流量检测仪表
- 格式:docx
- 大小:15.68 KB
- 文档页数:2
第四章流量检测仪表1.概述〔流量的概念和单位、流量检测方法及流量计分类〕在生产过程中,为了有效地进行操作、操纵和监督,需要检测各种流体的流量。
物料总量的计量依旧经济核算和能源治理的重要依据。
流量检测仪表是开展生产,节约能源,先进产品质量,提高经济效益和治理水平的重要工具,是工业自动化仪表与装置中的重要仪表之一。
流体的流量是指在短临时刻内流过某一流通截面的流体数量与通过时刻之比,该时刻足够短以致可认为在此期间的流淌是稳定的。
此流量又称瞬时流量。
流体数量以体积表示称为体积流量,流体数量以质量表示称为质量流量。
流量的表达式为:式中为体积流量,单位;为质量流量,;V为流体体积,m3;M为流体质量,Kg;t为时刻;为流体密度,;为流体平均流速,;为流通截面面积,。
在某段时刻内流体通过的体积或质量总量称为累计流量或总流量,它是体积流量或质量流量在该段时刻的积分。
流量检测方法能够回为体积流量检测和质量流量检测两种方式,前者测得流体的体积流量值,后者能够直截了当测得流体的质量流量值。
测量流量的仪表称为流量计,测量流体总量的仪表称为计量表或总量计。
流量计通常由一次装置和二次仪表组成。
一次装置安装于流道的内部或外部,依据流体与之相互作用关系的物理定律产生一个与流量有确定关系的信号,这种一次装置亦称流量传感器。
二次仪表那么给出相应的流量值大小。
流量计的种类繁多,各适合于不同的工作场合。
按检测原理分类的典型流量计列在见下表。
流量计的分类2.容积式流量计容积式流量计是直截了当依据排出体积进行流量累计的仪表,它利用运动元件的往复次数或转速与流体的连续排出量成比例对被测流体进行连续的检测。
容积式流量计能够计量各种液体和气体的累积流量,由于这种流量计能够周密测量体积量,因此其类型包括从小型的家用煤气表到大容积的石油和天然气计量仪表,广泛地用作治理和贸易的手段。
容积式流量计由测量室、运动部件、传动和显示部件组成。
它的测量主体为具有固定标准容积的测量室,测量室由流量计内部的运动部件与壳体构成。
流量测量仪表的分类都有哪些流量测量仪表是一种用于测量流体在管道或储罐中流动的仪表,通常用于监测工业流程中的流量。
它们可以根据不同的原理和应用场景分为多种类型。
本文将介绍一些常见的流量测量仪表分类。
1. 机械式流量测量仪表机械式流量测量仪表通常基于测量管中的沿程压力差来测量流量,通过测量管的压力差可以得到流速,进而计算出流量。
最常见的类型是差压流量计,它主要由测量管、差压变送器和指示仪表组成。
除此之外,还有体积式流量计、转子流量计、滑动变量流量计等。
机械式流量测量仪表的优点是结构简单、可靠性高以及适用于测量流量较小的液体。
不过,其存在着灵敏度低、定期维护和校准的问题。
此外,不适用于测量含有颗粒或粘稠液体。
2. 电磁式流量测量仪表电磁式流量测量仪表是一种通过测量液体或气体导电率来测量流量的仪表。
测量时,电磁流量计会在管道中产生一个交变磁场,通过电极和电路测量出流体在磁场中的电势差。
这种测量方式适用于导电性流体,如水、酸、碱液和液态金属等。
电磁式流量测量仪表的优点是测量精度高、可测量大量的工业流体,并且可以测量液体、气体和蒸汽的流量。
不过,由于液体中可能存在电极腐蚀、电极凝结等问题,需要进行适当的维护和校准。
3. 超声波流量测量仪表超声波流量测量仪表是一种基于超声波技术测量流体流量的仪表。
测量时,传感器向管道内发出一个超声波信号,再测量回波信号的差异,由此计算出流速,然后通过管道的截面积计算出流量。
超声波流量测量仪表的优点是精度高、测量范围广,可以测量各种类型的液体和气体,同时具有不阻塞、不漏水的特点,适用于极端温度、高压或腐蚀性流体测量。
不过,超声波流量计的测量精度会受到液体密度、温度、含气量等因素的影响,需要进行校准。
4. 旋转叶片式流量测量仪表旋转叶片式流量测量仪表是一种通过测量液体旋转的叶片数来计算流量的仪表。
在管道中加装一个旋转叶片,当流过旋转叶片的流体旋转时,可根据液体旋转叶片的转速和叶片数,计算液体的流量。
流量测量仪表基本参数
流量测量仪表的基本参数包括:
1. 测量范围:即仪表能够测量的流量范围,通常以流量单位表示(如升/小时、立方米/秒等)。
2. 精度等级:用于表示仪表的测量准确度,通常以百分比或具体数值表示。
3. 输出信号:指仪表测量结果的输出信号类型,常见的包括模拟量信号(如4-20mA)和数字信号(如RS485、MODBUS 等)。
4. 重复性:仪表的重复测量性能,即在相同工况下重复测量的结果的稳定性。
5. 响应时间:仪表对流量变化的响应速度,通常以时间单位表示(如毫秒、秒等)。
6. 环境温度:仪表正常工作的环境温度范围。
7. 工作压力:仪表正常工作的压力范围。
8. 电源要求:仪表的供电方式和电压要求。
