全国各地中考数学模拟试卷压轴题汇编含详细解析和评分标准(精选)
- 格式:doc
- 大小:1.25 MB
- 文档页数:19
2023年河南省各地市中考数学三模压轴题精选之四边形和相似三角形1.(2023·河南省商丘市·三模)如图,平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,对角线AC和OB交于点D,作∠ABO的平分线,交OA于点P,交AC于点Q.若OP=2,则点Q的坐标为( )A. (3,2)B. (2+1,1)C. (2+2,2)D. (3,1)2.(2023·河南省天宏大联考·三模)如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD、DC延长线的垂线,垂足分别为点E、F.若∠ABC=120°,AB=2,则PE―PF的值为( )A. 32B. 3 C. 2 D. 523.(2023·河南省天一大联考·三模)如图,△ABC是边长为8的等边三角形,以AC为底边在右侧作等腰三角形ADC,连接BD,交AC于点O,过点D作DF//AB交AC于点E,交BC于点F,若AD=5,则DF的长为( )A. 32B. 3+3C. 4+3D. 3+324.(2023·河南省天宏大联考·三模)如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是______.5.(2023·河南省天一大联考·三模)如图,在平行四边形ABCD中,∠B=60°,BC=1,点E是直线AB上一点,连接CE,将△BCE沿直线CE折叠,点B落在点B′处,若四边形BEB′C是菱形,则CE的长为______.6.(2023·河南省商丘市·三模)如图,矩形ABCD中,对角线AC,BD交于点O,AD=6,∠ABD=30°,点E为CD 的中点,点P为BC,AB上一个动点,将△PEC沿PE折叠得到△PEQ,点C的对应点为点Q,当点Q落在矩形ABCD的对角线上时,PC的长为______.7.(2023·河南省郑州市外国语学校·三模)如图,直角△ABC中,∠ACB=90°,∠A=30°,BC=4,点E是边AC 上一点,将BE绕点B顺时针旋转60°到点F,则CF长的最小值是.8.(2023·河南省郑州一中·三模)如图,在△ABC中,AB=AC=3+1,∠BAC=120°,P、Q是边BC上两点,将△ABP沿直线AP折叠,△ACQ沿直线AQ折叠,使得B、C的对应点重合于点R.当△PQR为直角三角形时,线段AP的长为______.9.(2023·河南省洛阳市·三模)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F.且点F在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN=1,AB=4,当点H为GN三等分点时,MD的长为______.10.(2023·河南省濮阳市·三模)矩形ABCD中,AB=3,BC=4,对角线AC、BD交于点O,点M是BC边上一动点,连接OM,以OM为折痕,将△COM折叠,点C的对应点为E,ME与OB交于点G,若△BGM为直角三角形,则BM的长为______.11.(2023·河南省商丘一中·三模)折纸游戏:小明剪出一个直角三角形的纸片ABC,其中,∠A=60°,AC=1,找出BC的中点M,在AB上找任意一点P,以MP为对称轴折叠△MPB,得到△MPD,点B的对应点为点D,小明发现,当点P的位置不同时,DP与△ABC的三边位置关系也不同,请帮小明解决问题:当DP⊥BC 时,AP的长为______.12.(2023·河南省驻马店市二中·三模)如图,在△ABC中,∠ACB=90°,AB=15,AC=12,E为AB上的点,将EB绕点E在平面内旋转,点B的对应点为点D,且点D在△ABC的边上,当△ADE恰好为直角三角形时,BE的长为______.13.(2023·河南省驻马店市确山县·三模)如图所示,在Rt△ABC中,∠ACB=90°,BC=23,∠B=30°,点D在AB上且AD=2,点P为AC的中点,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ、DQ.当∠DAQ=60°时,DQ的长为______.14.(2023·河南省周口市西华县·三模)如图1,将两个等腰直角△ABC和△DEF如图1放置,∠C=∠F=90°,AC=DF=2,D为AB的中点.如图2,将△DEF绕点D在平面内旋转,当△DEF的边恰好经过点C时,AF的长为______.15.(2023·河南省天宏大联考·三模)(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系______,位置关系______;(2)如图2,矩形ABCD和矩形DEFG,3AD=2DG,3AB=2DE,DC=DG,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,3AD=2DG=6,3AB=2DE=12,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点B、E、G在同一条直线上时,请直接写出线段BE的长.16.(2023·河南省天一大联考·三模)综合与实践【问题发现】(1)如图1,在正方形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且EG⊥FH于点O.试猜想线段EG与FH的数量关系为______;【类比探究】(2)如图2,在矩形ABCD中,AB=a,BC=2a,点E,F,G,H分别在边AB,BC,CD,DA上,连接EG,FH,且EG⊥FH,垂足为O.试写出线段EG与FH的数量关系,并说明理由;【拓展应用】(3)如图3,在四边形ABCD中,∠ABC=90°,∠BCD=60°,点M,N分别在边AB,BC上,连接CM,DN,且CM⊥DN,垂足为O.已知AB=3,BC=DC=4,若点M为AB的三等分点,直接写出线段DN的长.17.(2023·河南省郑州市外国语学校·三模)【问题发现】小明在一次利用三角板作图的过程中发现了一件有趣的事情:如图1,在Rt△ABC中,∠A=30°,AB=6,点M和点P分别是斜边AB上的动点,并且满足AM=BP,分别过点M和点P作AC边的垂线,垂足分别为点N和点Q,那么MN+PQ的值是一个定值.问题:若AM=BP=2时,MN+PQ值为______;【操作探究】如图2,在Rt△ABC中,∠C=90°,∠A=α,AB=m;爱动脑筋的小明立即拿出另一个三角板进行了验证,发现果然和之前发现的结论一样,于是他猜想,对于任意一个直角三角形,当AM=BP时,MN+PQ的值都是固定的,小明的猜想对吗?如果对,请利用图2进行证明,并用含α和m的式子表示MN+PQ的值.【解决问题】如图3,在菱形ABCD中,AB=8,BD=14.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为______.18.(2023·河南省郑州市十九中·三模)如图,在矩形ABCD中,点M、N分别为AD、BC上的点,将矩形ABCD 沿MN折叠,使点B落在CD边上的点E处(不与点C,D重合),连接BE,过点M作MH⊥BC于点H.(1)如图①,若BC=AB,求证:△EBC≌△NMH;(2)如图②,当BC=2AB时,①求证:△EBC∽△NMH;②若点E为CD的三等分点,请直接写出AM的值.BN【问题背景】如图(1),在矩形ABCD中,AB=5,BC=4,点E为边BC上一点,沿直线DE将矩形折叠,使点C落在AB边上的点C′处.(1)【问题解决】填空:AC′的长为______;(2)如图(2),展开后,将△DC′E沿线段AB向右平移,使点C′的对应点与点B重合,得到△D′BE′,D′E′与BC 交于点F,求线段EF的长.(3)【拓展探究】如图(3),在△DC′E沿射线AB向右平移的过程中,设点C′的对应点为C″,则当△D′C″E′在线段BC上截得的线段PQ的长度为1时,直接写出平移的距离.=k,F是AC边上一动点,将△AFB沿着BF翻折得点A 【问题情景】如图3,在Rt△ABC中,∠ACB=90°,ACBC的对应点D,连接CD,将射线CD绕点C顺时针旋转90°交BF于点E.【问题发现】(1)如图1,若k=1,设∠ABF=α.①求∠DAC的度数.(用含α的式子表示)②求证:CD=CE.【拓展应用】(2)如图2,若k=3,BC=2,在点F移动的过程中,当△ACD为直角三角形时,请直接写出BE的长.21.(2023·河南省商丘一中·三模)如图,矩形ABCD中,点M为CD上一点,AM⊥BM,点P为直线CD上一个动点,将射线PB绕点P逆时针旋转90°交直线AM于点Q.(1)当△AMB为等腰直角三角形时,①如图1,当点Q落在线段MA上时,试判断MB,MQ,MP的数量关系______;②如图2,当点Q落在射线MA上时,①中的结论是否变化,若不变,请证明.若变化,请说明理由;(2)如图3,若其他条件不变,Rt△AMB中,∠ABM=60°,AB=4,MQ=3,请直接写出MP的长.22.(2023·河南省周口市西华县·三模)实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM______(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答______;进一步计算出∠MNE=______;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=______;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A′处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA′交ST于点O,连接AT、A′S.求证:四边形SATA′是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A′处,并且折痕交AB 边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值______.23.(2023·河南省驻马店二中·三模)阅读以下材料,并按要求完成相应的任务.《数学的发现》是2006年科学出版社出版的图书,作者是(美)乔治⋅波利亚.本书通过对各种类型生动而有趣的典型问题(有些是非数学的))进行细致剖析,提出它们的本质特征,从而总结出各种数学模型.共高三角形:有一条公共高的三角形称为共高三角形.共高定理:如图①,设点M在直线AB上,点P为直线外一点,则有S△PAMS△PBM =AMBM.下面是该结论的证明过程:证明:如图①,过点P作PQ⊥AB于点Q,……按要求完成下列任务:(1)请你按照以上证明思路,结合图①完成剩余的证明;(2)如图②,△ABC,①画出∠BAC的平分线(不写画法,保留作图痕迹,使用2B铅笔作图);②若∠BAC的平分线交BC于D,求证:ABAC =BDCD.(3)如图③,E是平行四边形ABCD边CD上一点,连接BE并延长,交AD的延长线于点F,连接AE,CF,若△ADE的面积为2,则△CEF的面积为______.24.(2023·河南省新乡市封丘县·三模)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:正方形透明纸片ABCD,点E在BC边上,如图1,连接AE,沿经过点B的直线折叠,使点E的对应点E′落AE在上,如图2,把纸片展平,得到折痕BF,如图3,折痕BF交AE于点G.根据以上操作,请直接写出图3中AE与BF的位置关系:______,BE与CF的数量关系:______.(2)迁移探究小华将正方形透明纸片换成矩形透明纸片,继续探究,过程如下:将矩形透明纸片ABCD按照(1)中的方式操作,得到折痕BF,折痕BF交AE于点G,如图4.若mAB=nAD,改变点E在BC上的位置,那么BFAE 的值是否能用含m,n的代数式表示?如果能,请推理BFAE的值,如果不能,请说明理由;(3)拓展应用如图5,已知正方形纸片ABCD的边长为2,动点E在AD边上由点A向终点D匀速运动,动点F在DC边上由点D 向终点C匀速运动,动点E,F同时开始运动,且速度相同,连接AF,BE,交于点G,连接DG,则线段DG长度的最小值为:______,点G的运动路径长度为:______(直接写出答案即可).参考答案1.【答案】B【解析】解:如图,过顶点P作PE⊥OB于点E,∵四边形ABCD为正方形,∴OC=BC=AB=OA,∠OAB=90°,∴∠AOB=45°,∵PE⊥OB,∴△OPE为等腰直角三角形,∴PE=OP2=22=2,∵BP为∠ABO的平分线,PA⊥AB,PE⊥OB,∴PE=PA=2,∴OA=OP+PA=2+2,∴C(0,2+2),A(2+2,0),P(2,0),B(2+2,2+2),设直线AC的解析式为y=kx+b(k≠0),将C(0,2+2),A(2+2,0)代入得,b=2+2(2+2)k+b=0,解得:k=―1b=2+2,∴直线AC的解析式为y=―x+2+2,设直线BP的解析式为y=mx+n(m≠0),将P(2,0),B(2+2,2+2)代入得,2m+n=0(2+2)m+n=2+2,解得:m=2+1n=―22―2,∴直线BP的解析式为y=(2+1)x―22―2,联立直线AC 与直线BP 的解析式得,y =―x +2+ 2y =( 2+1)x ―2 2―2,解得:x = 2+1y =1,∴Q( 2+1,1).故选:B .过顶点P 作PE ⊥OB 于点E ,根据矩形的性质可得∠AOB =45°,则△OPE 为等腰直角三角形,PE =OP 2= 2,根据角平分线的性质可得PE =PA = 2,进而求出OA =2+ 2,于是C(0,2+ 2),A(2+ 2,0),P(2,0),B(2+ 2,2+ 2)再利用待定系数法分别求出直线AC 与直线BP 的解析式,最后联立求解即可.本题主要考查正方形的性质、坐标与图形性质、等腰直角三角形的判定与性质、角平分线的性质、用待定系数法求一次函数解析式,解题关键是利用待定系数法正确求出一次函数解析式是解题关键.2.【答案】B【解析】解:设AC 交BD 于O ,如图:∵菱形ABCD ,∠ABC =120°,AB =2,∴∠BAD =∠BCD =60°,∠DAC =∠DCA =30°,AD =AB =2,BD ⊥AC ,Rt △AOD 中,OD =12AD =1,OA = AD 2―OA 2= 3,∴AC =2OA =2 3,Rt △APE 中,∠DAC =30°,PE =12AP ,Rt △CPF 中,∠PCF =∠DCA =30°,PF =12CP ,∴PE ―PF =12AP ―12CP =12(AP ―CP)=12AC ,∴PE ―PF = 3,故选:B .设AC 交BD 于O ,根据已知可得AC =2 3,而PE ―PF =12AP ―12CP =12(AP ―CP)=12AC ,即可得到答案.本题考查菱形的性质及应用,解题的关键是求出AC ,把PE ―PF 转化为12AC .3.【答案】C【解析】解:在等边△ABC 中,AB =BC =AC =8,在等腰△ADC 中,AD =DC =5,∴BD 垂直平分AC ,∴AO =4,∠AOD =∠AOB =90°,∴∠ABO =∠CBO =30°,根据勾股定理,得OD = AD 2―AO 2= 52―42=3,BO = AB 2―AO 2= 82―42=4 3,∴BD =3+4 3,∵DF//AB ,∴∠FDB =∠ABD =30°,∴∠FDB =∠FBD =30°,∴DF =BF ,过点F 作FH ⊥BD 于点H ,则H 是BD 的中点,∴DH =12BD =3+432,设DF =x ,则FH =12x ,根据勾股定理,得(12x )2+(3+4 32)2=x 2,解得x =4+ 3或x =―4― 3(舍去),∴DF =4+ 3,故选:C .