3,b 1)(a 3,a 3)(a 3,a 1)(a 3,a 2)a 1a 3a 2b 1b 2c cb 2b 1a 2a 3a 1由上表可知,共有36种等可能的结果,其中两个球都是红球的有9种情况,故P(两次都摸到红球)=936=14. 【知识点】概率;用列表法或树状图法求等可能条件下的事件的概率.16.(2019重庆A 卷,16,4)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC =60°,AB =2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)第12题答图【答案】2233π-. 【解析】∵在菱形ABCD 中,∠ABC =60°,∴△ABC 是正三角形,且∠BAD =∠BCD =120°.∴S阴影=2S正三角形ABC -2S阴影AEF=2×34×22-2×21201360π⋅⋅=2233π-.如下图:【知识点】菱形;等边三角形的面积;扇形的面积.17.(2019重庆A 卷,17,4)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.【答案】6000.【解析】由图像可知甲8分钟行驶4000米,甲速为500米/分,而甲乙两人2分钟行驶的路程和为甲10分钟行驶的路程,故乙速为(500×10-500×2)÷4=1000米/分,于是4000+4×500=6000米,即为乙回到公司时,甲距公司的路程,因此答案为6000. 【知识点】一次函数;行程问题.18.(2019重庆A 卷,18,4)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5.根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地第16题答图FE ODCBA ODCB A第16题图124000y /米x /分O第17题图面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 . 【答案】320. 【解析】设该村土地总面积为a 亩,该村已种植的川香、贝母、黄连面积分别为4k 亩、3k 亩、5k 亩,根据题意得5k +916(a -12k )=1940a ,解得a =20k .再令在余下的土地(20k -9.5k -4k -3k )亩x 亩种植贝母,根据题意,得(4k +3.5k -x )﹕(3k +x )=3﹕4,解得x =3k ,故该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是320kk =320.因此答案为320.【知识点】二元一次方程组的应用.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(2019重庆A 卷,19,10)计算:(1))2(2y x y y x +-+)(;(2)292492--÷--+a a a a a )(.【思路分析】(1)按完全平方公式和单项式乘以多项式法则展开,再合并同类项即可;(2)按分式的运算法则进行计算即可. 【解题过程】(1)原式=x 2+2xy +y 2-2xy -y 2=x 2;(2)原式=22294229a a a a a a -+--⋅--=2(3)22(3)(3)a a a a a --⋅-+-=33a a -+. 【知识点】整式的运算;分式的运算.20.(2019重庆A 卷,20,10)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数;(2)求证:FB =FE .【思路分析】(1)先利用“等边对等角”求出∠ABC 的度数,然后利用三角形内角和定理,得到∠BAC 的度数,最后利用“三线合一”性质,即可求出∠BAD 的度数;(2)由角平分线定义,得∠ABE =∠CBE ,再由平行线性质,得到∠FEB =∠CBE ,从而∠ABE =∠FEB ,于是FB =FE . 【解题过程】(1)解:∵AB =AC ,∴∠B =∠C =36°.∴∠BAC =180°-∠B -∠C =108°. ∵AB =AC ,D 是BC 边上的中点, ∴AD 平分∠BAC .∴∠BAD =12∠BAC =54°. 第20题图FEDCBA(2)证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∵EF ∥BC ,∴∠FEB =∠CBE . ∴∠ABE =∠FEB . ∴FB =FE .【知识点】等腰三角形的性质与判定;角平分线定义;平行线的性质;三角形内角和定理.21.(2019重庆A 卷,21,10)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x <85,B .85≤x <90,C .90≤x <95,D .95≤x ≤100),下面给出了部分信息: 七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82. 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94.八年抽取的学生竞赛成绩扇形统计图 七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【思路分析】(1)从统计图上看,八年级样本中A 组1人,B 组2人,而C 组已知有3人,故D 组的有10-1-2-3=4人,占40%,故a =40;将八年级的成绩按从小到大顺序排序后,处在第5、6两个数据均为94、94,它们的平均数亦为94,从而b =94;易知七年级10名同学的竞赛成绩为99分的最多,故c =99.