数学专业外文翻译---幂级数的展开及其应用
- 格式:doc
- 大小:448.50 KB
- 文档页数:9
mathematica技术在幂级数展开中的应用Mathematica是一款专业的数学软件,为科学研究者提供了广泛的应用场景。
在幂级数展开中,Mathematica以其优越的技术特征,为科学家和研究者提供了更多的便利和方便。
幂级数展开是数学中常用的一种展开方法,是由一个函数的无穷多次幂展开的术语,是用于计算函数的表达式的一种压缩形式,避免了多次重复运算。
幂级数是分析学中重要的概念,它可以帮助求解任何数量级的复杂问题。
使用Mathematica可以让科学家和研究人员更快捷地计算各种函数的幂级数展开。
Mathematica拥有丰富的算法仓库,可支持高精度运算。
它可以准确计算各种函数的展开结果,省去了复杂的算法步骤。
Mathematica 中有各种专用工具,可以快速求解多元函数的表达式。
例如,使用Sum指令可以快速的求解复杂的积分,而Series指令可以快速的求解函数的无穷展开结果,以及指定展开项的结果。
另外,Mathematica 拥有丰富的函数优化方法,可以让科学家更快捷地求解多项式函数的幂级数展开,而不必依赖抽象数学概念,大大简化了研究过程。
Mathematica拥有完善的数据结构,可以快速处理各类数据格式,支持各种类型和维度的数据处理,比如表、图、矩阵、向量等等。
使用Mathematica,科学家和研究者可以更快更准确地求解各种函数的展开结果,同时还可以方便地观察结果,便于科研推理。
此外,Mathematica还有一个高效的可视化工具,可以帮助科学家和研究者以图形的形式清晰地展示各种数据,以图示的形式展示函数的展开结果,从而更好地推理出结果。
总之,Mathematica拥有优良的技术特征,可以为科学家和研究者提供便利,能够帮助他们快速求解复杂的函数的幂级数展开,更容易推理和观察结果,是一款非常有用的数学软件。
mathematica技术在幂级数展开中的应用近些年来,由于进步幅度加快,计算机技术及其应用得到了前所未有的发展,它使人们能够识别数学工作中复杂、多变的模型,开展更复杂、更丰富的数学研究,从而创新计算机行业。
Mathematica,一款多义的数学软件,用有系统的模式来描述、分析数学模型,并且可以借助计算机快速计算。
在数学中,Mathematica应用较多的一个技术就是“幂级数展开”。
幂级数展开是识别函数及其参数的功能,它是在计算机中计算函数近似值和精确值的关键步骤,有助于解决像求根、积分等数学问题和编写程序,并且在许多领域都有应用,如电子计算机设计、物理建模等。
Mathematica技术利用计算机的运算精度及内存容量,利用其提供的工具箱来求解幂级数,从而为数学研究工作提供了一种新的方法。
使用Mathematica技术来求解幂级数的优势在于,Mathematica技术提供的工具可以把非常复杂的函数展开成非常简单的表达式,而不需要耗费大量的时间,而且这种表达式能够有效反映出函数的特性。
其次,Mathematica技术提供的工具可以实现自动展开,而不需要人工进行循环或者判断,大大降低了人工的工作量。
最后,Mathematica 技术还提供了用于绘制函数图像的工具,将函数的数学表达与图形表达结合起来,使得函数展开结果更清晰、更直观,便于深入理解函数的内在本质。
因此,Mathematica技术在幂级数展开中的应用及其对数学研究的影响已经成为研究者及工程师们关注的热点问题。
比如,研究人员可以设计一些具体的数学模型,利用Mathematica技术,来展开这些模型,最终获得更为精确的结果;工程师则可以利用Mathematica技术应用于电子计算机设计,并实现自动化设计流程,从而大大提升工作效率。
从以上可以看出,Mathematica技术在幂级数展开中的应用既可以帮助人们更好地理解数学模型,又能够有效提升工作效率,因此,在数学和工程领域都有很大的应用价值。
毕业论文文献综述数学与应用数学复数域内的函数幂级数展开及其应用一、前言部分早在14世纪,印度数学家马德哈瓦提出了有关函数展开成无穷级数的概念。
众多数学家,如格高利,泰勒、欧拉、高斯等均对级数理论做了重要贡献。
级数理论一经产生就不断在函数逼近论、微分方程、复变函数等理论中显现了突出的应用价值。
自18世纪初至19世纪末,幂级数展开问题成为中国数学的一个非常活跃的研究领域。
的无穷级数表达式,即圆径求周公式,是牛顿(Isaac Newton,1642-1727)1667年发现的。
正弦和正矢的幂级数展开式,即弧背求正弦和弧背求正矢公式是英国数学家格雷戈里(J.Gregory,1638-1675)发现的。
法国传教士杜德美(P.Jartoux,1668-1720)1701年来华,把这三个公式介绍给中国学者。
著名数学家梅文鼎之孙梅珏成(1681-1763)将其收入《梅氏丛书辑要》的附录《赤水遗珍》,并分别称为“求周径密率捷法”和“求弦矢捷法”,这三个公式也被称为杜氏三术[1]。
其后明安图(1692-1764)经过30余年的不懈努力,他融会贯通了中国传统数学知识与刚刚传入的西方数学知识,圆满地证明了前三个公式,同时还得到另外六个公式,即为《割圆密率捷法》中的九个公式:“圆径求周、弧背求正弦、弧背求正矢、弧背求通弦、弧背求矢、通弦求弧背、正弦求弧背、正矢求弧背、矢求弧背”。
由陈际新于1744年整理成书并于1839年出版。
牛顿在1666年通过无穷级数逐项积分的方法推导出arcsin z的幂级数展开式,而在1669年又用级数回求法给出这一公式。
日本数学家建部贤弘(Katahiro Takebe),在1722年采用与明安图不同的分析方法得到了同一公式。
1737年,欧拉(L.Euler,1707-1783)在给伯努利(J.Bernoulli,1667-1748)的一封信中提出关于反正矢平方的幂级数展开式,但直到1817年这一公式才公开发表。
微积分中的幂级数展开幂级数展开是微积分中的重要概念之一,它是将一个函数表示成一系列幂函数的和的形式,是微积分中对函数进行近似和研究的基础。
本文将从幂级数的基本概念和定义开始,进一步探讨幂级数展开的应用和实际意义。
一、\hspace{0.5em}幂级数的基本概念和定义幂级数是指由函数$f(x)$的幂次组成的无穷级数:$$f(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n +...$$其中$a_n$称为幂级数$f(x)$的系数,也就是说,幂级数展开的核心就在于求解幂级数的系数。
对于幂级数的收敛性,我们需要使用柯西收敛原理。
具体地,如果序列$\{a_n\}$满足:$$\limsup\sqrt[n]{|a_n|}<1$$则幂级数的收敛半径为$R=\dfrac{1}{\limsup\sqrt[n]{|a_n|}}$。
幂级数在其收敛半径内的收敛性由黑格尔定理(或阿贝尔定理)给出:如果幂级数$f(x)$的收敛半径$R>0$,那么$f(x)$在$(-R,R)$内一致收敛;如果幂级数$f(x)$在某个点$x_0\neq 0$处发散,那么幂级数在所有点$x$处均发散。
二、\hspace{0.5em}幂级数展开的应用幂级数展开在数学中有着广泛的应用,下面将介绍一些具体的例子。
1.泰勒级数泰勒级数是指将一个函数$f(x)$在某一点$x=a$处展开的幂级数:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中$f^{(n)}(a)$表示$f(x)$在点$x=a$处的$n$阶导数。