根据等边三角形和等腰三角形的性质可知BD 垂直平分AC ,再根据勾股定理求出OD 和BO 的长,进一步可得BD 的长,根据平行线的性质进一步可得DF =BF ,过点F 作FH ⊥BD 于点H ,根据等腰三角形的性质可得DH 的长,设DF =x ,则FH =12x ,根据勾股定理列方程,求解即可.本题考查了等边三角形的性质,等腰三角形的性质,平行线的性质,勾股定理等,熟练掌握这些性质是解题的关键.4.【答案】1或78【解析】【分析】分为三种情况:①PQ =BP ,②BQ =QP ,③BQ =BP ,由等腰三角形的性质和勾股定理即可求解.本题考查了勾股定理,等腰三角形的性质,全等三角形的判定和性质的应用,题目综合性比较强,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.【解答】解:∵OA=4,OB=3,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC=5,此时OP=5―4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4―x在Rt△OBP中,PB2=OP2+OB2,∴(4―x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,.此时OP=78∴当△PQB为等腰三角形时,OP的长度是1或7.8故答案为:1或7.85.【答案】1【解析】解:∵四边形BEB′C是菱形,∴BC=BE=B′E=B′C=1,∵∠B=60°,∴△BCE是等边三角形,∴CE=BC=1,故答案为:1.根据菱形的性质证明△BCE是等边三角形,进而可以解决问题.本题考查了翻折变换,平行四边形的性质,菱形的性质,解决本题的关键是掌握翻折的性质.6.【答案】3或63【解析】解:当点P在BC上时,如图:由折叠的性质可知,DE=EQ,PC=PQ,∠EQP=90°,∵∠ABD=30°,四边形ABCD是矩形,∴∠EDQ=∠EQD=30°,∠PBQ=60°,∴∠PQB=60°,∴△PBQ是等边三角形,BC=3,∴PC=PQ=PB=12当点P在AB上时,Q刚好和点D重合,如图:由勾股定理得AB=63,∵E是中点,∴DE=33,由折叠的性质知PE⊥DC,在Rt△PEC中,CE=33,PE=6,∴PC=CE2+PE2=63.故答案为:3或63.分两种情况讨论,当点P在BC上时,可得△PBQ是等边三角形,从而得出PC=PQ=PB,此时PC=3,当点P在AB上时,Q刚好和点D重合,此时PC=63.本题考查矩形的性质和折叠的性质及勾股定理,本题要数形结合即可解答.7.【答案】2【解析】【分析】取AB的中点D,连接DE,过点D作DH⊥AC于点H,可证得△BCF≌△BDE(SAS),得出CF=DE,当且仅当AD=2为DE的最小值,即可得出CF的最小值为2.DE⊥AC,即点E与点H重合时,DE=DH=12本题考查了直角三角形性质,旋转变换的性质,全等三角形的判定和性质,垂线段最短等,添加辅助线构造全等三角形是解题的关键.【解答】解:如图,取AB的中点D,连接DE,过点D作DH⊥AC于点H,则AD =BD =12AB ,∠AHD =∠ACB =90°,∵∠A =30°,BC =4,∴AB =2BC =8,∠ABC =90°―30°=60°,由旋转得:BF =BE ,∠EBF =60°,∴∠EBC +∠CBF =60°,∵∠EBC +∠DBE =60°,∴∠CBF =∠DBE ,∵AD =BD =12AB =4,∴BC =BD ,在△BCF 和△BDE 中BF =BE ∠CBF =∠DBE BC =BD∴△BCF ≌△BDE(SAS),∴CF =DE ,当且仅当DE ⊥AC ,即点E 与点H 重合时,DE =DH =12AD =2为DE 的最小值,∴CF 的最小值为2.故答案为:2.8.【答案】 2或 6+ 22【解析】【分析】由翻折的性质,等腰三角形的性质可得∠PRQ =60°,要使△PQR 为直角三角形,于是有两种情况:即∠RPQ =90°或∠RQP =90°,分别画出相应的图形,根据等腰三角形的性质,直角三角形的边角关系以及勾股定理进行计算即可.本题考查翻折变换的性质,等腰三角形的性质,直角三角形的边角关系,掌握翻折变换的性质,等腰三角形的性质,直角三角形的边角关系以及勾股定理是正确解答的前提.【解答】解:过点A 作AD ⊥BC 于点D ,由翻折可知,∠ARQ =∠C ,∠ARP =∠B ,在△ABC 中,∠BAC =120°,AB =AC = 3+1,∴∠B =∠C =30°,AD =12AB = 3+12,BD =CD = 32AB =3+32,∴∠PRQ =∠B +∠C =60°,①当∠RPQ =90°时,如图1,设AR 与BC 交于点E ,∴RP//AD ,∴∠EAD =∠ERP =∠B =30°,在Rt △ADE 中,AD =3+12,∠EAD =30°,∴DE = 33AD =3+ 36,设BP =a ,则PR =a ,PE =BD ―BP ―DE =3+ 32―a ―3+ 36=3+33―a ,在Rt △PRE 中,∠PRE =30°,∴PR = 3PE ,即a = 3×(3+33―a),解得a =1,∴BP =PR =1,PE =3+ 33―1=33,∴PD =PE +DE = 33+3+ 36=3+12=AD ,∴△PAD 是等腰直角三角形,∴AP = 2AD = 6+22;②当∠RQP =90°时,如图2,由①可得,CQ =QR =1,DQ =AD =3+12,设PD =b ,则BP =PR =BD ―PD =3+32―b ,在Rt △PQR 中,由勾股定理得,PR 2―PQ 2=QR 2,即(3+ 32―b )2―( 3+12+b )2=1,解得b =3―12,即PD =3―12,在Rt △APD 中,由勾股定理得,AP 2=AD 2+PD 2=( 3+12)2+(3―12)2=2,∴AP=2,综上所述,AP=2或AP=6+22,故答案为:2或6+22.9.【答案】73―12或3【解析】【分析】根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.【解答】解:当HN=13GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD//BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴FG EN =GHHN=2,∴FG=2EN=2,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG =GN =x +2,∴CG =x +3,∴PM =3,∵GP 2+PM 2=MG 2,∴42+32=(x +2)2,解得:x =3或―7(舍去),∴MD =3;当GH =13GN 时,HN =2GH ,∵△FGH ∽△ENH ,∴FG EN =GH HN =12,∴FG =12EN =12,∴MG =GN =x +12,∴CG =x +32,∴PM =32,∵GP 2+PM 2=MG 2,∴42+(32)2=(x +12)2,解得:x =73―12或― 73―12(舍去),∴MD = 73―12;故答案为:73―12或3.10.【答案】0.5或1.5【解析】解:①∠BMG 是直角,如图,过O 点作OH ⊥BC 于H ,∵四边形ABCD是矩形,AB=3,BC=4,∴AC=5,∴BH=CH=2,∴CO=2.5,∴OH=1.5,由折叠的性质可得∠OMH=45°,∴MH=OH=1.5,∴BM=BH―MH=4―2―1.5=0.5;②∠BGM是直角,如图,由折叠的性质可得OE=OC=2.5,∠ACB=∠E,∵∠ABC=∠EGO=90°,∴△OEG∽△ACB,∴OG:OE=AB:AC,即OG:2.5=3:5,解得OG=1.5,∴BG=2.5―1.5=1,∵∠ACB=∠MBG,∠ABC=∠MGB=90°,∴△ABC∽△MGB,∴BM:BG=CA:CB,即BM:1=5:4,解得BM=1.25.综上所述,线段BM的长为0.5或1.25.故答案为:0.5或1.25.分两种情况:①∠BMG是直角和②∠BGM是直角,进行讨论即可求解.本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰直角三角形的性质;熟练掌握矩形和翻折变换的性质,勾股定理是解决问题的关键.11.【答案】12或32【解析】【分析】分两种情形:如图1中,当DP ⊥BC ,延长DP 交BC 于点J.如图2中,当PD ⊥BC 于点J 时,分别求出PB ,可得结论.本题考查翻折变换,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【解答】解:如图1中,当DP ⊥BC ,延长DP 交BC 于点J .∵∠C =90°,AC =1,∠A =60°,∴∠B =30°,∴AB =2AC =2,BC = 3AC = 3,由翻折变换的性质可知,∠D =∠B =30°,DM =BM =32,∴JM =12DM =34,∴BJ =BM ―JM =34,∴PB =BJ cos 30∘=12,∴AP =AB ―PB =2―12=32.如图2中,当PD ⊥BC 于点J 时,同法可得MJ =JC =34,∴BJ =334,∴PB =BJ cos 30∘=32,∴AP =AB ―PB =2―32=12.综上所述,AP 的值为12或32.故答案为:12或32.12.【答案】458或457【解析】解:∵∠ACB =90°,AB =15,AC =12,∴BC = 152―122=9.△ADE 为直角三角形时分两种情况:①如图,当∠ADE =90°时,设DE =x =BE ,由∠ADE =∠ACB ,∠A =∠A ,∴△ADE ∽△ACB ,∴DE CB =AE AB,∴x 9=15―x 15,解得x =458;②当∠AED =90°时,设DE =y =BE ,同理可得:△AED ∽△ACB ,∴DE CB =AE AC,∴y 9=15―y 12,解得y =457.故答案为:458或457.先求解BC =9,再分两种情况讨论:如图,当∠ADE =90°时,当∠AED =90°时,再利用相似三角形的判定与性质解答即可.本题考查的是勾股定理的应用,旋转的性质,相似三角形的判定与性质,作出正确的图形是解本题的关键.13.【答案】 7或 3【解析】解:∵∠ACB =90°,BC =2 3,∠B =30°,点P 为AC 的中点,∴∠BAC =60°,AC =BC ⋅tan30°=2,AP =12AC =1,AB AC 2+BC 2= 22+(2 3)2=4.∵AD =2,∴D 是AB 的中点.当∠DAQ =60°时,存在两种情况,当点Q 与点P 重合时,如图1所示,AQ =AP =1,此时DQ 为△ABC 的中位线,∴DQ=1BC=3;2当点Q在AP延长线上时,连接DP、DQ,如图2所示,∵PD为△ABC的中位线,∴PD//BC,∴∠DPQ+∠ACB=180°,∴∠DPQ=90°,∴DQ=PD2+PQ2=(3)2+22=7,综上,DQ的长为7或3,故答案为:7或3.AC=1,AB AC2+BC2=根据直角三角形的性质得到∠BAC=60°,AC=BC⋅tan30°=2,AP=1222+(23)2=4.求得D是AB的中点.当∠DAQ=60°时,存在两种情况,当点Q与点P重合时,如图1所示,AQ=AP=1,当点Q在AP延长线上时,连接DP、DQ,根据三角形的中位线定理即可得到结论.本题考查了旋转的性质,勾股定理,三角形中位线定理,直角三角形的性质,分类讨论是解题的关键.14.【答案】2或6【解析】【分析】分两种情况讨论,由等腰直角三角形的性质可得AD=CD=2,利用勾股定理和平行四边形的性质可求解.本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,平行四边形的判定和性质,利用分类讨论思想解决问题是解题的关键.【解答】解:如图,当点C落在DF上时,∵AC=DF=2,∠CAB=∠EDF=45°,∠ACB=∠DFE=90°,△ACB和△DFE都是等腰直角三角形,∴AB=DE=22,∵点D是AB的中点,∴AD=CD=2,∴AF=AD2+DF2=2+4=6;当点C落在DE上时,连接CF,∵DE=AB=22,CD=2,∴CE=CD=2,∵△EFD是等腰直角三角形,∴CF=CD=2=AD,CF⊥DE,∴CF//AD,∴四边形ADCF是平行四边形,∴AF=CD=2,故答案为:2或6.15.【答案】相等垂直【解析】解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,新结论:3CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵3AD=2DG,3AB=2DE,AD=DE,∴DG AD =32,DECD=DEAB=32,∴DG AD =EDDC=32,∴△GDA ∽△EDC ,∴AG CE =AD DC =32,即3CE =2AG ,∵△GDA ∽△EDC ,∴∠ECD =∠GAD ,∵∠COD =∠AOH ,∴∠AHO =∠CDO =90°,∴AG ⊥CE ;(3)①当点G 在线段BE 上时,如图3―1,连接BD ,过点D 作DT ⊥BE 于点T .∵3AD =2DG =6,3AB =2DE =12,∴AD =2,DG =3,AB =4,DE =6,∵∠A =∠EDG =90°,∴BD = AD 2+AB 2= 22+42=2 5,EG = DG 2+DE 2= 32+62=3 5,∵DT ⊥EG ,∴12⋅DE ⋅DG =12⋅EG ⋅DT ,∴DT =3×63 5=6 55,∴ET =DE 2―DT 2=12 55,BT =BD 2―DT 2=(25)2―(655)2=855,∴BE =ET +BT =4 5.②当点G在EB放延长线上时,如图3―2,同法可得BE=ET―BT=1255―855=455,综上所述,满足条件的BE的值为45或455.(1)证明△GDA≌△EDC(SAS),即可求解;(2)根据两边对应成比例且夹角相等证明△GDA∽△EDC,即可求解;(3)①当点G在线段BE上时,如图3―1,利用勾股定理求出ET,TB即可;②当点G在EB的延长线上时,如图3―2,同法可解.本题是四边形综合题,涉及旋转的性质,矩形的性质,三角形全等和相似的性质和判定,勾股定理等知识,难度适中,其中(3)正确画图和分类讨论是解题的关键.16.【答案】EG=FH【解析】(1)证明:过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,∵四边形ABCD是正方形,∴MG=HN,∵HF⊥EG,∴∠MGE=∠NHF,∴△HFN≌△GEM(ASA),∴HF=EG;故答案为:HF=EG;(2)解:EG=2FH;理由:过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,由(1)可得,∠QHF=∠PGE,∴△QHF∽△PGE,∴HF GE =HQPG,∵AB=a,BC=2a,∴PG=2a,HQ=a,∴HF GE =a2a=12;∴EG=2FH;(3)解:如图3,过点D作DS⊥BC于S,∴∠DSN=∠DSC=∠B=90°,∵∠DCS=60°,CD=4,∴DS=32CD=23,∵点M为AB的三等分点,AB=3,∴BM=2或BM=1,∵BC=4,∴CM=BC2+BM2=25或17,由(1)知△BCM∽△SDN,∴CM DN =BCSD,∴25DN =423或17DN=423,解得DN=15或512.(1)过点H作HN⊥BC交于N,过点G作GM⊥BA交于M,证明△HFN≌△GEM(ASA)即可求解;(2)过点H作HQ⊥BC交于Q,过点G作GP⊥AB交于P,由(1)可得△QHF∽△PGE;(3)如图3,过点D作DS⊥BC于S,根据垂直的定义得到∠DSN=∠DSC=∠B=90°,根据已知条件得到BM=2或BM=1,根据勾股定理得到CM=BC2+BM2=25或17,根据勾股定理即可得到结论.