(2)应从中位数上或众数或方差的角度来比较两个年级学生竞赛的成绩好坏.(3)从图表信息中可知样本容量为20的数据中,x ≥90的有13人,用720去乘以1320即可. 【解题过程】(1)a =40,b =94,c =99.(2)从平均数上看,两个年级平均分相等,成绩相当;但从中位数上看,八年级学生成绩高于七年级学生;从众数上看,八年级得满分的多,也好于七年级;从方差上看,八年级方差小,成绩相对整齐些,综上,我认为八年级学生掌握防溺水安全知识较好.(3)因为在样本中,七八年级共有6+7=13人不低于90分,所以估计该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是720×1320=468(人). 【知识点】统计图表;平均数;中位数;众数;方差;用样本估计总体年级 七年级 八年级 平均数92 92 中位数 93 b 众数 c 100 方差5250.4a %DC 10%B20%A 第21题图22.(2019重庆A 卷,22,10)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.【思路分析】(1)按“纯数”的定义,看2019+2020+2021及2020+2021+2022在计算时,是否各数位都不产生进位,即可做出判断;(2)寻找“纯数”的构成规律:连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.然后按一位、两位数及三位数(100)分三种情况讨论,即可锁定答案. 【解题过程】(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个;③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.【知识点】阅读理解题;新定义问题;分类思想;纯数.23.(2019重庆A 卷,23,10)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题:在函数b kx y +-=3中,当x =2时,y =-4;当x =0时,y =-1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函数y =12x -3的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.【思路分析】(1)利用待定系数法,将x =2时,y =-4;x =0时,y =-1代入函数关系式,得到关于k 、b 的二元一次方程组,解之即可.(2)利用绝对值意义将所求带有绝对值的函数转化为分段函数,即可在所给网格的平面直角系中画出该函数的图像,并结合图像较易从增减性上写出该函数的性质;(3)利用数形结合思想,由两个函数图像的交点的横坐标分别为1和4,分段函数图像在直线y =12x -3下方的自变量x 的取值范围即为所求不等式的解集体.【解题过程】(1)由题意得23431k b b ⎧-+=-⎪⎨-+=-⎪⎩,解得324k b ⎧=⎪⎨⎪=-⎩,故该函数解析式为y =332x --4. (2)当x ≥2时,该函数为y =32x -7;当x ≤2时,该函数为y =-32x -1,其图像如下图所示:性质:当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.(3)不等式3213-≤+-x b kx 的解集为1≤x ≤4. 【知识点】一次函数的图像与性质;分类函数;绝对值;待定系数法;不等式的解集;数形结合思想.24.(2019重庆A 卷,24,10)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.第23题答图y xO -1-2-3-4-5-6-7-8-6-5-4-3-2-112345678654321y xO -1-2-3-4-5-6-7-8-6-5-4-3-2-112345678654321第23题图(1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提高大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值. 【思路分析】(1)根据“50平方米的物管费+80平方米的物管费=90000元”,列一元一次方程即可解答;(2)根据5、6两月参加两种活动的户数及减少的每平米的物管费,可列表如下: 6月份参加活动二的户数及缴物管费统计表户数每户实缴物管50m 2 500×40%×(1+2a %) 100(1-310a %) 80m 2 250×20%×(1+6a %)160(1-14a %)再根据“参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ”列一元二次方程即可解答. 【解题过程】(1)设80平方米的住宅有x 套,则50平方米的住宅有2x 套,根据题意,得2x •100+160x =90000,解得x =250. 答:80平方米的住宅有250套.(2)根据题意,得200(1+2a %)•100(1-310a %)+50(1+6a %)•160(1-14a %)= [200(1+2a %)•100+50(1+6a %)•160]•(1-518a %)令m =a %,原方程可化为20000(1+2m )(1-0.3m )+8000(1+6m )(1-14m )=[20000(1+2m )+8000(1+6m )]( (1-518m ),整理,得19m 2-118m =0,解得m 1=0.5,m 2=0(不合题意,舍去).∴a %=50%,故a 的值为50.