以上是流量测量仪表的一些基本参数,具体参数还会根据不同的应用需求和仪表型号而有所差异。
流量仪表原理
流量仪表原理是基于物理现象和测量方法的原理。
流量仪表使用不同的传感器、装置和技术来测量液体、气体或其他流体的流量。
以下是常见的流量仪表原理:
1. 质量流量原理:根据流体在单位时间内通过仪表截面积的质量来测量流量。
常见的质量流量仪表包括质量流量计和气体质量流量计。
2. 体积流量原理:根据流体在单位时间内通过仪表截面积的体积来测量流量。
常见的体积流量仪表包括涡轮流量计、涡街流量计和电磁流量计。
3.差压原理:利用流体通过管道时产生的差压与流量成正比,
通过测量差压来间接测量流量。
常见的差压流量仪表包括孔板流量计、喇叭嘴流量计和流体动量流量计。
4. 超声波原理:利用超声波在流体中的传播速度与流速成正比,通过测量超声波传播时间或频率变化来测量流速进而计算流量。
常见的超声波流量仪表有超声波流量计和多普勒流量计。
5. 热量原理:利用流体通过仪表时对温度的影响来测量流量。
常见的热量流量仪表包括热量流量计和热敏电阻流量计。
这些原理都有其适用的场景和精度要求,用户可根据实际需求选择合适的流量仪表。
流量仪表的分类流量仪表是一种用于测量流体流量的仪器,广泛应用于工业、农业、医疗、环保等领域。
根据其测量原理和结构特点,流量仪表可以分为多种类型。
本文将从以下几个方面介绍流量仪表的分类。
一、机械式流量仪表机械式流量仪表是一种通过机械结构实现流量测量的仪表。
常见的机械式流量仪表有涡轮流量计、节流装置、浮子流量计等。
涡轮流量计是一种利用涡轮旋转的转速与流量成正比关系的仪表,适用于测量低粘度液体的流量。
节流装置是一种通过缩小管道截面积来增加流体速度,从而实现流量测量的仪表,适用于测量高粘度液体的流量。
浮子流量计是一种利用浮子在流体中上下浮动的高度与流量成正比关系的仪表,适用于测量低粘度液体的流量。
二、电磁式流量仪表电磁式流量仪表是一种利用电磁感应原理实现流量测量的仪表。
电磁式流量仪表由电磁流量计和涡街流量计两种类型。
电磁流量计是一种利用磁场感应原理实现流量测量的仪表,适用于测量导电液体的流量。
涡街流量计是一种利用涡街效应实现流量测量的仪表,适用于测量低粘度液体的流量。
三、超声波式流量仪表超声波式流量仪表是一种利用超声波传播速度与流体流速成正比关系实现流量测量的仪表。
超声波式流量仪表由时间差法和多普勒效应法两种类型。
时间差法是一种利用超声波在流体中传播时间差来计算流量的仪表,适用于测量低粘度液体的流量。
多普勒效应法是一种利用超声波在流体中反射后频率变化来计算流量的仪表,适用于测量高粘度液体的流量。
四、热式流量仪表热式流量仪表是一种利用热传导原理实现流量测量的仪表。
热式流量仪表由热敏电阻式流量计和热电偶式流量计两种类型。
热敏电阻式流量计是一种利用热敏电阻的电阻值随温度变化的特性来计算流量的仪表,适用于测量低粘度液体的流量。
热电偶式流量计是一种利用热电偶的电势随温度变化的特性来计算流量的仪表,适用于测量高粘度液体的流量。
五、质量式流量仪表质量式流量仪表是一种利用质量守恒原理实现流量测量的仪表。
质量式流量仪表由热式质量流量计和压降式质量流量计两种类型。
流量仪表的选型(一)一般原则1、刻度选择仪表刻度宜符合仪表刻度模数的要求,当刻度读数不是整数时,为读数换算方便,也可按整数选用。
(1)方根刻度范围最大流量不超过满刻度的95%;正常流量为满刻度的70%~85%;最小流量不小于满刻度的30%。
(2)线性刻度范围最大流量不超过满刻度的90%;正常流量为满刻度的50%~70%;最小流量不小于满刻度的10%。
2、仪表精确度用作能源计量的流量计,应符合《企业能源计量器具配备和管理通则(试行)》的规定。
(1)用于燃料进出厂结算的计量,±0.1%;(2)用于车间班组、工艺过程的技术经济分析的计量,±0.5%~2%;(3)用于工业及民用水的计量,±2.5%;(4)用于包括过热蒸汽和饱和蒸汽的蒸汽计量,±2.5%;(5)用于天然气、瓦斯及家用煤气的计量,±2.0%;(6)用于重点用能设备及工艺过程控制的油的计量,±1.5%;(7)用于工艺过程控制的其它含能工质(如压缩空气、氧、氮、氢、水等)的计量,±2%。
3、流量单位体积流量用m3/h、l/h;质量流量用kg/h、t/h;标准状态下气体体积流量用Nm3/h(0℃,0.1013MPa)。
(二)一般流体、液体、蒸汽流量测量仪表的选型1、差压式流量计(1)节流装置①标准节流装置一般流体的流量测量,应选用标准节流装置(标准孔板、标准喷咀)。
标准节流装置的选用,必须符合GB2624-8l的规定或国际标准ISO 5167-1980。
如有新的国家标准规定,应执行新规定。
②非标准节流装置符合下列条件者,可选用文丘里管:要求低压力损耗下的精确测量;被测介质为干净的气体、液体;管道内径在100~800mm范围;流体压力在1.0MPa以内。