本题考查了四边形的综合题,正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.17.【答案】解:【问题发现】3;【操作探究】对,证明:∵MN⊥AC于点N,PQ⊥AC于点Q,AM=BP,∴∠ANM=∠AQP=∠C=90°,∵∠A=∠A,∴△AMN∽△ABC,△APQ∽△ABC,∴MNBC =AMAB,PQBC=APAB,∵AP=AM+MP=BP+MP=MB,∴PQ BC =MBAB,∴MNBC +PQBC=AMAB+MBAB=ABAB=1,∴MN+PQ=BC,∵BCAB=sinA,∠A=α,AB=m,∴BC=AB⋅sinA=m⋅sinα,∴MN+PQ=m⋅sinα,∴MN+PQ的值为定值,MN+PQ=m⋅sinα.【解决问题】15.【解析】【分析】此题重点考查直角三角形中30°角所对的直角边等于斜边的一半、勾股定理、锐角三角函数、全等三角形的判定与性质、相似三角形的判定与性质、菱形的性质等知识,此题综合性强,难度较大,属于考试压轴题.【问题发现】由∠ANM =∠AQP =∠C =90°,∠A =30°,得MN =12AM ,PQ =12AP =12(AM +PM),而AM =BP ,则MN +PQ =12AM +12BM =12AB =3,于是得到问题的答案.【操作探究】由∠ANM =∠AQP =∠C =90°,∠A =∠A ,可证明△AMN ∽△ABC ,△APQ ∽△ABC ,得MN BC=AM AB ,PQ BC =APBC ,因为AP =AM +MP =BP +MP =MB ,则PQ BC =MB AB ,于是可推导出MN BC +PQ BC =AB AB=1,所以MN +PQ =BC =m ⋅sinα;【解决问题】连AC 交BC 于点O ,在BC 上截取BL =DM ,作LI ⊥BO 于点I ,由菱形的性质得BC =AB =AD =8,BO =DO =12BD =7,∠BOC =90°,可求得CO = BC 2―BO 2= 15,再由AD =BC ,AM =BN ,证明DM =CN ,再证明△BLI ≌△DME ,得LI =ME ,则BL =CN ,由∠BOC =90°,LI ⊥BO ,NF ⊥BO ,得LI +NF =CO = 15,则ME +NF = 15.【解答】解:【问题发现】∵MN ⊥AC 于点N ,PQ ⊥AC 于点Q ,∴∠ANM =∠AQP =∠C =90°,∵∠A =30°,∴MN =12AM ,PQ =12AP =12(AM +PM),∵AM =BP ,∴PQ =12(BP +PM)=12BM ,∴MN +PQ =12AM +12BM =12AB ,∵AB =6,∴MN +PQ =12×6=3,故答案为:3.【操作探究】见答案;【解决问题】如图3,连AC 交BC 于点O ,在BC 上截取BL =DM ,作LI ⊥BO 于点I ,∵四边形ABCD 是菱形,AB =8,BD =14,∴BC =AB =AD =8,BO =DO =12BD =12×14=7,AC ⊥BD ,∴∠BOC =90°,∴CO = BC 2―BO 2= 82―72= 15,∵AD =BC ,AM =BN ,∴AD ―AM =BC ―BN ,∴DM =CN ,∵BC//AD ,∴∠LBI =∠MDE ,∵ME ⊥BD ,LI ⊥BO ,∴∠BIL =∠DEM =90°,在△BLI 和△DME 中,∠LBI =∠MDE∠BIL =∠DEM =90°BL =DM ,∴△BLI ≌△DME(AAS),∴LI =ME ,∵AM =BN ,AD =BC ,∴DM =CN ,∴BL =CN ,∵∠BOC =90°,LI ⊥BO ,NF ⊥BO ,∴△BIL ∽△BFN ∽△BOC ,∴LI CO =BL BC ,NF CO =BN BC ,∴LI CO +NF CO =BL BC +BNBC ,即LI +NF CO =BL +BNBC=1,∴LI +NF =CO = 15,∴ME +NF = 15,故答案为: 15.18.【答案】(1)证明:如图①,BE 与MN 的交点记作点O ,由折叠知,∠BON =90°,∴∠CBE+∠BNM=90°,∵MH⊥BC,∴∠MHN=90°,∴∠HMN+∠BNM=90°,∴∠CBE=∠HMN,∵四边形ABCD为矩形,∴∠A=∠ABC=∠C=90°=∠BHM,∴四边形ABHM是矩形,∴AB=MH,∵BC=AB,∴BC=MH,在△EBC和△NMH中,∠C=∠BHMBC=MH∠CBE=∠HMN,∴△EBC≌△NMH(ASA);(2)①证明:同(1)的方法得,∠C=∠BHM,∠CBE=∠HMN,∴△EBC∽△NMH;②解:设DE=x(x>0),∵点E为CD的三等分点,Ⅰ、当CE=2DE时,∴CE=2x,CD=3x,∵BC=2BA,∴BC=6x,同①的方法得,四边形CDMH是矩形,∴MH=CD=3x,由①知,△EBC∽△NMH,∴EC NH =BCMH,∴2xNH =6x 3x,∴NH =x ,设AM =y(y >0),同①的方法得,四边形AMHB 是矩形,∴BH =AM =y ,∴BN =x +y ,∴CN =BC ―BN =5x ―y ,由折叠知,EN =BN =x +y ,在Rt △ECN 中,根据勾股定理得,CN 2+CE 2=EN 2,∴(5x ―y )2+(2x )2=(x +y )2,∴y =73x 或x =0(舍),∴AM =73x ,BN =x +y =103x ,∴AM BN =73x 103x =710,Ⅱ、当DE =2DE 时,同Ⅰ的方法得.AM BN=3137,即AMBN=710或3137. 【解析】(1)根据同角的余角相等得出∠CBE =∠HMN ,再判断出四边形ABHM 是矩形,得出AB =MH ,进而判断出△EBC ≌△NMH ;(2)①同(1)的方法得,∠C =∠BHM ,∠CBE =∠HMN ,即可得出结论;②设DE =x(x >0),Ⅰ、当CE =2DE 时,则CE =2x ,CD =3x ,BC =6x ,进而得出MH =CD =3x ,再根据△EBC ∽△NMH ,得出NH =x ,设AM =y(y >0),表示出BH =AM =y ,BN =x +y ,CN =BC ―BN =5x ―y ,再根据勾股定理得,CN 2+CE 2=EN 2,建立方程得出y =73x 或x =0(舍),Ⅱ、当DE =2CE 时,同Ⅰ的方法,即可求出答案.此题是相似形综合题,主要考查了矩形的性质和判定,折叠的性质,勾股定理,相似三角形的判定和性质,利用勾股定理得出y =73x 是解本题的关键.19.【答案】解:(1)3.(2)由(1)得:AC′=3,∴BC′=AB ―AC′=2,由折叠的性质得:C′E =CE ,设BE =x ,则C′E =CE =4―x ,在Rt △BEC′中,BE 2+BC′2=C′E 2,即x 2+22=(4―x )2,解得x =32,即BE =32,CE =4―32=52,连接EE′,如图所示:由平移的性质得:E′E =BC′=2,EE′//AB//CD ,D′E′//DE ,∴△FEE′∽△FCD′∽△ECD ,∴EF EE′=CE CD =525=12,∴EF =12EE′=1.(3)45或195.【解析】【分析】本题考查四边形综合,矩形的性质、折叠的性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、平移的性质、平行四边形的判定等知识;本题综合性强,熟练掌握矩形的性质、折叠的性质、平移的性质以及勾股定理是解题的关键,属于中考常考题型.(1)由矩形的性质得∠A =90°,AB =CD =5,BC =AD =4,再由折叠的性质得C′D =CD =5,然后由勾股定理求解即可;(2)由折叠的性质得C′E =CE ,设BE =x ,则C′E =CE =4―x ,在Rt △BEC′中,由BE 2+BC′2=C′E 2求出BE =32,CE =52,连接EE′,根据相似三角形的判定可得△FEE′∽△FCD′∽△ECD ,即可求解;(3)分类讨论:当C″在AB 内(B 的左侧)时,连接EE′,根据相似三角形的判定和性质可得E′E E′Q =45,根据平移的性质和等角对等边的性质可得PQ =QE′=1,即可求得;当C″在射线AB 上(B 的右侧)时,连接EE′,根据相似三角形的判定和性质可得CD′=2CP ,CD′=34CQ ,求解可得CP =35,即可求得.【解答】解:(1)∵四边形ABCD 是矩形,∴∠A =∠B =90°,AB =CD =5,BC =AD =4,由折叠的性质得:C′D =CD =5,∴AC′= C′D 2―AD 2= 52―42=3,故答案为:3.(2)见答案.(3)当C″在AB 内(B 的左侧)时,连接EE′,如图所示:由平移的性质得:E′E =C′C″,EE′//AB ,C″E′//C′E ,∴△QEE′∽△QBC″∽△EBC′,∴E′E E ′Q =C′B C ′E =252=45,∵∠CPD′=∠EPE′=∠CED =∠D′E′Q ,∴PQ =QE′=1,∴E′E =45E′Q =45;当C″在射线AB 上(B 的右侧)时,连接EE′,如图,由平移的性质得:E′E =DD′,DE//D′E ,DC′//D′C″,∴△CD′P ∽△CDE ,△CD′Q ∽△AC′D ,。
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
2023年安徽省各地市中考数学三模压轴题精选温馨提示:1.本卷共40题,题目均选自2023年安徽省各地市三模真题。
2.本卷共分为四部分,解答题留有足够答题空间,试题部分可直接打印出来练习。
3.本卷难度较大,适合基础较好的同学。
第一部分 反比例函数1.(2023·安徽省芜湖市·三模)如图直线y =12x +1与x 轴交于点A ,与双曲线y =k x(x >0)交于点P ,过点P 作PC ⊥x 轴于点C ,且PC =2,则k 的值为( )A. −4B. 2C. 4D. 32.(2023·安徽省滁州市·三模)如图,在平面直角坐标系xOy 中,点A(0,4),B(3,4),将△ABO 向右平移到△CDE 位置,A 的对应点是C ,O 的对应点是E ,函数y =kx(k ≠0)的图象经过点C 和DE 的中点F ,则k 的值是 .3.(2023·安徽省合肥市蜀山区·三模)如图,在平面直角坐标系中,反比例函数y =mx (x >0,m 为常数)的图象与一次函数y =kx +b 的图象交于点A(2,a)和点B ,过点A 、B 分别作x 、y 轴的垂线,交x 轴于点C ,交y 轴于点D ,AC 与BD 交于点E ,若点E 恰为AC 中点,三角形ADC 的面积为4,则k 的值为______.4.(2023·安徽省池州市·三模)如图,在平面直角坐标系xOy中,点A是y轴正半轴上一点,过点A作直线AB交(k≠0)的图象于点B,E,过点A作AC//x轴,交反比例函数的图象于点C,连接BC,CE.若反比例函数y=kxAB=BC=5,AC=6,求:(1)反比例函数的解析式;(2)△ACE的面积.第二部分二次函数5.(2023·安徽省合肥市蜀山区·三模)已知,二次函数y=ax2+(2a−1)x+1的对称轴为y轴,将此函数向下平移3个单位,若点M为二次函数图象在(−1≤x≤1)部分上任意一点,O为坐标原点,连接OM,则OM长度的最小值是( )A. 3B. 2C. 132D. 1726.(2023·安徽省合肥市包河区·三模)已知二次函数y=ax2+bx+c(a≠0)的最大值为a+b+c,若a−b+c=1,则下列结论错误的是( )A. a<0,b>0B. b2−4ac>0C. b2−4ac>−4aD. b2−4aca2<167.(2023·安徽省亳州市·三模)如图,已知抛物线y=x2−2x与直线y=−x+2交于A,B两点.点M是直线AB上的一个动点,将点M向左平移4个单位长度得到点N,若线段MN与抛物线只有一个公共点,则点M的横坐标x M的取值范围是( )A. −2≤x M≤2B. −2≤x M≤2且x M≤−1C. −1≤x M<2D. −1≤x M<2或x M=38.(2023·安徽省合肥市·三模)在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B(2,2),反比例函数y=kx(x>0)的图象经过点B,过点P(n,4)(n>1)作x轴的垂线PQ,与反比例函数的图象交于点Q.若PQ⩾AB,则点P横坐标n的取值范围是______.9.(2023·安徽省宿州市·三模)已知点(0,1)在二次函数y=x2+bx+c的图象上,且该抛物线的对称轴为直线x=1.(1)求b和c的值;(2)当−12≤x≤72时,求函数值y的取值范围,并说明理由;(3)设直线y=m(m>0)与抛物线y=x2+bx+c交于点A,B,与抛物线y=4(x+3)2交于点C,D,求线段AB与线段CD的长度之比.10.(2023·安徽省合肥市·三模)已知抛物线y=x2+bx+c交x轴于C,D两点,其中点C的坐标为(−1,0),对称轴为x=1.点A,B为坐标平面内两点,其坐标为A(12,−5),B(4,−5).(1)求抛物线的解析式及顶点坐标;(2)连接AB,若抛物线y=x2+bx+c向下平移k(k>0)个单位时,与线段AB只有一个公共点,求k的取值范围.11.(2023·安徽省合肥市·三模)直线y1=x+b经过点A(1,0),抛物线y2=x2−2ax+4a−6经过点B(2,m),其中a和b为实数.设抛物线y2=x²−2ax+4a−6的顶点为M,过M作y轴的平行线交直线y1=x+b于点N.(1)求b和m的值;(2)当抛物线顶点M的纵坐标取得最大值时,求线段MN的值;(3)求线段MN的最小值.12.(2023·安徽省亳州市·三模)在平面直角坐标系xOy中,抛物线y=x2−(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,−1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.13.(2023·安徽省合肥市三十八中·三模)如图是某家具厂的抛物线型木板余料,其最大高度为9dm,最大宽度为12dm,现计划将此余料进行切割.(1)如图1,根据已经建立的平面直角坐标系,求木板边缘所对应的抛物线的函数表达式;(2)如图2,若切割成矩形HGNM,求此矩形的最大周长;(3)若切割成宽为2dm的矩形木板若干块,然后拼接成一个宽为2dm的矩形,如何切割才能使拼接后的矩形的长边最长?请在备用图上画出切割方案,并求出拼接后的矩形的长边长.(结果保留根号)14.(2023·安徽省合肥市·三模)为响应政府巩固脱贫成果的号召,某商场与生产水果的脱贫乡镇签订支助协议,每月向该乡镇购进甲、乙两种水果进行销售.根据经验可知:销售甲种水果每吨可获利0.4万元,销售乙种水果获利如下表所示:销售x(吨)34567获利y(万元)0.9 1.1 1.3 1.5 1.7(1)分别求销售甲、乙两种水果获利y1(万元)、y2(万元)与购进水果数量x(吨)的函数关系式;(2)若只允许商场购进并销售一种水果,选择哪种水果获利更高?(3)支助协议中约定,商场每个月向乡镇购进甲、乙两种水果的数量分别为m、n吨,且m,n满足n=20−12 m2,请帮忙商场设计可获得的最大利润的进货方案.15.(2023·安徽省合肥市庐阳中学·三模)纸飞机是同学们很喜欢的娱乐项目.纸飞机的飞行一般会经历上抛、下降、滑行三个阶段,其中纸飞机上抛和下降的飞行路径可看作是一段抛物线,滑行的飞行路径是一条线段,滑行距离受纸飞机滑行比的影响(若纸飞机在1米的高度开始滑行,滑行的水平距离为n米,则滑行比为1:n).如图所示,若小明玩纸飞机,其起抛点的高度为1.9m,当纸飞机的最大高度达到2.8m时,它的水平飞行距离为3m.