【知识点】一元一次方程的应用;一元二次方程的应用;换元法.25.(2019重庆A 卷,25,10)如图,在□ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积; (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .【思路分析】(1)过点C 作CQ ⊥AD 于点Q ,利用勾股定理,建立关于PQ 的方程,求出PQ 的值,进而求得AD 边上的高,即可求得△ACD 的面积.(2)连接NE .首先由EM ⊥AE ,AF ⊥BC ,BG ⊥AE ,得到∠EAF =∠NBF =∠MEC ,再证明△BFN ≌△AFE ,从而BF =AF ,NF =EF .于是∠ABC =45°,∠ENF =45°,FC =AF =BF .然后通过证明△ANE ≌△ECM ,得到CM =NE .最后在等腰Rt △EFN 中,由NF =22NE =22CM ,加上AD =2AF ,AF =AN +NF ,AN =EC ,即可锁定答案.【解题过程】(1)如答图1,过点C 作CQ ⊥AD 于点Q .∵DP =2AP =4, ∴AP =2,AD =6.设PQ =x ,则DQ =4-x ,根据勾股定理,得CP 2-PQ 2=CD 2-DQ 2,即17-x 2=52-(4-x )2,解得x =1,从而CQ =2253-=4,故S △ACD =12AD •CQ =12×6×4=12.(2)如答图2,连接NE .∵EM ⊥AE ,AF ⊥BC ,BG ⊥AE ,∴∠AEB +∠FBN =∠AEB +∠EAF =∠AEB +∠MEC =90°. ∴∠EAF =∠NBF =∠MEC .在△BFN 和△AFE 中,BFN AFE FBN FAE BN AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFN ≌△AFE (AAS ). ∴BF =AF ,NF =EF .∴∠ABC =45°,∠ENF =45°,FC =AF =BF . ∴∠ANE =∠BCD =135°,AD =BC =2AF .在△ANE 和△ECM 中,NAE CEM ANE ECM AN EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ANE ≌△ECM (ASA ).∴CM =NE .第25题答图1QPHNMFEDCBAABCDEFMNHP第25题答图2PHNMFEDCBA 第25题图又∵NF =22NE =22CM , ∴AF =22CM +CE . ∴AD =2CM +2CE .【知识点】平行四边形的性质;勾股定理;全等三角形的判定与性质;等腰直角三角形的判定与性质.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(2019重庆A 卷,26,8)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N(点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值; (2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个22单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.【思路分析】(1)①首先由已知条件求出A 、B 、C 、D 的坐标及直线BD 的解析式;②再由S △BDN =12BD •MN ,转化为由MN 的最大值得到S △BDN 取最大值,进而为FN 取最大值;③N (m ,m 2-2m -3),则F (m ,2m -6),FN =(2m -6)-(m 2-2m -3)=-(m -2)2+1,求出MN 最大时点N 、F 、H 的坐标;④利用OC 为长直角边,构造一个斜边长为短直角边3倍的直角三角形OCK ,再由点到直线的垂线段最短,找到“MN 取得最大值时,HF +FP +13PC 最小值=HF +FR ”;⑤利用相似形的性质及相关数学知识,求出FR 的值,进而求出HF +FP +13PC 最小值.(2)如答图2至答图5,分四种情况讨论,先求出Q 点坐标,再按要求利用数学知识即可求出符合条件的点Q '的坐标有4个.yxOEDCBA第26题备用图第26题图【解题过程】(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0).在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP +13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.第26题答图1 T KR Q P HF NMyxO ED CBA第26题答图2第26题答图3(2)4525 (,)55 --,2545(,)55-,4525(,)55,2545(,)55-.【知识点】一次函数;二次函数;相似三角形;平移;旋转;勾股定理;最值问题;数形结合思想;构造法;待定系数法;分类思想;压轴题;原创题.第26题答图4 第26题答图5。
2018重庆中考数学第17题(行程问题)专题练习1.甲、乙两车分别从A ,B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A 地300千米的C 地(中途休息时间忽略不计)。
设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则当甲车到达B 地时,乙车距A 地______千米。