泰勒级数可以用于求解函数的近似值,以及函数的性质和应用。
例如,我们可以通过泰勒级数在$x=0$处展开$\sin x$和$\cos x$,得到:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$$$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...$$2.幂级数解微分方程通过对微分方程进行幂级数变换,我们可以得到幂级数解,并且可以在一定程度上揭示微分方程的一些性质和规律。
数学专业外文翻译---幂级数的展开及其应用In the us n。
we XXX its convergence n。
a power series always converges to a n。
We can use simple power series。
as well as XXX quadrature methods。
to find this n。
However。
this n will address another issue: can an arbitrary n f(x) be expanded into a power series?XXX n will address this XXX power series can be seen as an n of reality。
so we can start to solve the problem of expanding a n f(x) into a power series by considering f(x) and polynomials。
To do this。
we will introduce the following formula without proof:Taylor'XXX that if a n f(x) has derivatives of order n+1 in a neighborhood of x=x0.then we can use the following XXX:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2+。
+f^(n)(x0)(x-x0)^n+r_n(x)Here。
r_n(x) represents the remainder term.XXX (x) is given by (x-x)n+1.This formula is of the (9-5-1) type for the Taylor series。
Power Series Expansion and Its Applications幂级数的展开及其应用Maclaurin (Maclaurin) formulaPolynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.马克劳林(Maclaurin)公式幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)Among 10()()n n r x x x +=-That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式: ()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1) 其中 (1)10()()()(1)!n n n f r x x x n ξ++=-+. 称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式.If so 00x =, get 2()(0)()n n f x f x x x r x =+++++…, (9-5-2)At this point, (1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<). That (9-5-2) type formula for the Maclaurin.如果令00x =,就得到 2()(0)()n n f x f x x x r x =+++++…, (9-5-2)此时, (1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).称(9-5-2)式为马克劳林公式.Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和.We call the following power series ()2(0)(0)()(0)(0)2!!n n f f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n +items and for 1()n S x +, which ()21(0)(0)()(0)(0)2!!n n n f f S x f f x x x n +'''=++++… 我们称下列幂级数 ()2(0)(0)()(0)(0)2!!n n f f f x f f x x x n '''=+++++…… (9-5-3) 为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为1()n S x +,即 ()21(0)(0)()(0)(0)2!!n n n f f S x f f x x x n +'''=++++…, Then, the series (9-5-3) converges to the function ()f x the conditions 1lim ()()n n s x f x +→∞=. 那么,级数(9-5-3)收敛于函数()f x 的条件为 1lim ()()n n s x f x +→∞=. Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between the known 1()()()n n f x S x r x +=+ , Thus, when ()0n r x = , There, 1()()n f x S x+= , Vice versa. That if 1l i m ()()n n s x f x +→∞=, Units must ()0n r x =.注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知 1()()()n n f x S x r x +=+. 于是,当 ()0n r x =时,有1()()n f x S x +=. 反之亦然.即若1lim ()()n n s x f x +→∞=则必有()0n r x =.This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).In this way, we get a function ()f x the power series expansion:()()0(0)(0)()(0)(0)!!n n n n n f f f x x f f x x n n ∞='==++++∑……. (9-5-4)It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)这表明,马克劳林级数(9-5-3)以()f x 为和函数⇔马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).