(1)求这条抛物线的解析式;(2)小明的前方有一堵2.5m高的墙壁,小明至少距离墙壁多远,纸飞机才会顺利飞过墙壁?(不考虑墙壁的厚度)(3)小明根据多次实验得到其折叠的纸飞机的滑行比为1:2.5(受空气阻力的影响,纸飞机开始滑行的高度不超过1.4m),纸飞机开始滑行时的高度为多少米时,才能使水平飞行距离至少为10米?第三部分圆16.(2023·安徽省滁州市·三模)如图是以O为圆心,AB为直径的圆形纸片,点C在⊙O上.将该纸片沿直线CO 对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E,若AD=ED,则∠B的度数为( )A. 24°B. 30°C. 36°D. 44°17.(2023·安徽省·三模)如图,CD是⊙O的一条弦,直径AB⊥CD于点H,若cos∠CDB=4,BD=5,则AB5长为______.18.(2023·安徽省芜湖市·三模)如图,已知AB是⊙O的直径,AC是⊙O的弦.过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)证明:CG是⊙O的切线;(2)连接CD,当∠DCA=2∠F,CE=3时,求CF的长.19.(2023·安徽省合肥市·三模)已知⊙O与矩形ABCD的三边相切,CD边的切点为H,与AD交于E,F两点,EG为⊙O的直径,连接EH.(1)求证:∠DEH=∠HEG;(2)若∠DEG=∠DHE,求AB的值.BC20.(2023·安徽省合肥市三十八中·三模)如图,⊙O是△ABC的外接圆,CD是⊙O的直径,CD⊥AB于点E,过点A的切线交CD的延长线于点F,连接AD.(1)求证:∠EAD=∠ACE;(2)若AC=45,ED=2,求DF的长.21.(2023·安徽省合肥市包河区·三模)已知:如图,四边形ABCD是⊙O的内接四边形,直径DG交边AB于点E,AB、DC的延长线相交于点F.连接AC,若∠ACD=∠BAD.(1)求证:DG⊥AB;(2)若AB=6,tan∠FCB=3,求⊙O半径.第四部分 相似三角形和四边形22.(2023·安徽省合肥市三十八中·三模)如图,在△ABC 中,∠BAC =90°,∠B =60°,AB =4,若D 是BC 边上的动点,则2AD +DC 的最小值是( )A. 6B. 8C. 10D. 1223.(2023·安徽省合肥市包河区·三模)已知:菱形ABCD 中,AB = 3,AC =2,AC 与BD 交于点O ,点E 为OB 上一点,以AE 为对称轴,折叠△ABE ,使点B 的对应点F 恰好落在边CD 上,则BE 的长为( )A. 3 24B. 22C. 32 D.3 3424.(2023·安徽省合肥市庐阳中学·三模)已知正方形EFGH 的边EF 在△ABC 的边BC 上,点G 、H 分别在AB 和AC 上,BC =6,S 正方形EFGH =4,则AB +AC 的最小值为( )A. 6 2B. 37C. 3 5D. 1025.(2023·安徽省宿州市·三模)如图,在矩形ABCD 和矩形CEFG 中,CD BC =CE CG =34,且CD =CG ,连接DE 交BC于点M ,连接BG 交CE 于点N ,交DE 于点O ,则下列结论不正确的是( )A. BG ⊥DEB. 当CN =EN 时,CN 2=ON ⋅NGC. 当∠BDE =∠BCE 时,△BMD ∽△BNCD. 当∠BCE =60°时,S △BCE S △BCG =3 3426.(2023·安徽省池州市·三模)如图,△ABC纸板中,AC=4,BC=2,AB=5,P是边AC上一点,沿过点P的一条直线剪下一个与△ABC相似的小三角形纸板.(1)判断:△ABC为______(填“锐”“直”或“钝”)角三角形;(2)如果有4种不同的剪法,那么AP长的取值范围是______.27.(2023·安徽省合肥市包河区·三模)在Rt△ABC中,∠C=90°,sinB=3,BC=8,D是边BC的中点,点5E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点F处.请完成下列问题:(1)AB=______;(2)当FD⊥AB时,AE的长为______.28.(2023·安徽省合肥市四十二中·三模)如图,△CAB,△CDE均为等腰直角三角形,AC=BC=25,DC=EC,点A,E,D在同一直线,AD与BC相交于点F,G为AB的中点,连接BD,EG.完成以下问题:(1)∠BDA的度数为______;(2)若F为BC的中点,则EG的长为______.29.(2023·安徽省合肥市蜀山区·三模)如图,△ABC中,∠ABC=90°,AB=BC,点D是边AC上一点,CD=2AD,连接BD,过点C作CE⊥BD于点E,连接AE.(1)∠AEC=______°;(2)若BC=35,则AE=______.30.(2023·安徽省宿州市·三模)如图,正方形ABCD的边长为4,点M,N分别在AB,CD上.将该正方形沿MN 折叠,使点D落在BC边上的点E处,折痕MN与DE相交于点Q.(1)若E是BC的中点,则DN的长为______;(2)若G为EF的中点,随着折痕MN位置的变化,GQ+QE的最小值为______.31.(2023·安徽省合肥市三十八中·三模)如图,A,B,C,D四点在同一条直线上,E,F,G三点也同在另一条直线上,△ABE,△BCF,△CDG均为等边三角形.请完成下列问题:(1)在BE上取一点P,使得BP=BF,连接AP并延长交EF于Q,则∠AQE=______°.(2)若AB=11,BC=8,则CD的长为______.AB,点M为BC边上一动点,将线32.(2023·安徽省亳州市·三模)如图,Rt△ABC中,AB=AC=8,BO=14段OM绕点O按逆时针方向旋转90°至ON,连接AN、CN,(1)当N点在AB上时AN=______;(2)△CAN周长的最小值为______.33.(2023·安徽省合肥市包河区·三模)如图,共顶点正方形ABCD和AEFG中,AB=13,AE=52,将正方形AEFG绕顶点A逆时针旋转角度α(0°<α<90°),即∠BAE=α,GF交AD边于H.=______.(1)当α=30°时,HFGH(2)连接BE、CE、CF,当△CEF为直角三角形时,BE的长为______.34.(2023·安徽省合肥市庐阳中学·三模)如图,已知Rt△ABC中,∠BAC=90°,AC=2AB,以BC为直角边作等腰Rt△BCD,且∠BCD=90°.(1)若AB=1,则BD=______;=______.(2)连接AD,交BC于点E,则AEED35.(2023·安徽省·三模)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点.(1)连接BG,则∠AGB=______°;(2)若∠EHF=∠DGE,CF=27,则AB=______.36.(2023·安徽省芜湖市·三模)如图1,正方形ABCD与正方形CEGF有公共顶点C,连接AC、AG、BE,其中0°<∠BCE<45°.(1)试判断线段AG与BE之间的数量关系,并说明理由;(2)若B、E、F三点共线,如图2,连接CG并延长交AD于点H.若AG=6,GH=22,求BC的长.37.(2023·安徽省宿州市·三模)如图,AC,BD是矩形ABCD的对角线,CE平分∠BCD交AD于点E,F为CE上一点,G为AD延长线上一点,连接DF,FG,DF的延长线交AC于点H,FG交CD于点M,且∠ACB=∠CDH=∠AGF.(1)求证:DH⊥AC;(2)若AC=2,求FD+FG的值;(3)若BC=2AB=2,求S△CFM.38.(2023·安徽省合肥市四十二中·三模)已知:菱形ABCD对角线AC,BD相交于点O,AC=6,BD=8,点E 是线段AO上一个动点,连接ED,把线段ED以点E为旋转中心逆时针旋转,点D的对应点F落在BA的延长线上.(1)如图1,当AF=AO时,①求证:△BEF≌△BED;②求tan∠F的值;(2)如图2,当AF=AE时,求AE的长.39.(2023·安徽省合肥市蜀山区·三模)如图,在四边形ABCD中,∠ABC=120°,对角线BD平分∠ABC,BD=BC,E为BD上一点,且BA=BE,连接AC交BD于点F,G为BC上一点,满足BF=BG,连接EG交AC 于点H,连接BH.(1)①求证:∠EHF=60°;②若H为EG中点,求证:AF2=2EF⋅EB;(2)若AC平分∠DAB,请直接写出∠ECA与∠ACB的关系:______.40.(2023·安徽省池州市·三模)如图,在▱ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E,F是AD 边上两点,点F在点E的右侧,AE=DF,连接CE并延长,CE的延长线与BA的延长线交于点G.(1)如图1,M是BC边上一点,连接AM,MF,MF与CE交于点N,AE=3.2①若M为BC中点,求证:EN=NC;②求AG的长;(2)如图2,连接GF,H是GF上一点,连接EH.若∠HED=∠CED,且HF=2GH,求EF的长.参考答案1.【答案】C【解析】解:∵PC =2,∴P 点的纵坐标为2,把y =2代入y =12x +1得x =2,所以P 点坐标为(2,2),把P(2,2)代入y =k x (x >0)得2=k 2,解得k =4.故k 的值为4.故选:C .先把P 点的纵坐标代入一次函数y =12x +1中可确定P 点坐标,然后把P 点坐标代入双曲线y =k x (x >0)中可计算出k 的值.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.2.【答案】6【解析】解:过点F 作FG ⊥x 轴,FH ⊥y 轴;过点D 作DQ ⊥x 轴.根据题意可知,AC =OE =BD ,设AC =OE =BD =a ,∴四边形ACEO 的面积为4a ,∴k =4a ,∵F 为DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 为△EDQ 的中位线,∴FG =12DQ =2,EG =12EQ =32,∴四边形HFGO 的面积为2(a +32),∴k =4a =2(a +32),解得:a =32,∴k =6.故答案为:6.【分析】本题主要考查了反比例函数中k 的几何意义,正确作出辅助线构造出矩形是解决本题的关键.根据反比例函数k 的几何意义构造出矩形,利用方程思想解答即可.3.【答案】8【解析】解:∵点A(2,a),∴OC =2=DE ,AC =a ,∵三角形ADC 的面积为4,即12AC·DE =4,∴a =4,∴点A(2,4),∵点A(2,4)在反比例函数y =k x的图象上,∴k =2×4=8,故答案为:8.根据三角形面积公式可求出a 的值,进而确定点A 的坐标,再由反比例函数图象上点的坐标特征即可求出k 的值.本题考查一次函数、反比例函数的交点,掌握一次函数、反比例函数图象上点的坐标特征是正确解答的前提.4.【答案】解:(1)作BD ⊥AC 于D ,设A(0,n),则C(6,n),∵AB =BC =5,AC =6,∴AD =CD =3,∴BD = BC 2−CD 2=4,∴B(3,n +4),∵反比例函数y =k x (k ≠0)的图象过点B ,C ,∴k =6n =3(n +4),解得n =4,∴k =6×4=24,∴反比例函数的表达式为y =24x ;(2)设直线AB 的解析式为y =ax +b ,代入A(0,4),B(3,8)得{b =43a +b =8,解得{a =43b =4,∴直线AB 为y =43x +4,由{y =43x +4y =24x ,解得{x =3y =8或{x =−6y =−4,∴E(−6,−4),∴S △AEC =12×6×8=24.【解析】(1)设A(0,n),则C(6,n),根据等腰三角形的性质得出AD =CD =3,利用勾股定理求得BD =4,即可得到B(3,n +4),代入y =k x (k ≠0)得到k =6n =3(n +4),解得n =4,即可求得k =24;(2)利用待定系数法求得直线AB 的解析式,然后与反比例函数解析式联立成方程组,解方程组求得E 的坐标,根据面积公式求得即可.本题考查了待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,反比例函数与一次函数的交点,等腰三角形的性质,体现了方程思想,综合性较强.5.【答案】C【解析】解:∵二次函数y =ax 2+(2a−1)x +1的对称轴为y 轴,∴−2a−12a =0,∴a =12,∴二次函数为y =12x 2+1,将此函数向下平移3个单位,得到y =12x 2−2,∴抛物线开口向上,有最小值−2,∴在−1≤x ≤1范围内的最大值为−32,最高点为(−1,−32)或(1,−32),∴OM 的最小值= 12+(−32)2= 132.故选:C .由二次函数y =ax 2+(2a−1)x +1的对称轴为y 轴,利用对称轴公式求得a =12,则二次函数为y =12x 2+1,将此函数向下平移3个单位,得到y =12x 2−2,即可求得在−1≤x ≤1范围内的最高点为(−1,−32)或(1,−32),利用勾股定理即可求得OM 值的最小值.本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,二次函数的最值,求得在−1≤x ≤1范围内的最高点为(−1,−32)或(1,−32)是解题的关键.6.【答案】D【解析】解:A.y =ax 2+bx +c(a ≠0),x =1时,y =a +b +c 为最大值,即x =1为对称轴,且开口向下.∴a <0,b =−2a >0,∴A 正确;B .b 2−4ac ,即判别式Δ,∵a−b +c =1,即x =−1时,y =a−b +c =1.∴最大值a +b +c >1,即开口向下,最大随在轴上则抛物线与抽必有两个交点.Δ=b 2−4ac >0,∴B 正确;C .顶点坐标(b 2a ,4ac−b 24a ),∴4ac−b 24a =a +b +c >1),又∵a <0,∴4ac−b 2<4a ,∴C 正确;D .b 2−4ac a 2=b 2a 2−4⋅c a =(b a )2−4⋅c a =(−b a )2−4c a =(x 1+x 2)2−4x 1x 2=(x 1−x 2)2,∵x =−1时,y =1,对称轴x =1,则x =1×2−(−1)=3时,y =1,此时(−1,1)和(−3,1)距离为4,则抛物线与x 轴两,交点的距离大于4,∴(x 1−x 2)2>42=16,∴D 错.故选:D .根据二次函数图象与系数的关系解答即.本题考查了二次函数图象与系数的关系,掌握二次函数图象与系数的关系是解题的关键.7.【答案】D【解析】【分析】本题考查的是二次函数与一次函数的综合运用、坐标与图形变化−平移,分类求解确定MN 的位置是解题的关键.分类求解确定MN 的位置,进而求解.【解答】解:解{y =x 2−2x y =−x +2得{x =−1y =3或{x =2y =0,∴点A 的坐标为(−1,3),点B 的坐标为(2,0),当点M 在线段AB 上时,线段MN 与抛物线只有一个公共点,∵M ,N 的距离为4,而A 、B 的水平距离是3,故此时只有一个交点,即−1≤x M <2;当点M 在点A 的左侧时,线段MN 与抛物线没有公共点;当点M 在点B 的右侧时,当x M =3时,抛物线和MN 交于抛物线的顶点(1,−1),即x M =3时,线段MN 与抛物线只有一个公共点,综上,−1≤x M <2或x M =3.故选:D .8.【答案】n⩾43【解析】解:∵A(1,2),B(2,2),∴AB =2−1=1,∵反比例函数y =k x (x >0)的图象经过点B ,∴k =2×2=4,∴y =4x ,∵过点P(n,4)(n >1)作x 轴的垂线PQ ,∴Q(n,4n ),∴PQ =|4−4n |,∵PQ⩾AB ,∴|4−4n |⩾1,∴n⩾43或n⩽45,又n >1,∴n⩾43.