双轮平衡车的控制系统硬件设计方案小车机器人论文
- 格式:doc
- 大小:1.43 MB
- 文档页数:33
两轮自平衡小车毕业设计毕业论文目录1.绪论 (1)1.1研究背景与意义 (1)1.2两轮自平衡车的关键技术 (2)1.2.1系统设计 (2)1.2.2数学建模 (2)1.2.3姿态检测系统 (2)1.2.4控制算法 (3)1.3本文主要研究目标与容 (3)1.4论文章节安排 (3)2.系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (5)2.3自平衡小车数学模型 (6)2.3.1两轮自平衡小车受力分析 (6)2.3.2自平衡小车运动微分方程 (9)2.4 PID控制器设计 (10)2.4.1 PID控制器原理 (10)2.4.2 PID控制器设计 (11)2.5姿态检测系统 (12)2.5.1陀螺仪 (12)2.5.2加速度计 (13)2.5.3基于卡尔曼滤波的数据融合 (14)2.6本章小结 (16)3.系统硬件电路设计 (17)3.1 MC9SXS128单片机介绍 (17)3.2单片机最小系统设计 (19)3.3 电源管理模块设计 (21)3.4倾角传感器信号调理电路 (22)3.4.1加速度计电路设计 (22)3.4.2陀螺仪放大电路设计 (22)3.5电机驱动电路设计 (23)3.5.1驱动芯片介绍 (24)3.5.2 驱动电路设计 (24)3.6速度检测模块设计 (25)3.6.1编码器介绍 (25)3.6.2 编码器电路设计 (26)3.7辅助调试电路 (27)3.8本章小结 (27)4.系统软件设计 (28)4.1软件系统总体结构 (28)4.2单片机初始化软件设计 (28)4.2.1锁相环初始化 (28)4.2.2模数转换模块(ATD)初始化 (29)4.2.3串行通信模块(SCI)初始化设置 (30)4.2.4测速模块初始化 (31)4.2.5 PWM模块初始化 (32)4.3姿态检测系统软件设计 (33)4.3.1陀螺仪与加速度计输出值转换 (33)4.3.2卡尔曼滤波器的软件实现 (34)4.4平衡PID控制软件实现 (37)4.5两轮自平衡车的运动控制 (38)4.6本章小结 (40)5. 系统调试 (41)5.1系统调试工具 (41)5.2系统硬件电路调试 (41)5.3姿态检测系统调试 (42)5.4控制系统PID参数整定 (45)5.5两轮自平衡小车动态调试 (45)5.6本章小结 (46)6. 总结与展望 (47)6.1 总结 (47)6.2 展望 (47)参考文献 (48)附录 (49)附录一系统电路原理图 (49)附录二系统核心源代码 (50)致谢 (54)1.绪论1.1研究背景与意义近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科学研究最活跃的领域之一,移动机器人的应用围越来越广泛,面临的环境和任务也越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。
本科毕业设计(论文)题目两轮自平衡小车的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
两轮移动机器人论文:两轮移动机器人平衡控制系统的研发【中文摘要】两轮移动机器人是轮式机器人的一个分支。
由于其体积小,运动灵活等优点,在多个领域有重要的用途;同时由于它具有非线性,多变量耦合,欠驱动等特点,因而成为各种高级控制算法的理想验证平台,对它的研究有着重要的学术价值。
本文旨在设计开发完整的两轮移动机器人的实验平台,为两轮移动机器人的应用和研究提供实验系统。
本文主要的工作内容包含如下:(1)对两轮移动机器人进行运动学和动力学分析,为总体设计提供了理论依据。
(2)在硬件系统设计中基于快速原型思想,以DSP芯片为控制核心,设计完成了控制电路和直流电机驱动电路。
本文设计的硬件系统接口丰富,扩展性强,同时支持MATLAB/Simulink环境下的快速开发调试。
(3)在软件系统设计中采用了卡尔曼滤波原理和LQR控制原理,实现了传感器噪声信号的过滤和对机器人平衡运动的控制。
(4)针对目前DSP的算法开发主要依赖手工编写C代码,不但工作量大,而且程序的下载依赖于专门的昂贵的仿真器的问题,本文提出并实现了基于MATLAB/Simulink环境的DSP算法开发,并利用串口通信实现程序下载的综合方案。
该方案能很好地利用MATLAB现有的功能模块,通过图形化编程实现对硬件的控制和控制算法设计,大大降低了DSP的算法开发难度,利用RTW技术,可将算法模型自动生成C代码,提高了设计开发的效率。
利用串口通信下载调试程序,方便有效,节约了系统开发的成本。
(5)最后在两轮移动机器人系统上完成直流电机的闭环控制和两轮移动机器人的平衡控制实验。
实验结果表明,本文设计的两轮移动机器人取得较理想的平衡控制效果,从而验证了两轮移动机器人系统设计的合理性和可靠性。
【英文摘要】Two-wheeled moving robot is a part of the wheeled robots.The robot is flexible and small,so it has a large foreground in all kinds of application.Otherwise the robot is a nonlinear and multi-variables system,it is a good test bed for many control algorithms.To supply a convenient experiment system for researching and developing on this robot,this paper research and design a two-wheeled moving robot system.This paper’s major job include:(1). establish the mathematical model for the analysis of the robot.