2. 如图:小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中。
如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图。
则小明的家和小亮的家相距 米3.甲、乙两车分别从A ,B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A 地300千米的C 地(中途休息时间忽略不计).设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则当甲车到达B 地时,乙车距A 地 100 千米.4.甲乙两车分别从A 、B 两地出发相向而行,甲车出发1小时后乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,当甲车到达B 地后,立即调头以原速度去追赶乙车,乙车到达A 地后也立即调头以原速度继续行驶,直到两车再次相遇,停止运动(甲、乙两车调头所需时间忽略不计).如图所示是甲乙两车之间的距离S (千米)与甲车所用时间t (小时)之间的函数图象,则甲乙两车再次相遇时,乙车离A 地的距离为____9809 千米.5.有一个进、出水管的容器,某时刻起4分钟只开进水管,此后进水管,出水管同时开放,经过8分钟注满容器,随后只开出水管,得到时间x (分钟)与水量y (升)之间的函数关系如图,那么容器的容积为 升.6.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙。
2018重庆中考最新行程问题17题中考专题训练之行程问题【例1】(重庆巴蜀中学2017下期期中)一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以另一速度跑完全程,两人到达终点时均停止跑步。
如图,折线图表示改变速度后两人之间的距离y(单位:米)与改变速度后跑步所用的时间x(秒)之间的关系,则这次越野赛跑的全程为米。
【变式】(2017重庆八中4月一模)小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵,然后,小兵以原速继续上学,爸爸也以原速返回家,爸爸到家后,过一会小兵才到达学校。
两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示,则家与学校相距米。
【例2】(2017重庆一中月考)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计)。
设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米。
【变式】(2017重庆中考A卷)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行。
甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米。
【例3】甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途经C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.当两车相距120千米时,乙车行驶了__________小时。
2021年重庆年中考17题一次函数图像与行程问题综合专题练习(11月中旬期中集合)1(一外2021级初三上期中测试)中秋节妈妈让小方给姨妈送大闸蟹,小方出发3分钟后,姨妈从家里出发去接小方,又过了10分钟,小方想起来没有带蟹醋,就立即提速至原来的1.5倍冲向前方90米处的便利店买蟹醋,由于过节,便利店人比较多,几分钟后小方才买完蟹醋,刚出便利店就碰到了姨妈,小方与姨妈一同打车回到了姨妈家.小方家,便利店,姨妈家在同一条笔直的公路上,小方与姨妈之间的距离y(米)与小方出发时间x(分钟)之间的函数关系式如图所示,那么当小方买完蟹醋碰到姨妈时,距离姨妈家还有米。
2(南开2021级初三上期中测试)同一直线上有A、B两地,甲车从A地以80千米/小时的速度匀速前往B地,到达B地后停止,甲出发一段时间后,乙车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的距离y(千米)与甲车出发的时间x(小时)之间的函数关系如图所示,当乙车出发时,甲车离B地的距离为千米。
3(育才2020级初三上期中考试)育才中学学生康康早上从家去学校,已知康康离学校路程2640米,他从家匀速步行10。
5分钟后,爸爸发现康康的早餐忘记带了,于是爸爸立刻拿起早餐匀速跑步追赶康康,追上康康后爸爸立即将早餐交给他,康康则继续以原速向学校走去(爸爸把早餐给康康的时间忽略不计),而爸爸将早餐给康康后,碰到熟人原地交流了2分钟,为了上班不迟到,爸爸以更快的速度匀速返回家中,爸爸和康康两人相距的路程y(米)与康康出发的时间x(分钟)之间的关系如所示,则爸爸到家时,康康还要走分钟到学校.4(一中共同体2021级初三上期中测试)为了减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流,儿子从100米跑道的A端出发,父亲从另一端B出发,两人同时起跑,结果儿子赢得了比赛,设父子间的距离S(米)与父亲奔跑的时间t(秒)之间的函数关系如图所示,则儿子奔跑的速度是米/秒.5(巴蜀2021级初三上期中测试)一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的不行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米。