弹性波动力学 总复习 101216
- 格式:ppt
- 大小:187.00 KB
- 文档页数:10
弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
(5)假定位移和变形是微小的。
得分概念题(本大题25分)1. 试分别说明应变张量中e 11、e 12及ii e θ=的几何意义。
542. 已知一般平面位移波的表达式为()(),t f ct =⋅-u x x n d ,试讨论n 和d 的物理意义;纵波和横波中n 与d 之间有什么关系?3. 如图所示的具有自由界面的弹性半空间体,已知势函数分别为φ、ψ,试以势函数φ和ψ表达二维平面运动问题的应力边界条件。
提示:()2,3,3,2e e αβαβαβαγγββγγατλφδμφμψψ=∇+++4. 已知非均匀平面简谐波的位移表达式为()(),e e i t t A ω'⋅-''-⋅=k x k x u x d ,试指出其等振幅面和等位相面。
5. Rayleigh 面波有哪些特点? 199二、证明题(本大题20分)1. 若应力张量场为ij ij p τδ=-,其中()123,,p p x x x =。
试证此时运动微分方程x 1得分为:p ρρ-∇+= f u4-182. 设一弹性体处于平面应力情形,其内的应力张量场为:()()()()()1112121212122212,,0,,0000ij x x x x x x x x τττττ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)试推导出此种情形的平衡方程(2)如果21122x φτ∂=∂,22221x φτ∂=∂,21212x x φτ∂=-∂∂;其中()12,x x φ是个标量函数。
试证明此应力分量恒满足体力为零的平衡方程4-19 三、计算题(本大题55分)1.(10分)设弹性体只在坐标面ox 1x 2平面内发生变形,即e 33=e 13=e 23=0。
在该平面内,现在测量得过点P 与ox 1成30°、90°、150°方向的正应变分别为a 、b 和c 。
试求该点处的e 11、e 22和e 12。
3-12.(10分)如图所示一完全淹没于水中的梯形截面坝体,设水的密度为ρ。
§1.1 指标记号及两个符号单位基向量:今后会遇到的应变张量ij e 、应力张量ij τ 等。
112233i i x x x x =++=x e e e e (2)有某个指标重复出现一次且仅一次 就表示对该指标在其取值范围内取一切值,并对所得到的对应项求和。
该求和指标也称为哑标。
另一指标i 不参与求和约定,称其为自由指标。
自由指标的个数决定了简写方程代表实际方程的个数,哑标的个数决定了该项所代表的实际求和项的项数。
二、两个符号1、Kronecker 符号ij δ1,0,ij i j i j δ=⎧=⎨≠⎩ 为:()100010001ij δ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ Kronecker 符号的特点:(1) ij ji δδ= (2) i j ij δ=e e (3) 1122333ii δδδδ=++= (4) j ij i a a δ=(5) kj ik ij A A δ=6) ik kj ij δδδ= 例4:向量i i a =a e 和i i b =b e ,有:()i i i a b ±=±a b e 注意:±可作为求和约定中“同一项”的分隔符 i i j j i j i j i j ij i i a b a b a b a b δ====a b e e e e 注意:点乘(包括叉乘符号)符号不能作为“同一项”的分隔符,所以此例中将向量b 的下标换成了j 。