这样,我们就得到了函数()f x 的幂级数展开式: ()()20(0)(0)(0)()(0)(0)!2!!n n n n n f f f f x x f f x x x n n ∞='''==+++++∑…… (9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数 20120()n n nn n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)Well, according to the convergence of power series can be itemized within the nature of derivation, and then make 0x = (power series apparently converges in the 0x = point), it is easy to get()2012(0)(0)(0),(0),,,,,2!!n n n f f a f a f x a x a x n '''====……. Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical.那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到 ()2012(0)(0)(0),(0),,,,,2!!n n n f f a f a f x a x a x n '''====……。
Power Series Expansion and Its ApplicationsIn the previous section, we discuss the convergence of power series, in its convergence region, the power series always converges to a function. For the simple power series, but also with itemized derivative, or quadrature methods, find this and function. This section will discuss another issue, for an arbitrary function ()f x , can be expanded in a power series, and launched into.Whether the power series ()f x as and function? The following discussion will address this issue. 1 Maclaurin (Maclaurin) formulaPolynomial power series can be seen as an extension of reality, so consider the function ()f x can expand into power series, you can from the function ()f x and polynomials start to solve this problem. To this end, to give here without proof the following formula.Taylor (Taylor) formula, if the function ()f x at 0x x = in a neighborhood that until the derivative of order 1n +, then in the neighborhood of the following formula :20000()()()()()()n n f x f x x x x x x x r x =+-+-++-+… (9-5-1)Among10()()n n r x x x +=-That ()n r x for the Lagrangian remainder. That (9-5-1)-type formula for the Taylor.If so 00x =, get2()(0)()n n f x f x x x r x=+++++…, (9-5-2) At this point,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++ (01θ<<).That (9-5-2) type formula for the Maclaurin.Formula shows that any function ()f x as long as until the 1n +derivative, n can be equal to a polynomial and a remainder.We call the following power series()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3) For the Maclaurin series.So, is it to ()f x for the Sum functions? If the order Maclaurin series (9-5-3) the first 1n + itemsand for 1()n S x +, which()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…Then, the series (9-5-3) converges to the function ()f x the conditions1lim ()()n n s x f x +→∞=.Noting Maclaurin formula (9-5-2) and the Maclaurin series (9-5-3) the relationship between theknown1()()()n n f x S x r x +=+Thus, when()0n r x =There,1()()n f x S x +=Vice versa. That if1lim ()()n n s x f x +→∞=,Units must()0n r x =.This indicates that the Maclaurin series (9-5-3) to ()f x and function as the Maclaurin formula (9-5-2) of the remainder term ()0n r x → (when n →∞).In this way, we get a function ()f x the power series expansion:()()0(0)(0)()(0)(0)!!n n n nn f f f x x f f x x n n ∞='==++++∑……. (9-5-4) It is the function ()f x the