(2). Based on the rapid prototyping thinking,this paper design controller with DSP,and driver for DC motor.The hardware has interfaces and provides link with MATLAB/Simulink.(3). The software designs Kalman Filter to filter the noise in sensors and Linear Quadratic Regulator control algorithms to make the robot move in balancing.(4). Besides, To reduce developers’heavy programming C code for developing control algorithms and emulator for downloading program, a MATLAB/Simulink-based rapid development and downloading by serial communications method was designed. The developers use existing blocks inMATLAB to build control model, and generate directly executable codes through Real-Time Workshop function of MATLAB. Downloading code by serial communications interface can reduce the cost.(5). The expetiments validate the hardware and software at the end of this paper.The experiments include DC motor speed control,two-wheeled moving robot balance control.The results show the efficacy of the algorithms,and provide that the system in this paper is reliable.【关键词】两轮移动机器人平衡控制 LQR控制算法倾角【英文关键词】two-wheeled moving robot balancing control LQR control algorithms angle【目录】两轮移动机器人平衡控制系统的研发摘要6-7Abstract7第1章绪论10-17 1.1 研究背景和意义10-11 1.2 国内外研究现状11-15 1.2.1 国外研究现状11-13 1.2.2 国内研究现状13-14 1.2.3 研究趋势分析14-15 1.3 本文主要内容15-16 1.4 本章小结16-17第2章系统总体设计17-28 2.1 机器人数学模型17-21 2.1.1 机器人驱动电机模型17-18 2.1.2 机器人车轮模型18-19 2.1.3 机器人车身运动模型19-20 2.1.4 机器人模型分析20-21 2.2 总体架构设计21-27 2.2.1 硬件系统总体设计22-26 2.2.2 软件系统总体设计26-27 2.3 本章小结27-28第3章硬件系统开发28-42 3.1 系统方案比较28-29 3.2 控制电路开发29-35 3.2.1 最小控制单元开发29-31 3.2.2 采样电路开发31-33 3.2.3 串行接口开发33-35 3.3 驱动电路开发35-40 3.3.1 PWM驱动原理35-37 3.3.2 H桥式电路原理37-38 3.3.3 驱动电路实现38-40 3.4 硬件设计总成40-41 3.5 本章小结41-42第4章软件系统开发42-66 4.1 算法设计42-49 4.1.1 卡尔曼滤波设计42-44 4.1.2 平衡控制算法设计44-49 4.2 基于MATLAB的开发平台设计49-56 4.2.1 快速开发方法49-50 4.2.2 硬件驱动模块开发50-53 4.2.3 开发环境配置53-56 4.3 串口下载56-65 4.3.1 数据流56-61 4.3.2 引导函数61-63 4.3.3 程序下载实现63-65 4.4 本章小结65-66第5章实验研究66-73 5.1 电机闭环速度控制实验66-68 5.1.1 程序实现66-67 5.1.2 实验结果及分析67-68 5.2 机器人平衡控制实验68-72 5.2.1 程序实现68-71 5.2.2 实验结果及分析71-72 5.3 本章小结72-73总结73-74致谢74-75参考文献75-79攻读硕士期间发表的论文79。
基于STM32的两轮自平衡小车控制系统设计本文主要对两轮自平衡小车的姿态检测算法、PID控制算法两方面进行展开研究。
用加速度传感器和陀螺仪传感器融合而成的姿态传感系统与互补滤波器组合得到自平衡小车准确而稳定的姿态信息,然后PID调节器则利用这些姿态信息输出电机控制信号,控制电机的转动,从而使小车得以平衡。
标签:STM32;自平衡小车;控制系统;控制算法1 研究意义应用意义:两轮平衡车是一种新型的交通工具,它与电动自行车和摩托车车轮前后排列方式不同,而是采用两轮并排固定的方式,就像一种两轮平行的机器人一样。
两轮自平衡控制系统是一种两轮左右平行布置的,像传统的倒立摆一样,本身是一个自然不稳定体,必须施加强有力的控制手段才能使之稳定。
两轮平衡车具有运动灵活、智能控制、操作简单、节省能源、绿色环保、转弯半径为0等优点。
因此它适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。
具有很大的市场和应用前景。
理论研究意义:车体状态运算主要是将各传感器测量的数据加以融合得出车体倾斜角度值、倾斜角速度值以及行车速度等。