2i j ij i i a a a a a δ===a a 2、排列符号(置换符号):112311230ijk ijk e ijk ijk ⎧⎪=-⎨⎪⎩为的顺时针排列为的逆时针排列取值有重复时§1.2 坐标变换旧系:123ox x x ,单位基向量:i e 新系:123ox x x ,单位基向量:i e 坐标变换系数:()cos ,ij i j i j β==e e e e新旧坐标系下的单位基向量坐标变换规律:,i ij j i ji j ββ==e e e e 新旧坐标系下的空间点坐标变换规律:,i ij j i ji j x x x x ββ==1 23向量f ,在旧系下的分量i f ,新系下的分量为i f ,其坐标变换规律为: ,i ij j i ji j f x f f ββ==向量的解析定义:若有3个量,它们在123ox x x 和123ox x x 的分量分别为i f 和i f ,当两个坐标系之间的变换系数为ij β时,i f 与i f 之间按式,i ij j i ji j f x f f ββ==变换,则这3个量有序整体形成一个向量f ,此3个量为向量f 的分量。
《连续介质⼒学》期末复习提纲--弹性波理论部分<连续介质⼒学> 期末复习提纲—弹性波理论部分1、⽆界线弹性体中的波传播(1)Helmholtz 定理 a. 定理内容b. 位移场的分解---⽆旋部分与⽆散部分(1)(2u u u =+ ,其中(1)0u ??= ,(2)0u ??=c. 转动向量与体积膨胀率的位移场表⽰(2)21122u ωψ=??=-?, (1)2u θφ=??=?(2)⽆界线弹性体中的P 波与S 波a. 体积膨胀率与转动向量满⾜的波动⽅程(★)2212211112,f c c c λµθθρ+?+??==222222211,2f c c c µωωρ+==b. Helmholtz 势满⾜的波动⽅程222222221211,b B c t c tφφφψ+=?+=??c. 位移场⽆旋部分与⽆散部分满⾜的波动⽅程2(1)(1)2(2)(2)221211,u b u u B u c c ?+?=?+??= d. 纵波与横波的相速度及其⽐值(★)21121221222)21c c c c c c c c ν??=- ===??=-??2、⽆界线弹性体中的平⾯波(1)波阵⾯、平⾯波与球⾯波(2)⼀般平⾯波及其描述(★)a. ⼀般平⾯波位移场的形式(★)(,)()u x t f x n ct d =?-b. 纵横波满⾜的条件及相速度公式(★)20()()()0d n n d c c P wave S wavec d n d n µρλµ?=±?=---++?=c. ⼀般平⾯波的能量密度与能通量密度向量(★)①平⾯纵波的情况(★)能量密度:[][][]222211112211112211()()22()p ij ij i i e uu c f x n c t c f x n c t c f x n c t ετρρρρ=+''=?-+?-'=?- 能通量密度向量:[]2311()p ij i j ue n cf x n c t ?τρ'=-=?- ⼆者关系: 1p p c n ?ε=②平⾯横波的情况(★)能量密度:[][][]222221212221112211()()22()s ij ij i i e uu c f x n c t c f x n c t c f x n c t ετρρρρ=+''=-+-'=- 能通量密度向量:[]2321()s ij i j u e n c f x n c t ?τρ'=-=?- ⼆者关系: 2s s c n ?ε=(2)平⾯简谐波及其描述(★) a. 描述平⾯简谐波的物理量(★) kc ω=,2T πω=,12T ωαπ==,22c cT kππωΛ===2k n n c ωπ==Λ, 222i i k k k k k c ω?===A c T k k x n -ct k ωα--Λ-?振幅 -相速度周期-波数-圆频率波长()-相位-频率-波数向量b. 平⾯简谐波的位移场形式(★)[]()()c o s ()R e R e i k x n c ti k x tu A d k x n c t A d e A d e ω?-?-=?-??c. 平⾯简谐波的能量密度与能通量密度向量及波的强度(★)①平⾯简谐纵波的情形(★)能量密度:1122p ij ij i i e uu ετρ=+ 能通量密度向量:p ij i j u e ?