power series expression, if, the function of the power series expansion is unique. In fact, assuming the function f (x ) can be expressed as power series20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)Well, according to the convergence of power series can be itemized within the nature of derivation,and then make 0x = (power series apparently converges in the 0x = point), it is easy to get()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….Substituting them into (9-5-5) type, income and ()f x the Maclaurin expansion of (9-5-4) identical. In summary, if the function f (x ) contains zero in a range of arbitrary order derivative, and in this range of Maclaurin formula in the remain der to zero as the limit (when n → ∞,), then , the function f (x ) can start forming as (9-5-4) type of power series.Power Series()20000000()()()()()()()()1!2!!n n f x f x f x f x f x x x x x x x n '''=+-+-++-……,Known as the Taylor series.Second, primary function of power series expansionMaclaurin formula using the function ()f x expanded in power series method, called the direct expansion method.Example 1Test the function ()x f x e =expanded in power series of x . Solution because()()n x f x e =,(1,2,3,)n =…Therefore()(0)(0)(0)(0)1n f f f f '''====…,So we get the power series21112!!n x x x n +++++……, (9-5-6) Obviously, (9-5-6)type convergence interval (,)-∞+∞, As (9-5-6)whether type ()x f x e = is Sum function, that is, whether it converges to ()xf x e = , but also examine remainder ()n r x . Because1e ()(1)!xn n r x x n θ+=+ (01θ<<),且x x x θθ≤≤,Therefore11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++,Noting the value of any set x ,xe is a fixed constant, while the series (9-5-6) is absolutely convergent, so the general when the item when n →∞, 10(1)!n xn +→+ , so when n → ∞,there10(1)!n xxen +→+,From thislim ()0n n r x →∞=This indicates that the series (9-5-6) does converge to ()x f x e =, therefore21112!!x n e x x x n =+++++…… (x -∞<<+∞). Such use of Maclaurin formula are expanded in power series method, although the procedure is clear,but operators are often too Cumbersome, so it is generally more convenient to use the following power series expansion method.Prior to this, we have been a functionx-11, xe and sin x power series expansion, the use of these known expansion by power series of operations, we can achieve many functions of power series expansion. This demand function of power series expansion method is called indirect expansion .Example 2Find the function ()cos f x x =,0x =,Department in the power series expansion. Solution because(sin )cos x x '=,And3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞)Therefore, the power series can be itemized according to the rules of derivation can be342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞) Third, the function power series expansion of the application exampleThe application of power series expansion is extensive, for example, can use it to set some numerical or other approximate calculation of integral value.Example 3 Using the expansion to estimate arctan x the value of π.Solution because πarctan14= Because of357arctan 357x x x x x =-+-+…, (11x -≤≤),So there1114arctan14(1)357π==-+-+…Available right end of the first n items of the series and as an approximation of π. However, the convergence is very slow progression to get enough items to get more accurate estimates of πvalue.