平衡控制运算根据车体状态数据,计算保持平衡需要的行车速度和加速度,或者转弯所需要的左右电机速度变化值,向电机控制驱动模块发送控制指令。
运算模块相当于两轮自平衡电动车的大脑,它主要负责的工作是:控制电机的起停,向控制模块发出加速、减速、电机正反转和制动等速度控制信号,接收电机Hall信号进行车速度计算,并通过RS 一232串口向PC发送车速数据以供存储和分析。
另外,还负责接收车体平衡姿态数据,进行自平衡运算。
现有的自平衡车结构种类繁多,但车体都归根于由三层的基本结构组成,从上到下依次是电池层、主控层、电机驱动层。
电池层用于放置给整个系统供电的6V锂电池,主控层由主控芯片系统和传感器模块组成,电机驱动层接受单片机信号,并控制电机。
毕业设计(论文)题目:单片机控制单轴双轮自动平衡小车设计系别:电气工程系专业:电气工程及其自动化班级:电气121学号:学生姓名:指导教师:2016年月摘要两轮自平衡车由于其特有的灵活性以及便捷性越来越受到人们的关注,在人们的日常生活中也作为代步工具被越来越多的人群接受。
本设计采用了基于ARM CORTEX-M3内核的STM32单片机,使平衡车姿态调整速度更快,数据处理更准确,运动性能更佳。
并且放弃分别采用陀螺仪和加速度传感器来获取小车的姿态信息,而是直接采用了全球首例9轴运动处理传感器MPU-6050,通过DMP获取四元数,以算出角度,并通过PID控制实现小车的直立平衡行走。
采用蓝牙模块实现和小车之间的通讯工作,设计最终实现了小车的平衡站立、前进、倒退功能。
实现小车的平衡直立行走,其实就是要对电机进行适时的控制,电机作为机电转换装置,遍布于国民经济的各个领域以及人们日常生活的方方面面,所以对电机的完美控制更显得极其重要,也是本设计的主要目的之一。
STM32F10x系列芯片是新型的32位嵌入式微处理器,具有优秀的数据处理能力,速度更快,在对本设计中的小车模型进行速度调整时,能展现出更灵敏的反应速度,更重要的是,它还具有较好的移植性,在很好的实现本设计任务的同时,利于将来更多功能的扩展。
关键词: 平衡车;MPU6050;STM32;PID控制AbstractMore and more people have paid attention to The Two-wheeled Self-balancing Robot due to its unique flexibility and convenience. People had accept it as transport in people's daily life. This study is just based on the purpose ofexplore the The Two-wheeled Self-balancing Robot.This design bases on STM32 microcontroller which based onthe CORTEX-M3 ARM core.because of that , the robot adjust faster, data processingmore accurate ,performance better . At the same time,we directly using the world's first 9 axis motion processing sensor MPU-6050 instead of the gyro and accelerationmeter sensors to get the car's attitude information . to calculate the angleThrough the DMP. Andto achieve the car's upright balance walkingthrough the PID control. Using Bluetooth module to achieve communication with the car. The Designed will achieve the balance of the car stand, forward, backward function. To achieve the balance of the car upright walking, in fact, is to timely control of the motor, electric motor is an electric machine conversion device which through all areas of the national economy and people's daily life, so the perfect control of the motor is more important and is one of the main objectives of this design.stm32f10x series chip is new 32-bit embedded microprocessor , it has excellent performance, good portability and improve the efficiency of the DC motor control, and we have modular the l system, which will be conducive to the balance of the car after the function expansion.KeyWord:Self-balancing Robot MPU6050 STM32 PID controller目录1 绪论 (1)2 平衡车总体设计方案 (2)2.1 系统平衡原理分析 (2)2.2 系统整体设计 (3)3 系统硬件电路设计 (5)3.1 系统硬件选型 (5)3.2 最小系统设计 (6)3.3 姿态检测电路设计 (7)3.4 电源稳压模块 (7)3.5 电机驱动模块设计 (8)4 系统软件部分设计 (9)4.1 软件系统总体结构 (9)4.2 单片机初始化 (9)4.3 姿态检测系统软件设计 (10)4.3.1 MPU6050姿态获取方法 (10)4.3.2 卡尔曼滤波算法 (11)4.4 平衡PID控制软件实现 (12)4.4.1 直立环PD控制 (12)4.4.2 速度环PI控制 (13)5 系统调试 (15)5.1 角度矫正 (15)5.2 卡尔曼滤波调试 (15)5.3 PID参数的整定 (15)5.3.1 PD控制调试 (15)5.3.2 PI控制调试 (15)6 结论 (17)致谢 (18)附录1 程序 (19)附录2 电路图 (24)参考文献 (24)1 绪论近几年,不管是独轮车还是双轮平衡车都越来越受到人们的关注,随着时间发展,科技的进步,双轮平衡车也变得越来越智能化。