故答案为:n⩾43.利用待定系数法求得反比例函数的解析式,求得AB 的长度,再表示出点P ,Q 的坐标,进而利用PQ⩾AB ,建立不等式,解不等式,即可得出结论.此题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,解绝对值不等式,掌握解绝对值不等式的方法是解本题的关键.9.【答案】解:(1)将(0,1)代入二次函数y =x 2+bx +c 得:c =1,∵该抛物线的对称轴为直线x =1,∴x =−b 2a =−b 2×1=1,∴b =−2;(2)由(1)得抛物线的解析式为y =x 2−2x +1,∵−12≤x ≤72,对称轴为直线x =1,抛物线开口向上,∴当x =1时,函数有最小值,最小值为y =1−2×1+1=0,∵1−(−12)=32,72−1=52,52>32,且离对称轴越远,y 值越大,∴当x =72时,y 值最大,最大值为y =(72)2−2×72+1=254,∴当−12≤x ≤72时,y 的取值范围为:0≤y ≤254;(3)联立{y =m y =x 2−2x +1得,(x−1)2=m ,解得x 1=1+ m ,x 2=1− m ,∴AB =2 m ,联立{y =m y =4(x +3)2得,4(x +3)2=m ,解得x 1=−3+ m 2,x 2=−3− m 2,∴CD = m ,∴AB :CD =2:1.【解析】(1)将(0,1)代入二次函数y =x 2+bx +c 可求c ,根据对称轴可求b ;(2)由−12≤x ≤72,对称轴为直线x =1,抛物线开口向上,可知当x =1时,函数有最小值,根据离对称轴越远,y 值越大,可得当x =72时,y 值最大,分别代入即可;(3)联立{y =m y =x 2−2x +1可得AB ,联立{y =m y =4(x +3)2可得CD ,求比即可.本题主要考查了二次函数的性质以及二次函数图象上点的特征,熟练掌握二次函数的相关知识是解决本题的关键.10.【答案】解:(1)∵抛物线对称轴为直线x =1=−b 2,∴b =−2,∴y =x 2−2x +c ,将点C 的坐标代入,解得c =−3,∴y =x 2−2x−3=(x−1)2−4,∴抛物线的顶点为(1,−4).(2)抛物线平移后的解析式为y =(x−1)2−4,∴平移后的顶点坐标为(1,−4−k),①当抛物线顶点落在AB 上时,−4−k =−5,解得k =1,②当抛物线经过A 时,−5=(12)2−4−k ,解得k =54,当抛物线经过点B ,−5=32−4−k ,解得k =10,∴54<k ≤10时,满足题意.综上所述,k =1或54<k ≤10.【解析】(1)由抛物线对称轴可得b 的值,代入即可得解析式,再对称轴代入解析式即可得顶点坐标.(2)抛物线向下平移过程中抛物线顶点落在直线AB 上满足题意,分别求出抛物线经过点A 、点B 时k 的值,可得抛物线顶点在直线AB 下方时k 的取值范围.本题考查二次函数的应用,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.11.【答案】解:(1)把点A 代入y 1得1+b =0,解得b =−1.把点B 代入y 2得m =−2.∴b =−1,m =−2.(2)M 是y 2的顶点,利用顶点公式可得M 的坐标为(a,−a 2+4a−6),当a =2时,纵坐标有最大值是−10,此时M 的坐标为(2,−10),N 的坐标为(2,1),∴MN =1−(−10)=11.(3)点M 的坐标为(a,−a 2+4a−6),点N 的坐标为(a,a−1),∴MN =a−1−(−a 2+4a−6)=a 2−3a +5=(a−32)2+114,∴当a =32时,MN 有最小值是114.【解析】(1)直接用待定系数法即可求解.(2)先求出顶点M 的坐标,求出纵坐标最大值时a 的值,然后代入点N 和点M 的坐标即可求出MN .(3)用含a 的式子表示出点N 和点M 的坐标,再求出MN 的表达式,建立二次函数模型,求出最小值即可.本题是二次函数综合应用问题,熟练用待定系数法、顶点坐标公式、建立函数模型是解题的关键.12.【答案】方法一:解:(1)∵y =x 2−(m +n)x +mn =(x−m)(x−n),∴x =m 或x =n 时,y 都为0,∵m >n ,且点A 位于点B 的右侧,∴A(m,0),B(n,0).∵m =2,n =1,∴A(2,0),B(1,0).(2)∵抛物线y =x 2−(m +n)x +mn(m >n)过C(0,−1),∴−1=mn ,∴n =−1m ,∵B(n,0),∴B(−1m ,0).∵AO =m ,BO =1m ,CO =1∴AC = AO 2+OC 2= m 2+1,BC = OB 2+OC 2= m 2+1m, AB =AO +BO =m +1m ,∵(m +1m )2=( m 2+1)2+( m 2+1m)2,∴AB 2=AC 2+BC 2,∴∠ACB =90°.(3)∵A(m,0),B(n,0),C(0,mn),且m =2,∴A(2,0),B(n,0),C(0,2n).∴AO =2,BO =|n|,CO =|2n|,∴AC = AO 2+OC 2=2 1+n 2,BC = OB 2+OC 2= 5|n|,AB =x A −x B =2−n .①当AC =BC 时,2 1+n 2= 5|n|,解得n =2(A 、B 两点重合,舍去)或n =−2;②当AC =AB 时,2 1+n 2=2−n ,解得n =0(B 、C 两点重合,舍去)或n =−43;③当BC =AB 时, 5|n|=2−n ,当n >0时, 5n =2−n ,解得n =5−12,当n <0时,− 5n =2−n ,解得n =−5+12.综上所述,n =−2,−43,− 5+12, 5−12时,△ABC 是等腰三角形.方法二:(1)略(2)∵C 点的坐标是(0,−1),∴mn =−1,设A(m,0),∴B(−1m ,0),∴m 1=11m即OA OC =OC OB ,∵∠AOC =∠CBO =90°,∴△AOC ∽△COB ,∴∠ACO =∠CBO ,∴∠ACB =90°.(3)∵m =2,∴mn =2n ,∴C(0,2n),B(n,0),A(2,0)∵△ABC 是等腰三角形,∴AB =AC ,AB =BC ,AC =BC ,∴(n−2)2+(0−0)2=(2−0)2+(0−2n )2,∴n1=0,n2=−43,(n−2)2+(0−0)2=(n−0)2+(0−2n )2,∴n 1=−1+52,n 2=−1−52,(2−0)2+(0−2n )2=(n−0)2+(0−2n )2,∴n 1=2,n 2=−2,经检验n =0,n =2(舍)∴当n =−2,−43,− 5+12, 5−12时,△ABC 是等腰三角形.(4)过点A 作BC 的平行下交抛物线于点D ,∵m =2,∴n =−12,∴A(2,0),B(−12,0),∵AD//BC ,∴K AD =K BC =−2,又A(2,0),∴{y =−2x +4y =x 2−32x−1,解得x 1=−2(舍),x 2=−52,∴D 1(−52,32),过点B 作AC 的平行线交抛物线于点D ,∵BD//AC ,∴K BD =K AC =12,又B(−12,0),∴{y =12x +14y =x 2−32x−1,解得:x1=−12(舍),x2=52,∴D 252,9),综上所述,满足题意的D 点有两个,D 1(−52,32),D 2(52,9). 【解析】(1)已知m ,n 的值,即已知抛物线解析式,求解y =0时的解即可.此时y =x 2−(m +n)x +mn =(x−m)(x−n),所以也可直接求出方程的解,再代入m ,n 的值,推荐此方式,因为后问用到的可能性比较大.(2)求∠ACB ,我们只能考虑讨论三角形ABC 的形状来判断,所以利用条件易得−1=mn ,进而可以用m 来表示A 、B 点的坐标,又C 已知,则易得AB 、BC 、AC 边长.讨论即可.(3)△ABC 是等腰三角形,即有三种情形,AB =AC ,AB =BC ,AC =BC.由(2)我们可以用n 表示出其三边长,则分别考虑列方程求解n 即可.本题考查了因式分解、二次函数性质、利用勾股定理求点与点的距离、等腰三角形等常规知识,总体难度适中,是一道非常值得学生加强练习的题目.13.【答案】解:(1)根据已知可得,抛物线顶点坐标为(0,9),A(−6,0),B(6,0),设抛物线对应的函数表达式为y =ax 2+9,把B(6,0)代入,得0=36a +9,解得a =−14,∴木板边缘所对应的抛物线的函数表达式为y =−14x 2+9.(2)在矩形HGNM 中,设M(m,−14m 2+9)(0<m <6),由抛物线的对称性可知H(−m,−14m 2+9),∴矩形HGNM 的周长为2(2m−14m 2+9)=−12(m−4)2+26.∵−12<0,且0<m <6,∴当m =4时,矩形HGNM 的周长有最大值,最大值为26,即矩形HGNM 的最大周长为26dm .(3)如图是画出的切割方案:在y =−14x 2+9中,令y =2,解得x =±2 7,∴PQ =4 7;在y =−14x 2+9中,令y =4,解得x =±2 5,∴RS =4 5;在y =−14x 2+9中,令y =6,解得x =±2 3,∴TW =4 3;在y =−14x 2+9中,令y =8,解得x =±2,∴KI =4,∴拼接后的矩形的长边长为PQ +RS +TW +KI =(4 7+4 5+4 3+4)dm .【解析】本题考查了二次函数的应用,熟练应用二次函数的图象和性质是解答本题的关键.(1)根据已知可得抛物线顶点坐标为(0,9),A(−6,0),B(6,0),再设抛物线对应的函数表达式为y =ax 2+9,把B(6,0)代入,可求出a ,即可得出抛物线的函数表达式;(2)在矩形HGNM 中,设M(m,−14m 2+9)(0<m <6),由抛物线的对称性可知H(−m,−14m 2+9),所以矩形HGNM 的周长为−12(m−4)2+26,由于−12<0,且0<m <6,当m =4时,矩形HGNM 的周长有最大值,最大值为26;(3)如图是画出的切割方案,分别令y =2,y =4,y =6,y =8,即可求出PQ =4 7,RS =4 5,TW =4 3,KI =4,再加起来即为拼接后的矩形的长边长.14.【答案】解:(1)由题意得y 1=0.4x ,在直角坐标系中描出以(x,y)坐标的对应点,易得y 2的图象成一条直线,设y 2=kx +b ,则{3k +b =0.9 4k +b =1.1 ,解得{k =0.2b =0.3,∴y 2=0.2x +0.3.(2)当y 1=y 2,则0.4x =0.2x +0.3,解得x =1.5;∴当进货数量小于1.5吨时,销售乙种水果获利大;当进货数量等于1.5吨时,销售两种水果获利一样;当进货数量大于1.5吨时,销售甲种水果获利大.(3)当商场向乡镇购进甲、乙两种水果的数量分别为m 、n 吨时,获得利润:w =0.4m +0.2n +0.3=0.4m +0.2(20−12m 2)+0.3,即w =−0.1m 2+0.4m +4.3=−0.1(m−2)2+4.7,当m =2时,n =18,w 有最大值,答:当商场向乡镇购进甲、乙两种水果的数量分别为2和18吨时,获得利润最大为4.7万元.【解析】(1)通过表格信息建立函数关系式即可;(2)通过购买数量来选择哪种水果即可;(3)建立二次函数关系式,转化为求最值问题即可.本题考查了一次函数二次函数的实际应用,解此题的关键是根据题意熟练掌握函数关系的建立,求出解析式.15.【答案】解:(1)由题意得,抛物线和y 轴的交点为:(0,1.9),设抛物线的表达式为:y =a(x−3)2+2.8,将(0,1.9)代入上式得:1.9=a(0−3)2+2.8,解得:a =−0.1,则抛物线的表达式为:y =−0.1(x−3)2+2.8;(2)当y =2.5时,即2.5=−0.1(x−3)2+2.8,解得:x =3− 3(不合题意的值已舍去),即小明至少距离墙壁3− 3m 时纸飞机才会顺利飞过墙壁;(3)设纸飞机开始滑行时的高度为ℎ米,则滑行的距离为2.5ℎ,则ℎ=−0.1(x−3)2+2.8,解得:ℎ=3+28−10ℎ(不合题意的值已舍去),则x+2.5ℎ=10,即3+28−10ℎ+2.5ℎ=10,(舍去)或1.2,解得:ℎ=145即纸飞机开始滑行时的高度为1.2米时,才能使水平飞行距离至少为10米.【解析】(1)由待定系数法即可求解;(2)当y=2.5时,即2.5=−0.1(x−3)2+2.8,即可求解;(3)设纸飞机开始滑行时的高度为ℎ米,则滑行的距离为2.5ℎ,则ℎ=−0.1(x−3)2+2.8,解得:ℎ=3+28−10ℎ(不合题意的值已舍去),则x+2.5ℎ=10,即可求解.本题是二次函数综合题,主要考查了待定系数法求函数表达式、新定义、二次函数的图象和性质等,有一定的综合性,难度适中.16.【答案】C【解析】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;故选:C.先根据等边对等角和圆周角定理证明∠BEC=∠BCE,再由折叠的性质得到∠ECO=∠BCO,进一步由等边对等角得到∠OCB=∠B,设∠ECO=∠OCB=∠B=x,则∠BCE=2x,∠CEB=2x,再根据三角形内角和定理得到x+2x+2x=180°,解方程即可得到答案.本题主要考查了圆周角定理,等边对等角,三角形内角和定理,证明∠BEC=∠BCE是解题的关键.17.【答案】253【解析】解:连接OD,设⊙O的半径为r,∵AB⊥CD,∴∠OHD=∠BHD=90°,,BD=5,在Rt△BHD中,cos∠CDB=45=4,∴DH=BD⋅cos∠CDB=5×45∴BH=BD2−DH2=52−42=3,在Rt△OHD中,OD2=OH2+DH2,∴r2=(r−3)2+16,,解得:r=256∴AB=2r=25,3.故答案为:253连接OD,设⊙O的半径为r,根据垂直定义可得∠OHD=∠BHD=90°,然后在Rt△BHD中,利用锐角三角函数的定义求出DH的长,从而利用勾股定理求出BH的长,再在Rt△OHD中,利用勾股定理列出方程进行计算,即可解答.本题考查了勾股定理,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.18.【答案】(1)证明:连接OC,∵AB是⊙O的直径,AC是⊙O的弦.∴∠ACB=90°,∴∠ECF=180°−90°=90°,在Rt△ECF中,点G是EF的中点,∴CG=DG=FG,∴∠GCE=∠GEC,∵OF⊥AB,∴∠AOE=90°,∴∠AEO+∠A=90°,∵OA=OC,∴∠A=∠OCA,∵∠AEO=∠GEC=∠GCE,∴∠GCE+∠OCA=90°,即OC⊥CG,∵OC是半径,∴CG是⊙O的切线;(2)解:连接CD,过点D作DH⊥FC,垂足为H,∵OF⊥AB,∴∠AOF=90°,∴∠DCA=1∠AOD=45°,2又∵∠DCA=2∠F,∴∠F=22.5°,∴∠FEC =90°−∠F =67.5°,∴∠CDE =180°−45°−67.5°=∠DEC ,∴CD =CE =3,在Rt △CDH 中,CD =3,∠DCH =90°−45°=45°,∴DH =CH = 22CD =3 22,∵∠FHD =∠FCE =90°,∠F =∠F ,∴△FHD ∽△FCE ,∴FH FC =DH CE ,即FC−3 22FC =3 223,解得FC =3 2+3,经检验,FC =3 2+3是方程的解,答:FC =3 2+3.【解析】(1)根据圆周角定理,等腰三角形的性质以及直角三角形斜边中线等于斜边的一半可得OC ⊥CG 即可;(2)根据圆周角定理以及三角形内角和定理可求出∠CDE =67.5°=∠DEC ,进而得出CD =CE =3,再根据等腰直角三角形的性质求出DH =HC =3 22,再根据相似三角形的性质,列方程即可求出FC .本题考查切线的判定和性质,圆周角定理、等腰三角形的性质、直角三角形的边角关系以及相似三角形的判定和性质,掌握切线的判定方法,圆周角定理、等腰三角形的性质以及相似三角形的判定和性质是正确解答的前提.19.【答案】(1)证明:连接OH ,如图:∵H 为CD 边的切点,∴OH ⊥CD ,∴OH//AD ,∴∠DEH =∠OHE ,又∵OE =OH ,∴∠HEG =∠OHE ,∴∠DEH =∠HEG .(2)解:由(1)知,∠1=∠2,∠2=∠3,又∵∠DEG =∠DHE ,即∠1+∠2=∠4,∴∠4=2∠3,∵∠3+∠4=90°,∴∠3=∠2=∠1=30°,∠4=60°,设⊙O 的半径为r ,连接HG ,如图:∴EH ⊥HG∴HG =12EG =r ,由勾股定理可得EH = 3r ,同理,在△EDH 中,DH =12EH =32r ,∴AB =DC =DH +HC =32r +r ,由图可知,BC =2r ,∴AB BC =( 32+1)r2r =2+ 32. 【解析】(1)根据题意,连接半径,由切线和平行线的性质即可证明.(2)由题意先求出角度的大小,再利用勾股定理表示出AB 、BC 的长即可解答.本题考查圆的切线的性质和矩形的性质,勾股定理,熟悉性质是解题关键.20.【答案】(1)证明:∵CD ⊥AB ,CD 是⊙O 的直径,∴AB =BD ,∴∠EAD =∠ACE ;(2)解:连接OA ,∵CD 是⊙O 的直径,∴∠DAC =90°,∵CD ⊥AB ,∴∠CAD =∠CEA =90°,又∵∠ACD =∠ECA ,∴△CAD ∽△CEA ,∴AC EC =CD CA,∴AC 2=CD ⋅CE =CD(CD−ED),设⊙O 的半径为r ,∴2r(2r−2)=(4 5)2,解得r =5或r =−4(负值舍去),∴OE =OD−ED =5−2=3,。