τ=-⼆者的关系: 1p p c n ?ε=平⾯简谐纵波的强度:1T pp dt T ??=?②平⾯简谐横波的情形(★)能量密度:1122s ij ij i i e uu ετρ=+ 能通量密度向量:s ij i j ue ?τ=-⼆者的关系: 2s s c n ?ε=平⾯简谐横波的强度:01T s s dt T=d. ⾮均匀平⾯简谐波位移场满⾜的条件(★)''()k x i k x t u Ade e ω'-??-=?2220k k kk k c k k ω?''''''?-?=='''?=?e. ⾮均匀平⾯简谐波的传播特征。
复习要点:第一章1、指标记号及两个符号、求和约定2、坐标变换 坐标变换系数的物理意义,如()ij i j cos ,e e β=,会计算ij β3、会进行张量的梯度、散度、旋度、拉普拉斯运算4、牢记散度定理第二章弹性波动力学的任务;弹性动力学的基本假设第三章1、小变形情形下应变张量的公式推导(几何方程)2、小变形情形下位移的分解,各部分代表的意义3、小变形情形下的应变张量及转动张量计算4、小变形情形下,过一点的线元长度的变化及两线元间夹角的变化(会作相应公式的推导和计算)5、小变形应变张量ij e 的几何解释、ii e 的几何解释及相应公式推导第四章1、应力向量、应力状态、应力场2、应力张量、会利用Cauchy 应力公式求过一点的任意面元的应力向量3、运动微分方程的推导4、边界条件(给出任意弹性体,要求会写出其对应的应力边界条件)第五章1、各向同性线弹性体的广义HOOKE 定律(物理方程)——两种表示方法的相互切换2、各弹性系数之间的关系3、为什么说应力球张量只引起体积的改变,而应力偏张量只引起形状的改变?4、为什么在各向同性线性弹性体中应力张量的主方向与应变张量的主方向总是重合的?第六章1、线弹性动力学问题的基本方程(运动微分方程,几何方程,本构方程);边界条件及初始条件2、线弹性动力学问题的提法(用位移表示的方程:Navier 方程、边界条件等)3、二维运动问题4、能量密度及能通量密度向量(相关方程的物理意义)第七章1、位移的无旋部分及等体积部分的划分3、无界弹性体中的平面波:一般平面波位移表达式中各参量代表的物理意义,简单公式的推导什么是非均匀平面简谐波、等振幅面、等位相面?4、二维运动问题中各位移分量与lamé势之间的关系第八章§8.1具有自由界面的弹性半空间中的平面简谐波1、会利用lamé势表示应力边界条件2、会根据lamé势或位移的表达式来判定波的类型、传播方向、入射还是反射波?入射角及反射角3、根据振幅有界的条件能够准确判断波的表达式中哪些不可能发生3、什么是视速度、波型转换、临界角?4、会灵活利用边界条件求反射系数5、Rayleigh面波有哪些特点?(为什么Rayleigh面波在地震中会造成很大的破坏)PS:老师重点讲解的例题及课后习题要实实在在弄懂!。
第1章 绪论1.1 弹性波场论概述在普通物理的力学部分,我们曾经着重讨论过物体在外力作用下的机械运动规律。
在讨论时,由于物体变形影响很小,我们将其忽略,而将物体视为刚体或简化为质点,这是完全正确的。
然而,实际上任何物体在外力作用下不仅会产生机械运动,而且会产生变形。
由于变形物体内部将相互作用,产生内力、应力和应变。
当应力或应变达到一定极限时,物体就会破坏,这一点在研究材料和工程力学中尤其要考虑,地球介质也不例外,地壳运动或地震都会产生地质体的应力或应变。
在弹性力学中,主要讨论对物体作用时的变形效应,物体不再假定为刚体,而是弹性体、塑性体,应当视为可变形体,我们研究的视角也从外部整体过渡到内部局部。
长期的生产实际和科学实验均已表明,几乎所有的物体都具有弹性和塑性。
所谓的弹性是指物体的变形随外力的撤除而完全消失的这种属性。
所谓的塑性是指物体的变形在外力的撤除后仍部分残留的这种属性。
物体的弹性和塑性受诸多因素影响而发生改变,并在一定的条件下相互转化。
因此,确切地,应当说成物体处于弹性状态或塑性状态,而非简单地说物体是弹性体或塑性体。
在弹性力学中,只讨论物体处于弹性状态下的有关力学问题,这时物体可称为弹性体。