两轮自平衡小车控制系统的设计摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。
在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。
实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。
关键词:控制;自平衡;实时性近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。
新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。
但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。
因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。
全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。
在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。
小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。
1 小车控制系统总体方案小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。
同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。
基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。
本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。
系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。
整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。
通过蓝牙,还可以控制小车前进,后退,左右转。
关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波PID算法Design of Control System of Two-WheelSelf-Balance Vehicle based on MicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer gyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG for controlling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable state quickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around.Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion; Complementary filter; PID algorithm1 绪论 (1)1.1自平衡小车的研究背景 (1)1.2 自平衡小车研究意义 (1)1.3 论文的主要内容 (2)2 课题任务与关键技术 (2)2.1 主要任务 (2)2.2关键技术 (2)2.2.1 系统设计 (2)2.2.2 数学建模 (2)2.2.3姿态检测 (3)2.2.4 控制算法 (3)3 系统原理分析 (3)3.1 控制系统任务分解 (3)3.2 控制原理 (4)3.3 数学模型 (5)4 系统硬件设计 (6)4.1 STC12C5A60S2单片机介绍 (7)4.2 电源管理模块 (8)4.3 车身姿态感应模块 (9)4.3.1 加速度计 (10)4.3.2 陀螺仪 (12)4.4 电机驱动模块 (14)4.5 速度检测模块 (16)5 系统软件设计 (16)5.1 软件系统总体结构 (17)5.2 单片机的硬件资源配置 (18)5.2.1定时/计数器设置 (18)5.2.2 PWM输出设置 (20)5.2.3 串行通信设置 (23)5.2.4 中断的开放与禁止 (26)5.3 MPU6050资源配置 (27)5.3.1 普通IO口模拟IIC通讯 (28)5.3.2 MPU6050资源配置 (32)5.4 系统控制算法设计 (34)5.4.1 PID算法 (34)5.4.2 互补滤波算法 (35)5.4.3 角度控制与速度控制 (35)5.4.4 输出控制算法 (36)6 总结与展望 (37)6.1 总结 (37)6.2 展望 (37)参考文献 (38)1 绪论1.1自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求。
两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。
两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。
本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。