一、解答题1.(1)回归教材:北师大七年级下册P 44,如图1所示,点P 是直线m 外一点,,点O 是垂足,点A 、B 、C 在直线m 上,比较线段PO ,PA ,PB ,PC 的长短,你发现了什么?最短线段是______,于是,小明这样总结:直线外一点与直线上各点连接的所有线段中,______.(2)小试牛刀:如图2所示,Rt ABC △中,AB c =,,.则点P 为AB 边上一动点,则CP 的最小值为______. (3)尝试应用:如图3所示ABC 是边长为4的等边三角形,其中点P 为高AD 上的一个动点,连接BP ,将BP 绕点B 顺时针旋转60°得到BE ,连接PE 、DE 、CE .①请直接写出DE 的最小值.②在①的条件下求的面积.(4)拓展提高:如图4,顶点F 在矩形ABCD 的对角线AC 上运动,连接AE ..3AB =,4BC =,请求出AE 的最小值.2.如图1,在平面直角坐标系中,直线55y x =-+与x 轴,y 轴分别交于A 、C 两点,抛物线2y x bx c =++经过A 、C 两点,与x 轴的另一交点为B .(1)求抛物线解析式;(2)若点M 为x 轴下方抛物线上一动点,MN ⊥x 轴交BC 于点N ,当点M 运动到某一位置时,线段MN 的长度最大,求此时点M 的坐标及线段MN 的长度;(3)如图2,以B 为圆心,2为半径的⊙B 与x 轴交于E 、F 两点(F 在E 右侧),若P 点是⊙B 上一动点,连接PA ,以PA 为腰作等腰Rt PAD △,使90PAD ∠=︒(P 、A 、D 三点为逆时针顺序),连接FD .①将线段AB 绕A 点顺时针旋转90°,请直接写出B 点的对应点的坐标;②求FD 长度的取值范围.3.在ABC 中,AB BC =,45B ∠=︒,AD 为BC 边上的高.(1)如图1,若1AD =,求线段CD 的长度;(2)如图2,点E ,点F 在AB 边上,且满足AE BF =,连接CE ,CF 分别交线段AD 于点M ,点N ,若点M 为线段CE 的中点,求证:2AN CD AB +=;(3)在(2)问条件下,若2AC =,点K 为AC 边上一动点,点Р为ACF 内一点且满足ACP CAD ∠=∠,当PK PA +取最小值时,请直接写出CPK S △的值.4.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.5.如图,抛物线26y ax bx =+-交x 轴于(2,0),(6,0)A B -两点,交y 轴于点C (0,6)-,点Q 为线段BC 上的动点.(1)求抛物线的解析式;(2)求QA QO +的最小值;(3)过点Q 作QP AC 交抛物线的第四象限部分于点P ,连接,PA PB ,记PAQ △与PBQ △的面积分别为12,S S ,设12S S S =+,当S 最大时,求点P 的坐标,并求S 的最大值.6.如图1,在平面直角坐标系中,直线y =2x +8与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线483y x =-+交x 轴正半轴于点C .(1)写出C 点坐标 ;(2)若M 为线段BC 上一点,且满足S △AMB = S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴正半轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求出点G 的坐标.7.已知抛物线y =ax 2+32x +4的对称轴是直线x =3,与x 轴相交于A ,B 两点(点B 在点A 右侧),与y 轴交于点C .(1)求抛物线的解析式和A ,B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.8.如图,已知抛物线2(0)y ax bx c a =++≠与x 轴交于点(1,0)A 和点,与y 轴交于点C ,且OC OB =.(1)求此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值;(3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90︒后,点A 的对应点'A 恰好也落在此抛物线上,求点P 的坐标.9.问题发现如图1,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,45CAB CDE ∠=∠=︒,点D 是线段AB 上一动点,连接BE .(1)填空: ①BE AD的值为______; ②DBE ∠的度数为______.(2)类比探究如图2,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,点D 是线段AB 上一动点,连接BE .请求出BE AD的值及DBE ∠的度数,并说明理由; (3)拓展延伸如图3,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,CAB CDE ∠=∠,点D 是线段AB 上一动点,连接BE ,M 为DE 中点.若4BC =,3AC =,在点D 从A 点运动到B 点的过程中,请直接写出M 点经过的路径长.10.如图,抛物线y =ax 2+bx ﹣3经过A 、B 、C 三点,点A (﹣3,0)、C (1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.11.如图1,直线y12=-x+b与地物线y=ax2交于A.B两点,与y轴于点C,其中点A的坐标为(﹣4,8).(1)求a,b的值;(2)将点A绕点C逆时针旋转90°得到点D.①试说明点D在抛物线上;②如图2,将直线AB向下平移,交抛物线于E,F两点(点E在点F的左侧),点G在线段OC上.若GEF DBA∽(点G,E,F分别与点D,B,A对应),直接写出点G的坐标.12.如图1,在平面直角坐标系中,一次函数y12=x﹣2的图象与x轴交于点B,与y轴交于点C,二次函数y bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的表达式.(2)如图2,连接AC,点M为线段BC上的一点,设点M的横坐标为t,过点M作y轴的平行线,过点C作x轴的平行线,两者交于点N,将△MCN沿MC翻折得到△MCN'.①当点N'落在线段AB上,求此时t的值;②求△MCN′与△ACB重叠的面积S与t的函数关系式.(3)如图3,点D在直线BC下方的二次函数图象上,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.13.如图,直线y=﹣2x+10分别与x轴,y轴交于点A,B两点,点C为OB的中点,抛物线y=x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且ABD的面积为,求点D的坐标;(3)点P为抛物线上一点,若APB是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.14.等腰△ABC中,BA=BC,过点A作AD⊥BC于点D,平面上有一点E,连接ED,EB,ED=2EB,作∠BED的角平分线交BC于点F.(1)如图1,当∠EBC =90°时,若∠BAD =45°,BE =23,求线段DC 的长;(2)如图2,当∠EBC >90°时,过点F 作FG ⊥AC ,分别交AC ,AD 于点G ,H ,若AD =2BF ,P 为EF 中点,连接BP ,求证:AB ﹣3BP =DH ;(3)如图3,在(1)问的条件下,BE 上取点O ,BO ,点M ,N 为线段BD 上的两个动点(点M 在点N 的左侧),连接AN ,将△AND 绕点D 逆时针旋转得到△A ′N ′D ,若满足A ′D ⊥AN 于点P ,连接OM ,MP ,当OM +MP 的值最小时,直接写出△OMP 的面积.15.已知抛物线24y ax bx =++(a ≠0)与x 轴交于点A (3-,0)、B (2,0),与y 轴交于点C ,直线y mx n =+经过两点A 、C .(1)求a ,b 的值;(2)如图1,点Р在已知抛物线上,且位于第二象限,当四边形PABC 的面积最大时,求点P的坐标.(3)如图2,将已知抛物线向左平移1个单位,再向下平移2个单位.记平移后的抛物线为2'y,若抛物线'y与原抛物线的对称轴交于点Q.点E是新抛物线'y的对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,请直接写出点E的坐标.16.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.17.抛物线2=-++交x轴于点A,B(A在B的左边),交y轴于点C,顶点为y x2x3M,对称轴MD交x轴于点D,E是线段MD上一动点,以OB,BE为邻边作平行四边形OBEF,EF交抛物线于点P,G(P在G的左边),交y轴于点H.(1)求点A,B,C的坐标;(2)如图1,当EG FP=时,求DE的长;(3)如图2,当1DE=时,①求直线FC 的解析式,并判断点M 是否落在该直线上.②连接CG ,MG ,CP ,MP ,记CGM △的面积为1S ,CPM △的面积为2S ,则12S S =__________. 18.在平面直角坐标系中,抛物线y 12=-x 22x +3与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C ,抛物线的顶点为D ,过点B 作BC 的垂线,交对称轴于E .(1)如图1,点P 为第一象限内的抛物线上一动点,当△PAE 面积最大时,在对称轴上找一点M ,在y 轴上找一点N ,使得OM +MN +NP 最小,求此时点M 的坐标及OM +MN +NP 的最小值;(2)如图2,平移抛物线,使抛物线的顶点D 在射线AD 上移动,点D 平移后的对应点为D ',点A 的对应点A ',设原抛物线的对称轴与x 轴交于点F ,将△FBC 沿BC 翻折,使点F 落在点F ′处,在平面上找一点G ,使得以A '、D '、F '、G 为顶点的四边形为菱形.直接写出D ′的坐标.19.如图1,在平面直角坐标系xOy 中,直线:4l y x =+交x 轴于点C ,交y 轴于点D ,AB CD ,()2,3A ,点P 是直线l 上一动点,连接AP ,BP .(1)求直线AB 的表达式;(2)求22AP CP+的最小值;(3)如图2,将三角形ABP沿BP翻折得到A BP',当点A'落在坐标轴上时,请直接写出直线BP的表达式.20.如图,在平面直角坐标系xOy中,抛物线与x轴交于两点与y轴交于点C,点M是抛物线的顶点,抛物线的对称轴l与BC交于点D,与x轴交于点E.(1)求抛物线的对称轴及B点的坐标(2)如果,求抛物线的表达式;(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段BC的下方,,求点F的坐标【参考答案】参考答案**科目模拟测试一、解答题1.(1)PO,垂线段最短;(2);(3)①DE的最小值是1;②△BPE的面积为;(4)AE的最小值为.【解析】【分析】(1)根据垂线段的性质即可解答;(2)由(1)知当PC⊥AB时,PC取得最小值,利用面积法即可求解;(3)①根据旋转的性质,旋转前后的图形对应线段、对应角相等,可证得△ABP≌△CBE,得到∠BCE=30°.得到点E在射线CE上,根据“垂线段最短”这一定理,当∠DEC=90°时,DE最短,据此求解即可;②利用勾股定理求得ECAP AD、PD、BP的长,即可求解;(4)作出如图的辅助线,先判断出点E在直线GH上运动,根据“垂线段最短”这一定理,当当AE⊥GH时,AE最短,利用相似三角形的判定和性质、勾股定理以及三角形面积公式即可求解.【详解】解:(1)∵PO⊥直线m,∴从直线外一点到这条直线所作的垂线段最短.故答案为:PO,垂线段最短;(2)由(1)知当PC⊥AB时,PC取得最小值,S△ABC=12AC BC=12AB PC,∴PC=,即CP的最小值为,故答案为:;(3)①由旋转知∠PBE=60°,BP=BE,∴△PBE是等边三角形,∵△ABC是等边三角形,AD⊥BC,边长为4,∴AB=BC,∠ABC=60°,∠ABD=∠CBD=30°,BD=CD=2,∴∠ABP=∠CBE,∴△ABP≌△CBE(SAS),∴∠BCE=∠BAD=30°;∵点P为高AD上的一个动点,∴点E在射线CE上,根据“垂线段最短”可知,当DE⊥CE时,DE最短.∵∠BCE=30°,CD=2,∴DE=12CD=1,即DE的最小值是1;②由①得CD=2,DE=1,∴CE=,∵△ABP≌△CBE,∴AP=CE3,在Rt△BDA中,AB=4,BD=2,∴AD=,∴PD=AD-AP=3,∴PB=,∴等边三角形△PBE的高为,∴△BPE的面积为=;(4)过点B作BH⊥AC于点H,则∠BHC=90°,∴∠HBC+∠HCB=90°,∠ACD+∠HCB=90°,∴∠HBC=∠ACD,∵∠EBF=∠ACD,∴∠HBC=∠EBF,此时点F与点C重合,点E与点H重合,∵AB=3,BC=4,∴AC=,∵S△ABC=12AB BC=12AC BH,∴BH=125,∴AH=,取AB中点G,过点G作GI⊥AB交AC于点I,则∠BGI=90°,∴∠GBI=∠BAC,∵∠EBF=∠ACD=∠BAC,∴∠GBI=∠EBF,此时点F与点I重合,点E与点G重合,顶点F在矩形ABCD的对角线AC上运动,且,四点共圆,∴点E在直线GH上运动,根据“垂线段最短”这一定理,当AE⊥GH时,AE最短,过点H作HP⊥AB于点P,∴△APH~△ABC,∴,即,∴PH=,AP=,∴PG=AG-AP=,∴GH=,∵S△AGH=12AG PH=12GH AE,∴AE =,∴AE 的最小值为. 【点睛】本题考查了相似三角形的判定和性质,全等三角形的性质与判定,垂线段最短,勾股定理,等边三角形的判定和性质,四点共圆的判定等知识,解决本题的关键是正确寻找相似三角形解决问题.2.(1)265y x x =-+;(2)当M 运动到515(,)24- 时,线段MN 的长度最大为254;(3)①(1,4)-;②22FD ≤≤.