弹性波动力学 总复习 101216
- 格式:ppt
- 大小:187.00 KB
- 文档页数:10
弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
(5)假定位移和变形是微小的。
得分概念题(本大题25分)1. 试分别说明应变张量中e 11、e 12及ii e θ=的几何意义。
542. 已知一般平面位移波的表达式为()(),t f ct =⋅-u x x n d ,试讨论n 和d 的物理意义;纵波和横波中n 与d 之间有什么关系?3. 如图所示的具有自由界面的弹性半空间体,已知势函数分别为φ、ψ,试以势函数φ和ψ表达二维平面运动问题的应力边界条件。
提示:()2,3,3,2e e αβαβαβαγγββγγατλφδμφμψψ=∇+++4. 已知非均匀平面简谐波的位移表达式为()(),e e i t t A ω'⋅-''-⋅=k x k x u x d ,试指出其等振幅面和等位相面。
5. Rayleigh 面波有哪些特点? 199二、证明题(本大题20分)1. 若应力张量场为ij ij p τδ=-,其中()123,,p p x x x =。
试证此时运动微分方程x 1得分为:p ρρ-∇+= f u4-182. 设一弹性体处于平面应力情形,其内的应力张量场为:()()()()()1112121212122212,,0,,0000ij x x x x x x x x τττττ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)试推导出此种情形的平衡方程(2)如果21122x φτ∂=∂,22221x φτ∂=∂,21212x x φτ∂=-∂∂;其中()12,x x φ是个标量函数。
试证明此应力分量恒满足体力为零的平衡方程4-19 三、计算题(本大题55分)1.(10分)设弹性体只在坐标面ox 1x 2平面内发生变形,即e 33=e 13=e 23=0。
在该平面内,现在测量得过点P 与ox 1成30°、90°、150°方向的正应变分别为a 、b 和c 。
试求该点处的e 11、e 22和e 12。
3-12.(10分)如图所示一完全淹没于水中的梯形截面坝体,设水的密度为ρ。
§1.1 指标记号及两个符号单位基向量:今后会遇到的应变张量ij e 、应力张量ij τ 等。
112233i i x x x x =++=x e e e e (2)有某个指标重复出现一次且仅一次 就表示对该指标在其取值范围内取一切值,并对所得到的对应项求和。
该求和指标也称为哑标。
另一指标i 不参与求和约定,称其为自由指标。
自由指标的个数决定了简写方程代表实际方程的个数,哑标的个数决定了该项所代表的实际求和项的项数。
二、两个符号1、Kronecker 符号ij δ1,0,ij i j i j δ=⎧=⎨≠⎩ 为:()100010001ij δ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ Kronecker 符号的特点:(1) ij ji δδ= (2) i j ij δ=e e (3) 1122333ii δδδδ=++= (4) j ij i a a δ=(5) kj ik ij A A δ=6) ik kj ij δδδ= 例4:向量i i a =a e 和i i b =b e ,有:()i i i a b ±=±a b e 注意:±可作为求和约定中“同一项”的分隔符 i i j j i j i j i j ij i i a b a b a b a b δ====a b e e e e 注意:点乘(包括叉乘符号)符号不能作为“同一项”的分隔符,所以此例中将向量b 的下标换成了j 。
2i j ij i i a a a a a δ===a a 2、排列符号(置换符号):112311230ijk ijk e ijk ijk ⎧⎪=-⎨⎪⎩为的顺时针排列为的逆时针排列取值有重复时§1.2 坐标变换旧系:123ox x x ,单位基向量:i e 新系:123ox x x ,单位基向量:i e 坐标变换系数:()cos ,ij i j i j β==e e e e新旧坐标系下的单位基向量坐标变换规律:,i ij j i ji j ββ==e e e e 新旧坐标系下的空间点坐标变换规律:,i ij j i ji j x x x x ββ==1 23向量f ,在旧系下的分量i f ,新系下的分量为i f ,其坐标变换规律为: ,i ij j i ji j f x f f ββ==向量的解析定义:若有3个量,它们在123ox x x 和123ox x x 的分量分别为i f 和i f ,当两个坐标系之间的变换系数为ij β时,i f 与i f 之间按式,i ij j i ji j f x f f ββ==变换,则这3个量有序整体形成一个向量f ,此3个量为向量f 的分量。