本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。
随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。
在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。
本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。
本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。
通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。
二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。
其基本原理主要涉及到力学、控制理论以及传感器技术。
两轮自平衡小车的稳定性主要依赖于其独特的力学结构。
与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。
这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。
实现自平衡的关键在于控制理论的应用。
两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。
控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。
传感器在两轮自平衡小车中扮演着至关重要的角色。
常见的传感器包括陀螺仪、加速度计和角度传感器等。
摘要双轮自平衡车是一个高度不稳定两轮机器人,是一种多变量、非线性、绝对不稳定的系统,需要在完成平衡控制的同时实现直立行走等任务因其既有理论意义又有实用价值,双轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。
本文主要介绍了双轮平衡车的控制系统硬件设计方案。
此方案采用ATmega328 作为核心控制器,在此基础上增加了各种接口电路板组成整个硬件系统,包括单片机最小系统,姿态检测模块,直流驱动电机控制模块,电源管理模块,测速编码模块,串口调试等模块。
对于姿态检测系统而言,单独使用陀螺仪或者加速度计,都不能提供有效而可靠的信息来保证车体的平衡。
所以采用一种简易互补滤波方法来融合陀螺仪和加速度计的输出信号,补偿陀螺仪的漂移误差和加速度计的动态误差,得到一个更优的倾角近似值。
本文先阐述了系统方案原理,再分别就各模块工作原理进行详细的介绍与分析,最终完成车模的制作和电路原理图以及1PCB 板的绘制。
最后根据调试情况对整个系统做了修改,基本达到设计要求。
关键词双轮自平衡车模块设计传感器AbstractTwo-wheeled self-balanced car is a highly unstable robots, it is a system with Multivariable, nonlinear and absolute instability, it needs to complete the balance control tasks such as walking upright because of both theoretical significance and practical value. Two-wheeled self-balanced car in the last decade has aroused widespread concern in the robotics laboratory.This paper describes the control system hardware design of the wheel balanced car.This program uses ATmega328 as the core controller,base on this increase of various interface circuit board to building the hardware system. Peripheral circuits including the smallest single-chip system, the gesture detection module, the DC drive motor control module, power management module, velocity encoding module and serial debugging module. For the posture monitoring system,the information solely depends on the gyroscope or the accelerometer couldn’t make sure the balance of vehide.So the signals from the gyroscope and accelerometer were integrated by a simple method of complementary filtering for an optimal angle to compensate the gyroscope drift error and the accelerometer dynamic error.This article first describes the principle of the system program,then described in detail each module how to working out, the final completion of car models produced and circuit schematics and the PCB drawing.In the end, according to debug the situation on the whole