【解析】【分析】(1)先求得直线与坐标轴的交点坐标,然后代入到抛物线解析式即可求解;(2)设设2(,65)M m m m -+,则(,5)N m m -+,则2(5)(65)MN m m m =-+--+,整理可得225255()24MN m m m =-+=--+,可求得当52m =时,MN 的最大值为254,进而求得M 坐标;(3)①由(1),(2)可求得514AB AB OB OA '==-=-=,从而求得点B '坐标;②根据点P 的运动情况,来确定点D 的运动轨迹,是与点P 半径相等的圆,圆心为B ',作射线FB ',与⊙B '交于1D ,2D ,从而确定FD 的范围.【详解】解:(1)∵直线55y x =-+与x 轴、y 轴分别交于A ,C 两点,∴当0x =时,5y =,所以(0,5)C ,当0y =时,1x =,所以(1,0)A ,∵抛物线2y x bx c =++经过A ,C 两点,∴5c =,150b ++=,解得6b =-,∴抛物线解析式为265y x x =-+.(2)令0y =,∴265=0-+x x ,解得:11x =,25x =,∴(5,0)B ,∴直线BC 的解析式为:5y x =-+,设2(,65)M m m m -+,则(,5)N m m -+,∴2(5)(65)MN m m m =-+--+, ∴225255()24MN m m m =-+=--+,∴当52m =时,MN 的最大值为254, ∴当M 运动到515(,)24- 时,线段MN 的长度最大为254.(3)①将线段AB 绕A 点顺时针旋转90°,∴B A BA '⊥,∵(1,0)A ,(5,0)B ,∴514AB AB OB OA '==-=-=,∴(1,4)B '-;②连接PB ,B D ',由①可得4AB AB '==,又已知PAD △是等腰直角三角形,90BAB PAD '∠=∠=︒,AD AP =,∴(SAS)DAB PAB '≌△△,∴2B D BP '==,∴当P 点在⊙B 上运动时,点D 在以B '为圆心,半径为2的圆上,∴作射线FB ',与⊙B '交于1D ,2D 两点,情况一:当交点为1D 时,1FD 为最小值,即11FD FB B D ''=-,已知(1,0)A ,(5,0)B ,2BF =,∴426AF AB BF =+=+=,4AB AB '==,∴在Rt AFB '△中,222246FB AB AF ''=+=+ ,即213FB '=,∴12132FD =-;情况二:当交点为2D 时,2FD 为最大值,即22FD FB B D ''=+,已知(1,0)A ,(5,0)B ,2BF =,∴426AF AB BF =+=+=,4AB AB '==,∴在Rt AFB '△中,222246FB AB AF ''++即213FB '=∴22132FD =;综上21322132FD ≤≤.【点睛】本题考查二次函数的综合问题,待定系数法确定函数解析式,抛物线与线段最值问题,以及瓜豆原理在二次函数中的应用问题,其中利用点P ,确定点D 的运动轨迹是本题的解题关键.3.(121;(2)证明见解析;(321- 【解析】【分析】(1)证明,AD BD = 再利用勾股定理求解,,AB BC 从而可得答案;(2)如图,过E 作EH AD ⊥于,H 过F 作FQ BC ⊥于,Q 而,AD CD ⊥ 证明,EHM CDM ≌ 可得22,AE EH CD == 同理:22,BF FQ BQ == 而,AE BF = 再证明,FQC DCA ≌ 可得,FCQ CAD ∠=∠ 再证明,AF AN = 从而可得结论;(3)如图,记CP 与AB 的交点为,L 由(2)得:45,ACF BAD ∠=∠=︒ 证明,22.5,CF CA CAD =∠=︒ 可得CP 平分,ACF ∠ 则,A F 关于直线CP 对称,,PF PA = 过F 作FK AC ⊥于,K 则此时,PA PK PF PK FK +=+= 所以PA PK +最短,设,PK n = 则1,21,PF PA n AK ==-= 再利用勾股定理求解,n 即可得到答案.【详解】解:(1)45B ∠=︒,AD 为BC 边上的高,90,45,ADB B BAD ∴∠=︒∠=∠=︒221,112,AD BD AB ∴==+=AB BC =,2,2 1.BC CD BC BD ∴==-=-(2)如图,过E 作EH AD ⊥于,H 过F 作FQ BC ⊥于,Q 而,AD CD ⊥则90,EHM CDM ∠=∠=︒M 为CE 的中点,,HME DMC ∠=∠ ,EM CM ∴=,EHM CDM ∴≌,EH CD ∴=45,90,BAD AHE EHM ∠=︒∠=∠=︒22,AE EH CD ∴==同理:22,BF FQ BQ == 而,AE BF =,FQ BQ CD EH ∴===,BD CQ AD ∴==90,ADC CQF ∠=∠=︒,FQC DCA ∴≌,FCQ CAD ∴∠=∠,AB BC =,BAC BCA ∴∠=∠,BAD ACF ∴∠=∠ 而,B BAD ∠=∠,,B FCQ AFN ANF ACF CAD ∠+∠=∠∠=∠+∠,AFN ANF ∴∠=∠,AF AN ∴=2.AN CD AF AE AF BF AB ∴=+=+=(3)如图,记CP 与AB 的交点为,L 由(2)得:45,ACF BAD ∠=∠=︒,45,BA BC B =∠=︒67.5,BAC BCA ∴∠=∠=︒67.5,CFA BAC ∴∠=︒=∠,22.5,CF CA CAD ∴=∠=︒22.5,ACP CAD ∠=∠=︒CP ∴平分,ACF ∠,,CP AF AL FL ∴⊥=则,A F 关于直线CP 对称,,PF PA =过F 作FK AC ⊥于,K 则此时,PA PK PF PK FK +=+=所以PA PK +最短,2,AC ∴= 则2,CF = 而45,ACF ∠=︒1,CK FK ∴==设,PK n = 则1,21,PF PA n AK ==-=())222121,n n ∴-=+ 解得:21,n = )121121.22CPK S ∴=⨯⨯= 【点睛】本题考查的是全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的判定与性质,勾股定理的应用,本题综合性较强,是压轴题,知识的系统化是解题的关键.4.(1)B 2C 2;(233-3)OA 最小值为1,相应的3BC =OA 最大值为2,相应的6BC =【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C ''在x 轴上方和x 轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得3AD OD == (3)结合题意,得当AC '为⊙O 的直径时,OA 取最小值;当A 、B '、O 三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''== ∴1122B D BC '''==∴2232OD OB B D ''=-= ∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形,∴AC D OC D ''∠=∠,AD B C ''⊥∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒∴223BC B C AC AB ''''==-=当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '== ∴1122OE OC '== ∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '== ∴2214OF OC C F ''=-= ∴34B F OB OF ''=-= ∴26BC B C C F B F ''''==+=∴OA 最小值为1,相应的BC =OA 最大值为2,相应的BC =. 【点睛】 本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.5.(1)y =12x 2−2x −6;(2)QO +QA 有最小值10;(3)P (3,−152)时,S 有最大值152【解析】【分析】(1)运用待定系数法设y =a (x +2)(x −6),将C (0,−6)代入,即可求得答案;(2)如图1,作点O 关于直线BC 的对称点O ′,连接AO ′,QO ′,CO ′,BO ′,由O 、O ′关于直线BC 对称,得出四边形BOCO ′是正方形,根据QA +QO ′≥AO ′,QO ′=QO ,得出答案;(3)运用待定系数法求出直线BC 、AC 、PQ 的解析式,设P (m ,12m 2−2m −6),联立方程组,得:261362y x y x m m ⎪--⎧⎪-⎨⎩==++,求得Q (22128m m +-,22608m m +-),再运用三角形面积公式求得答案.【详解】解:(1)∵抛物线交x 轴于A (−2,0),B (6,0)两点,∴设y =a (x +2)(x −6),将C (0,−6)代入,得:−12a =−6,解得:a =12, ∴y =12(x +2)(x −6)=12x 2−2x −6, ∴抛物线的解析式为y =12x 2−2x −6;(2)如图1,作点O 关于直线BC 的对称点O ′,连接AO ′,QO ′,CO ′,BO ′,∵OB=OC=6,∠BOC=90°,∴∠BCO=45°,∵O、O′关于直线BC对称,∴BC垂直平分OO′,∴OO′垂直平分BC,∴四边形BOCO′是正方形,∴O′(6,−6),在Rt△ABO′中,AO′=2222+=+=,AB O B'8610∵QA+QO′≥AO′,QO′=QO,∴QO+QA=QA+QO′≥AO′=5,即点Q位于直线AO′与直线BC交点时,QO+QA有最小值10;(3)设直线BC的解析式为y=kx+d,∵B(6,0),C(0,−6),∴606k d d ⎨⎩-⎧+==,解得:16k d =⎧⎨=-⎩, ∴直线BC 的解析式为y =x −6,设直线AC 的解析式为y =mx +n ,∵A (−2,0),C (0,−6),∴206m n n ⎧⎨⎩--+==,解得:36m n =-⎧⎨=-⎩, ∴直线AC 的解析式为y =−3x −6,∵PQ ∥AC ,∴直线PQ 的解析式可设为y =−3x +b ,由(1)可设P (m ,12m 2−2m −6),代入直线PQ 的解析式, 得:12m 2−2m −6=−3m +b ,解得:b =12m 2+m −6,∴直线PQ 的解析式为y =−3x +12m 2+m −6, 联立方程组,得:261362y x y x m m ⎪--⎧⎪-⎨⎩==++, 解得:2221282608m m x m m y ⎧+-=⎪⎪⎨+-⎪=⎪⎩, ∴Q (22128m m +-,22608m m +-), 由题意:S =S △PAQ +S △PBQ =S △PAB −S △QAB ,∵P ,Q 都在第四象限,∴P ,Q 的纵坐标均为负数,∴S =12|AB |•(−12m 2+2m +6)−12|AB |•(22608m m +--) =23962m m -+-2315(3)22m =--+, 由题意,得0<m <6,∴m =3时,S 最大,即P (3,−152)时,S 有最大值152. 【点睛】 本题是二次函数综合题,主要考查了二次函数图象和性质,待定系数法求函数解析式,将军饮马的最值问题,利用二次函数求最值等,熟练掌握二次函数图象和性质等相关知识,运用数形结合思想是解题关键.6.(1)点C (6,0);(2)点1224(,)55M ;(3)满足条件的点G 坐标为34(0,)7或(0,-2).【解析】【分析】(1)直接利用直线483y x =-+,令y=0,解方程即可; (2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组2483y x y x =⎧⎪⎨=-+⎪⎩,解方程组求得交点M 的坐标; (3)分两种情形:①当n >4时,如图2-1中,点Q 落在BC 上时,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .求出Q (n-4,n-2).②当n <4时,如图2-2中,同法可得Q (4-n ,n +2),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线483y x =-+交x 轴正半轴于点C . ∴当y =0时,48=03x -+, 解得x =6∴点C (6,0)故答案为(6,0);(2)连接OM 并双向延长,∵S △AMB =S △AOB ,∴点O 到AB 与点M 到AB 的距离相等,∴直线OM 平行于直线AB ,∵AB 解析式为y =2x +8,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组得:2483y x y x =⎧⎪⎨=-+⎪⎩, 解得:125245x y ⎧=⎪⎪⎨⎪=⎪⎩故点1224(,)55M ; (3)∵直线y =2x +8与x 轴交于点A ,与y 轴交于点B ,∴令y=0,2x +8=0,解得x =-4,∴A (-4,0),令x =0,则y =8∴B (0,8),∵点F 为AB 中点,点F 横坐标为()1-4+0=-22,纵坐标为()10+8=42∴F (-2,4),设G (0,n ),①当n >4时,如图2-1中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN =n -4,∴Q (n -4,n -2),∵点Q 在直线483y x =-+上, ∴42(4)43n n -=--+, ∴34=7n , ∴34(0,)7G . ②当n <4时,如图2-2中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN = 4-n ,∴Q (4- n , n +2),∵点Q 在直线483y x =-+上, ∴42(4)83n n +=--+,∴n =-2,∴(0,-2)G .综上所述,满足条件的点G 坐标为34(0,)7或(0,-2). 【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.(1)213442y x x =-++,点A 的坐标为(﹣2,0),点B 的坐标为(8,0);(2)存在,点P (4,6);(3)点M 的坐标为(4﹣771)或(77﹣1).【解析】【分析】(1)由抛物线的对称轴是直线x =3,解出a 的值,即可求得抛物线解析式,在令其y 值为零,解一元二次方程即可求出A 和B 的坐标;(2)易求点C 的坐标为(0,4),设直线BC 的解析式为y =kx +b (k ≠0),将B (8,0),C (0,4)代入y =kx +b ,解出k 和b 的值,即得直线BC 的解析式;设点P 的坐标为(x ,213442x -++),过点P 作PD ∥y 轴,交直线BC 于点D ,则点D 的坐标为(x ,142x -+),利用关系式S 四边形PBOC =S △BOC +S △PBC 得出关于x 的二次函数,从而求得其最值;(3)设点M 的坐标为(m ,213442m m -++)则点N 的坐标为(m ,142m -+),MN =2213114(4)24224m m m m m -++--+=-+,分当0<m <8时,或当m <0或m >8时来化简绝对值,从而求解.【详解】解:(1)∵抛物线的对称轴是直线x =3,3232a∴-= 14a ∴=- ∴抛物线的解析式为:213442y x x =-++. 当y =0时,2130442x x =-++,解得x 1=﹣2,x 2=8, ∴点A 的坐标为(﹣2,0),点B 的坐标为(8,0).