符合下列条件者,可选用双重孔板:被测介质为干净气体、液体;雷诺数大于(等于)3000、小于(等于))300000范围内。
符合下列条件者,可选1/4圆喷嘴:被测介质为干净气体、液体;雷诺数大于200、小于100000范围内。
流量检测仪表的工作原理流量检测仪表是一种用于测量和监测流体流量的装置。
其工作原理是基于流体通过管道时产生的压力变化,通过测量这种压力变化来计算流体的流量。
下面将详细介绍流量检测仪表的工作原理。
流量检测仪表通常由两个主要部分组成:传感器和计算单元。
传感器负责测量流体通过管道时产生的压力变化,而计算单元则根据传感器提供的数据进行计算和显示。
在工作时,流体通过管道时会产生压力变化。
流量检测仪表的传感器通常被安装在管道上,可以测量到这种压力变化。
传感器通常采用压阻式或压差式测量原理。
其中,压阻式传感器通过测量流体通过管道时的阻力来确定流量;压差式传感器通过测量管道两侧的压力差来计算流量。
传感器将测量到的压力变化信号传递给计算单元。
计算单元根据传感器提供的数据以及预先设定的参数,利用内部的算法来计算流体的流量。
这些参数可能包括管道的直径、介质的密度和粘度等。
计算完成后,流量检测仪表将流体的流量数据显示在仪表的显示屏上。
通常,流量检测仪表会提供多种显示方式,如瞬时流量、累积流量等。
用户可以根据需要选择不同的显示方式。
流量检测仪表还可以提供其他功能,如报警、通信等。
当流体的流量超出预设范围时,仪表可以发出报警信号,提醒用户注意。
同时,流量检测仪表还可以通过通信接口将测量数据传输给上位机,实现远程监测和数据管理。
总结起来,流量检测仪表的工作原理是基于测量流体通过管道时产生的压力变化。
通过传感器测量到的压力变化信号,计算单元可以计算出流体的流量,并将结果显示在仪表上。
流量检测仪表具有精确度高、可靠性强等特点,在工业自动化控制、环境监测等领域有着广泛的应用。
10款常见流量测量仪表原理介绍1.容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。
流量越大,度量的次数越多,输出的频率越高。
容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。
根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等.2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。
典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。
一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。
电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。
3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。
二次装置称显示仪表。
它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。
二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。
由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。
多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。
这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。
发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。
4.变面积式流量计(等压降式流量计) 放在上大下小的锥形流道中的浮子受到自下而上流动的流体的作用力而移动。
流量检测仪表
流量就是单位时间内流经某一截面的流体数量。
流量可用体积流量和质量流量来表示,其单位有m3/h、L/h和kg/h.在实际工业生产过程中,有时不仅需要指示和记录某瞬时流体的流量值,还需要累计某段时间间隔内流体的总量、即各瞬时
等因素的影响,是适合于气体、液体、不洁流体等多种介质计量的高性能新型流量计,特别是天然气计量中有广泛的应用。
(四)超声流量计
超声流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。
根据对信号检测的原理,超声流量计可分为传播速度差法(直接时差法、
时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。
超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点。
1.优点。