system changes, the hardware system basically reached the design requirements.Keywords two-wheeled self-balanced car modular design sensor目录前言 (1)第1章绪论 (2)1.1 设计的依据与意义 (2)1.2 国内外同类设计的概况综述 (3)1.3 设计要求与内容 (3)第2章总体硬件方案设计 (5)2.1 总体分析 (5)2.2 总体方案设计 (5)2.3 方案框图 (7)第3章单元模块设计 (8)3.1 姿态检测模块 (8)3.2 单片机控制单元模块电路 (14)3.3 电机驱动模块 (19)3.4 串行通信模块 (21)3.5 电源管理模块 (24)结论 (26)参考文献 (27)致谢 (28)附录 (29)前言自平衡车自动平衡运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。
以内置的精密固态陀螺仪(Solid-State Gyroscopes)来判断车身所处的姿势状态。
透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。
正确打开电源且能保持足够运作的电力,车上的人就不用担心有倾倒跌落的可能,这与一般需要靠驾驶人自己进行平衡的滑板车等交通工具大大不同,双轮单轴自平衡小车就是其中的一种模型。
双轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、绝对不稳定的系统,且因其运动环境复杂、运动学方程中的非完整约束,所以其控制任务也具有复杂性,需要在完成平衡控制的同时实现直立行走等任务因其既有理论意义又有实用价值,双轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。
双轮自平衡小车作为倒置系统的一种形式,是动力学理论和自动控制理论与技术相结合的研究项目,为科学理论的发展起到了指导作用,且由于结构简单、运动灵活以及适合在更小的空间里工作,有着一定的应用前景。
为使我们对几年大学学习有个全面而深刻的了解,为了让我们对所学书本知识从抽象化到具体化的质的飞跃,为使我们能更快的适应将来的工作,在毕业之际进行了此次设计,以此来为我们的大学生涯画上圆满的句号。
本设计利用 ATmega328P 单片机,和加速度以及陀螺仪传感器实时检测物体在空间中的姿态,并将物体姿态数据进行处理,发出控制信号,驱动两个电机转动,使小车保持动态平衡。
本设计完成了如下要求:(1)单片机控制系统电路原理图的设计;(2)控制系统电路印制版的绘制;(3)硬件模块的连接。
第1章绪论1.1 设计的依据与意义双轮自平衡小车属于一种简单的轮式机器人。
由于结构简单、运动灵活以及适合在更小的空间里工作,有着一定的应用前景。
其原理来自于倒立摆的控制,双轮小车从力学角度来说本身是不稳定的,因此设计的重点是如何控制实现小车的平衡,以及在平衡下实现指定运动。
采用的方法就是不断地调整小车的姿态使其达到动态平衡。
原理如图 1-1 所示:图1-1 动态平衡原理示意图因此在运动中需要利用传感器检测当前的姿态(使用加速度传感器和陀螺仪进行信号收集,并对两个传感器的数据有效融合和估计,用加速度传感器长时间稳定的特性弥补陀螺仪的零点漂移及 A/D 采样值单调性误差积累增长),将当前的姿态信息反馈到单片机,然后由单片机给出控制信号来控制电机转动以此实现平衡。
控制采用 PID 控制,核心内容是 PID 控制参数的整定,这部分内容需要不断的调试和更改,根据实际的情况可以设置出最稳定的参数。
1.2 国内外同类设计的概况综述在两轮自平衡小车的研究上,国外的专家和爱好者们取得了一系列的成果,以下介绍国外几个比较先进的两轮自平衡小车:由瑞士联邦技术学院工业电子实验室的研究人员研制的名为 JOE 的基于倒立摆的小型自平衡两轮车模型,是由 DSP 芯片进行控制的。
它由车架上方所附的重物模拟实际车中的驾驶者。
研究人员通过陀螺仪和光电编码器测量的数据,用线性状态反馈控制器来控制整个系统的平衡稳定。
由美国发明家 DeanKamen 开发的‘SEGWA'YliT’两轮个人交通工具则是一个更为实用、成熟以及商业化的两轮运载车的版本。
它使用了五个陀螺仪和一个收集其他角度传感器数据的集成器来保持自身的直立状态。
小车只需其中的三个陀螺仪就可以控制整个系统的平衡,而另外的两个则是为安全可靠作为备用。
我国在此方面的研究也取得了很大的成就:中国科学技术大学研究出了自平衡两轮代步电动车,它是一种两轮式左右并行布置结构的具有自平衡系统的电动车。
在车体内嵌入式 CPU 的控制下,采集平衡传感器以及速度、加速度传感器的数据,通过一定的控制算法,计算输出 PWM 信号控制两个伺服电机的转矩,使车体保持平衡并能够根据人体重心的偏移,自动前进、后退及转弯。
哈尔滨工程大学也有类似的双轮直立自平衡机器人,该系统采用两块 Cygnal 公司推出的单片机和人机交互的上位机作为控制核心。
车体倾斜角度检测采用 AD 公司推出的双轴加速度传感器 ADXL202 及反射式红外线距离传感器。
利用 PWM 技术动态控制两台直流电机的转速。
上位机与机器人间的数据通信采用迅通生产的PTR2000 超小型超低功耗高速无线收发 MODEM。
人机交互界面采用 240*128 图形液晶点阵、方向摇杆及按键。
基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了该系统的平衡控制。
1.3 设计要求与内容开发一种两轮自平衡机器人实验平台的控制软件。
使用 AVR ATMEGA 328P 单片机作为控制器,使用加速度、角速度传感器估计车体姿态,设计控制算法对两轮电机进行实时控制,使机器人在保持平衡的基础上按照指令进行运动。
机器人在运动的同时,通过无线通讯模块与 PC 机通讯,发送自身状态、接受轨迹指令。
并能达到以下要求:1.保持自身平衡,倾角范围±5°之间;2.能够通过电机编码器检测自身的位移和运动速度;3.能够保持平衡的同时前后运动;4.能通过无线串口和上位机进行通讯。