由上所述,弹性力学又称弹性理论,研究的对象是弹性体,其任务是研究弹性体在外界因素(包括外力,温度等)作用下的应力、应变和位移规律。
简单地说,弹性力学就是研究弹性体的应力、应变和位移规律的一门学科。
弹性力学是固体力学中很重要的一个分支。
而固体力学是从宏观观点研究固体在外力作用下的力学响应的科学,它主要研究固体由于受外力作用所引起的内力(应力)、变形(应变)以及与变形有直接关系的位移的分布规律及其随时间变化的规律。
可见,应力、应变和位移是空间和时间的函数。
与固体力学对应的还有流体力学等。
固体力学还包括材料力学,断裂力学等等。
弹性力学本身又分为弹性静力学(Elasticity Statics )和弹性动力学(Elasticity Dynamics )。
一,名词解释1、 弹性:物体的变形随外力的撤除而完全消失的属性。
2、 塑性:物体的变形随外力的撤除后仍部分残留的属性。
3、 外力:是指其它物体作用在所研究物体上的力。
4、 面力:分布在物体表面上各点的外力,称为面力。
5、 应力:截面上任意点内力的集度称为应力。
6、 正应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,σ即为正应力。
7、 剪应力:物体在某截面上一点的应力是矢量,这个矢量,一般来说不与截面垂直,也不与截面相切,通常把它分解为垂直于截面方向的分量σ和切于截面的分量τ,τ即为剪应力。
8、 应力分量:垂直于三个坐标轴的平面上正应力和剪应力的投影。
9、 线应变:物体内一点沿某一方向线元受力后,该线元长度的改变量与原长度比值的极限称为该方向的线应变。
10、剪应变:过物体内任一点引两条相互垂直线段,变形后,这两个线段之间的夹角改变量(用弧度表示)定义为该点在这两个方向的剪应变,也称为角应变。
11、平面波:等相位面是平面,且波阵面与波的传播方向垂直的弹性波。
12、频散:不同谐波成分组成的波,虽然受同一起始扰动下,但各自以不同的速度传播,并且起始扰动的形状在传播中将产生变化。
扰动经传播以后将扩展成为一更长的波列,这种现象我们称之为频散。
13、群速度:产生频散时,波的传播速度与组成这个波的各个谐波成分的相速度是不同的,我们称这个波整体的传播速度为群速度。
14、相速度:指一定的相位移动的速度。
15、自由界面:地表应力为零的界面。
二,证明题1、 如果某一连续体内位移场是某一标量φ的梯度,即:φφ∇==grad U,证明:0=⨯∇=U U rot。
证明:)()()(),,(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂∂∂∂∂⨯∇=∇⨯∇=⨯∇=k y x x y j x z z x i z y y z z y x U U rotφφφφφφφφφφ2、 如果连续体内位移场是某一矢量位移ψ的旋度,即ψψ⨯∇==rot U ,证明:0=∙∇=U U div证明:)()()(])()()[()(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂∙∇=⨯∇∙∇=∙∇=y z x z x y z y z x y x yx z x z y z y x k yx j x z i z y U U div x y z x y z xy z x y z x y z x y z ψψψψψψψψψψψψψψψψψψψ 3、 已知标量φ为空间坐标的函数,即),,(z y x φφ=,且二阶可导,证明: φφ2)(∇=∇∙∇; 证明:φφφφφφφφφφφ2222222)()()(),,()(∇=∂∂+∂∂+∂∂=∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂∂∂∂∂∙∇=∇∙∇z y x z z y y x x zy x4、在二维问题中,假设位移位ϕ及ψ都只与x ,y 和t 有关,即(,,)x y t ϕϕ=,(,,)x y t ψψ=,根据位移矢量公式证明二维问题的位移分量为:yx w x y v y x u x y zz ∂∂-∂∂=∂∂-∂∂=∂∂+∂∂=ψψψφψφ,,。