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.幂级数的展开及其应用在上一节中,我们讨论了幂级数的收敛性,在其收敛域内,幂级数总是收敛于一个和函数.对于一些简单的幂级数,还可以借助逐项求导或求积分的方法,求出这个和函数.本节将要讨论另外一个问题,对于任意一个函数()f x ,能否将其展开成一个幂级数,以及展开成的幂级数是否以()f x 为和函数?下面的讨论将解决这一问题.一、 马克劳林(Maclaurin)公式幂级数实际上可以视为多项式的延伸,因此在考虑函数()f x 能否展开成幂级数时,可以从函数()f x 与多项式的关系入手来解决这个问题.为此,这里不加证明地给出如下的公式.泰勒(Taylor)公式 如果函数()f x 在0x x =的某一邻域内,有直到1n +阶的导数,则在这个邻域内有如下公式:()20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x r x n '''=+-+-++-+…,(9-5-1)其中(1)10()()()(1)!n n n f r x x x n ξ++=-+.称()n r x 为拉格朗日型余项.称(9-5-1)式为泰勒公式. 如果令00x =,就得到2()(0)()n n f x f x x x r x =+++++…, (9-5-2)此时,(1)(1)111()()()(1)!(1)!n n n n n f f x r x x x n n ξθ+++++==++, (01θ<<).称(9-5-2)式为马克劳林公式.公式说明,任一函数()f x 只要有直到1n +阶导数,就可等于某个n 次多项式与一个余项的和. 我们称下列幂级数()2(0)(0)()(0)(0)2!!n nf f f x f f x x x n '''=+++++…… (9-5-3)为马克劳林级数.那么,它是否以()f x 为和函数呢?若令马克劳林级数(9-5-3)的前1n +项和为1()n S x +,即()21(0)(0)()(0)(0)2!!n nn f f S x f f x x x n +'''=++++…,那么,级数(9-5-3)收敛于函数()f x 的条件为1lim ()()n n s x f x +→∞=.注意到马克劳林公式(9-5-2)与马克劳林级数(9-5-3)的关系,可知1()()()n n f x S x r x +=+.于是,当()0n r x =时,有1()()n f x S x +=.反之亦然.即若1lim ()()n n s x f x +→∞=则必有()0n r x =.这表明,马克劳林级数(9-5-3)以()f x 为和函数⇔马克劳林公式(9-5-2)中的余项()0n r x → (当n →∞时).这样,我们就得到了函数()f x 的幂级数展开式:()()20(0)(0)(0)()(0)(0)!2!!n n n nn f f f f x x f f x x x n n ∞='''==+++++∑……(9-5-4) 它就是函数()f x 的幂级数表达式,也就是说,函数的幂级数展开式是唯一的.事实上,假设函数()f x 可以表示为幂级数20120()n n n n n f x a x a a x a x a x ∞===+++++∑……, (9-5-5)那么,根据幂级数在收敛域内可逐项求导的性质,再令0x =(幂级数显然在0x =点收敛),就容易得到()2012(0)(0)(0),(0),,,,,2!!n nn f f a f a f x a x a x n '''====…….将它们代入(9-5-5)式,所得与()f x 的马克劳林展开式(9-5-4)完全相同.综上所述,如果函数()f x 在包含零的某区间内有任意阶导数,且在此区间内的马克劳林公式中的余项以零为极限(当n →∞时),那么,函数()f x 就可展开成形如(9-5-4)式的幂级数.幂级数()00000()()()()()()1!!n n f x f x f x f x x x x x n '=+-++-……,称为泰勒级数.二、 初等函数的幂级数展开式利用马克劳林公式将函数()f x 展开成幂级数的方法,称为直接展开法. 例1 试将函数()x f x e =展开成x 的幂级数. 解 因为()()n x f x e =, (1,2,3,)n =…所以()(0)(0)(0)(0)1n f f f f '''====…,于是我们得到幂级数21112!!n x x x n +++++……, (9-5-6) 显然,(9-5-6)式的收敛区间为(,)-∞+∞,至于(9-5-6)式是否以()x f x e =为和函数,即它是否收敛于()xf x e =,还要考察余项()n r x .因为1e ()(1)!xn n r x x n θ+=+ (01θ<<), 且x x x θθ≤≤,所以11e e ()(1)!(1)!xx n n n r x x x n n θ++=<++.注意到对任一确定的x 值,xe 是一个确定的常数,而级数(9-5-6)是绝对收敛的,因此其一般项当n →∞时,10(1)!n xn +→+,所以当n →∞时,有 10(1)!n xxen +→+,由此可知lim ()0n n r x →∞=.这表明级数(9-5-6)确实收敛于()x f x e =,因此有21112!!x n e x x x n =+++++…… (x -∞<<+∞). 这种运用马克劳林公式将函数展开成幂级数的方法,虽然程序明确,但是运算往往过于繁琐,因此人们普遍采用下面的比较简便的幂级数展开法.在此之前,我们已经得到了函数x-11,xe 及sin x 的幂级数展开式,运用这几个已知的展开式,通过幂级数的运算,可以求得许多函数的幂级数展开式.这种求函数的幂级数展开式的方法称为间接展开法.例2 试求函数()cos f x x =在0x =处的幂级数展开式. 解 因为(sin )cos x x '=,而3521111sin (1)3!5!(21)!n n x x x x x n +=-+-+-++……,(x -∞<<+∞), 所以根据幂级数可逐项求导的法则,可得342111cos 1(1)2!4!(2)!n nx x x x n =-+-+-+……,(x -∞<<+∞). 三、 函数幂级数展开的应用举例幂级数展开式的应用很广泛,例如可利用它来对某些数值或定积分值等进行近似计算. 例3 利用arctan x 的展开式估计π的值. 解 由于πarctan14=,又因357arctan 357x x x x x =-+-+…, (11x -≤≤),所以有1114arctan14(1)357π==-+-+….可用右端级数的前n 项之和作为π的近似值.但由于级数收敛的速度非常慢,要取足够多的项才能得到π的较精确的估计值.此外文文献选自于:Walter.Rudin.数学分析原理(英文版)[M].北京:机械工业出版社.。