答:抛物线的解析式为:213442y x x =-++;点A 的坐标为(﹣2,0),点B 的坐标为(8,0).(2)当x =0时,2134442y x x =-++=, ∴点C 的坐标为(0,4).设直线BC 的解析式为y =kx +b (k ≠0),将B (8,0),C (0,4)代入y =kx +b 得804k b b +=⎧⎨=⎩,解得124k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为142y x =-+. 假设存在点P ,使四边形PBOC 的面积最大,设点P 的坐标为(x ,213442x x -++),如图1所示,过点P 作PD ∥y 轴,交直线BC 于点D ,则点D 的坐标为(x ,142x -+),则PD =2211314222()444-++-++-=-x x x x x , ∴S 四边形PBOC =S △BOC +S △PBC118422PD OB =⨯⨯+⋅ 211168(2)24x x =+⨯-+ 2816x x =-++2(4)32x =--+∴当x =4时,四边形PBOC 的面积最大,最大值是32∵0<x <8,∴存在点P (4,6),使得四边形PBOC 的面积最大.答:存在点P ,使四边形PBOC 的面积最大;点P 的坐标为(4,6),四边形PBOC 面积的最大值为32.(3)设点M 的坐标为(m ,213442m m -++)则点N 的坐标为(m ,142m -+), ∴MN =2213114(4)24224m m m m m -++--+=-+ 又∵MN =3,21234m m ∴-+= 当0<m <8时,212304m m -+-=,解得m 1=2,m 2=6, ∴点M 的坐标为(2,6)或(6,4);当m <0或m >8时,212304m m -+-=,解得m 3=4-m 4=4+,∴点M 的坐标为(4-1)或(4+,1).答:点M 的坐标为(2,6)、(6,4)、(4-1)或(4+,1).【点睛】本题属于二次函数压轴题,综合考查了待定系数法求解析式,解析法求面积及点的坐标的存在性,最大值等问题,难度较大.8.(1)223y x x =--+;(2)278;(3)P (-1,1)或(-1,-2). 【解析】【分析】(1)由题意已知抛物线过A 、B 两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)根据题意连接BC ,过点E 作EF ⊥x 轴于点F ,设E (a ,-a 2-2a +3)(-3<a <0),可得EF =-a 2-2a +3,BF =a +3,OF =-a ,根据S △BEC =S 四边形BOCE -S △BOC ,构建二次函数,利用二次函数的性质求解即可.(3)根据题意由P 在抛物线的对称轴上,设出P 坐标为(-1,m ),如图所示,过A ′作A ′N ⊥对称轴于N ,由旋转的性质得到一对边相等,再由同角的余角相等得到一对角相等,根据一对直角相等,利用AAS 得到△A ′NP ≌△PMA ,由全等三角形的对应边相等得到A ′N =PM =|m |,PN =AM =2,表示出A ′坐标,将A ′坐标代入抛物线解析式中求出相应m 的值,即可确定出P 的坐标.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0)和点B (-3,0), ∴OB =3,∵OC =OB ,∴OC =3,∴c =3,∴, 解得:, ∴所求抛物线解析式为:223y x x =--+;(2)如图2,连接BC ,过点E 作EF ⊥x 轴于点F ,设E (a ,-a 2-2a +3)(-3<a <0),∴EF =-a 2-2a +3,BF =a +3,OF =-a ,∴S △BEC =S 四边形BOCE -S △BOC =12BF •EF +12(OC +EF )•OF -12•OB •OC =12(a +3)•(-a 2-2a +3)+12(-a 2-2a +6)•(-a )-92 =-32a 2-92a=-32(a+32)2+278,∴当a=-32时,S△BEC最大,且最大值为278.(3)∵抛物线y=-x2-2x+3的对称轴为x=-1,点P在抛物线的对称轴上,∴设P(-1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△PMA中,,∴△A′NP≌△PMA(AAS),∴A′N=PM=m,PN=AM=2,∴A′(m-1,m+2),代入y=-x2-2x+3得:m+2=-(m-1)2-2(m-1)+3,解得:m=1,m=-2(舍去),②当m<0时,要使P2A=P2A2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(-1,-2).∴满足条件的点P 的坐标为P (-1,1)或(-1,-2).【点睛】本题考查全等三角形的判定与性质,待定系数法求二次函数,二次函数的性质,四边形的面积.利用数形结合、分类讨论及方程思想是解题的关键.9.(1)①1;②90°;(2)BE AD =90DBE ∠=︒,理由见解析;(3)256 【解析】【分析】(1)①证明ACD △≌BCE 即可求得BE AD的值;②由①的结论,可得DBE ABC CBE ∠=∠+∠,进而可得DBE ∠的度数; (2)由已知条件证明Rt ACB △∽Rt DCE ,可得AC CD BC CE =,又ACD BCE ∠=∠,可得ACD △∽BCE,进而根据AC BC =BE BC AD AC ==1)可得DBE ABC CBE ∠=∠+∠,进而可得DBE ∠的度数;(3)设AB 的中点为P ,BE 的中点为Q ,由题意M 的路径长为PQ 的长,根据(2)的结论可得ACD △∽BCE ,进而求得CE 的长,根据中位线定理即可求得PQ ,即M 点经过的路径长.【详解】(1)∵90ACB DCE ∠=∠=︒,45CAB CDE ∠=∠=︒,∴45ABC CAB CDE CED ∠=∠=︒=∠=∠,∴AC BC =,CD CE =,∵90ACB DCE ∠=∠=︒,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ACD △≌BCE (S A S ),∴BE AD =,45CAB CBE ∠=∠=︒,∴90DBE ABC CBE ∠=∠+∠=︒,1BE AD=. 故答案为:1,90°.(2)BE AD =90DBE ∠=︒. 理由如下:∵90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,∴30CED ABC ∠=∠=︒,ACB DCB DCE DCB ∴∠-∠=∠-∠,即ACD BCE ∠=∠, ∴3tan tan 303AC ABC BC ∠=︒==. ∵90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,∴Rt ACB △∽Rt DCE ,∴AC CD BC CE =, ∴AC BC CD CE=,且ACD BCE ∠=∠, ∴ACD △∽BCE , ∴3BE BC AD AC ==,60CBE CAD ∠=∠=︒, ∴90DBE ABC CBE ∠=∠+∠=︒.(3)如图,设AB 的中点为P ,BE 的中点为Q ,点D 是线段AB 上一动点, M 为DE 中点,在点D 从A 点运动到B 点的过程中,M 点从AB 的中点P 运动到BE 的中点Q ,当D 点与B 点重合时,M 点与Q 点重合,此时如图,则M 点的运动路径长为PQ 的长,由(2)可得ACD △∽BCE ,4BC =,3AC =,90ACB ∠=︒,∴43BE BC EC AD AC CD ===,5AB =, 4CD BC ==,163EC ∴=, 1625333AE AC EC ∴=+=+=, ,P Q 分别为,AD BE 的中点,则256PQ =, ∴M 点的运动路径长为256. 【点睛】本题考查了三角形全等的性质与判定,相似三角形的性质与判定,解直角三角形,综合运用以上知识是解题的关键.10.(1)y =x 2+2x ﹣3;(2)(﹣32,154-) (3)(-1,2)或(-1,﹣4)或(-1,)或(-1,)【解析】【分析】(1)把点A ,B 代入y =ax 2+bx ﹣3即可; (2)设P (x ,x 2+2x ﹣3),求出直线AB 的解析,用含x 的代数式表示出点E 坐标,即可用含x 的代数式表示出PE 的长度,由函数的思想可求出点P 的横坐标,进一步求出其纵坐标;(3)设点Q (-1,a ),然后分类讨论利用勾股定理列出关于a 的方程求解.(1)解:把A (﹣3,0)和C (1,0)代入y =ax 2+bx ﹣3,得,, 解得,,∴抛物线解析式为y =x 2+2x ﹣3;(2)解:设P (x ,x 2+2x ﹣3),直线AB 的解析式为y =kx +b ,由抛物线解析式y =x 2+2x ﹣3,令x =0,则y =﹣3,∴B (0,﹣3),把A(﹣3,0)和B(0,﹣3)代入y=kx+b,得,,解得,,∴直线AB的解析式为y=﹣x﹣3,∵PE⊥x轴,∴E(x,﹣x﹣3),∵P在直线AB下方,∴PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94,当x=﹣32时,y=x2+2x﹣3=154-,∴当PE最大时,P点坐标为(﹣32,154-);(3)存在,理由如下,∵x=﹣=-1,∴抛物线的对称轴为直线x=-1,设Q(-1,a),∵B(0,-3),A(-3,0),①当∠QAB=90°时,AQ2+AB2=BQ2,∴22+a2+32+32=12+(3+a)2,解得:a=2,∴Q1(-1,2),②当∠QBA=90°时,BQ2+AB2=AQ2,∴12+(3+a)2+32+32=22+a2,解得:a=﹣4,∴Q2(-1,﹣4),③当∠AQB=90°时,BQ2+AQ2=AB2,∴12+(3+a)2+22+a2=32+32,解得:a1=或a1=,∴Q3(-1,),Q4(-1,),综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1,)或(-1,).【点睛】本题是二次函数的综合题,主要考查了二次函数图象上点的坐标特征、待定系数法求函数的解析式、二次函数的性质、勾股定理,解题的关键是用含有未知数的代数式表达点的坐标和线段的长度.11.(1)126a b ⎧=⎪⎨⎪=⎩ (2)①见解析;②20(0,)9G 【解析】【分析】(1)利用待定系数法,把问题转化为解方程组即可.(2)①如图1中,分别过点A ,D 作AM ⊥y 轴于点M ,DN ⊥y 轴于点N .利用全等三角形的性质求出点D 的坐标,可得结论. ②设21(,)2E t t ,求出直线EG ,FG 的解析式,构建方程组求出点G 的坐标,再根据点G 的横坐标为0,构建方程组求出t ,即可解决问题.(1) 解:由题意,得21(4)82(4)8b a ⎧-⨯-+=⎪⎨⎪-⨯=⎩, 解得126a b ⎧=⎪⎨⎪=⎩. (2)解:①如图1中,分别过点A ,D 作AM ⊥y 轴于点M ,DN ⊥y 轴于点N .由(1)可知,直线AB 的解析式为162y x =-+, ∴C (0,6),∵A (-4,8),∴AM =4,OM =8,OC =6,∴CM =2,90AMC DNC ACD ∠=∠=∠=︒,∴90ACM DCN ∠+∠=︒,90DCN CDN ∠+∠=︒,∴=ACM CDN ∠∠,∵CA =CD ,∴AMC CND AAS ≌(),。
中考数学综合题压轴题100题精选(附答案解析)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.3.如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称…对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2,P7,P100的坐标.【分析】通过作图可知6个点一个循环,那么P7的坐标和P1的坐标相同,P100的坐标与P4的坐标一样,通过图中的点可很快求出.【解答】解:P2的坐标是(1,﹣1),P7的坐标是(1,1),P100的坐标是(1,﹣3).理由:作P1关于A点的对称点,即可得到P2(1,﹣1),分析题意,知6个点一个循环,故P7的坐标与P1的坐标一样,P100的坐标与P4的坐标一样,所以P7的坐标等同于P1的坐标为(1,1),P100的坐标等同于P4的坐标为(1,﹣3).【点评】解决本题的关键是读懂题意,画出图形,仔细观察,分析,得到相应的规律.4.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.5.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.6.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.7.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.8.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.9.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.10.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.11.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.14.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.15.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.19.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.20.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.23.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.24.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.(2)因为Q=﹣10=30万平方米,。
全国各地中考数学压轴题精选1、(黄石市2011年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
(1)如图(8),若AC 是⊙2O 的直径,求证:AC CD =;(2)如图(9),若C 是⊙1O 外一点,求证:1O CAD ⊥;(3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。
2、(黄石市2011年)(本小题满分10分)已知二次函数2248y x mx m =-+-(1)当2x ≤时,函数值y 随x 的增大而减小,求m 的取值范围。
(2)以抛物线2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线2248y x mx m =-+-与x轴交点的横坐标均为整数,求整数m 的值。
AOCBDxy26题备用图AOCBDxy26题图3、(2011年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0),与x 轴相交于点A (5,0),过点A 的直线AB 与y 轴的正半轴交于点B ,与⊙P 交于点C .(1)已知AC=3,求点B的坐标; (4分)(2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数xky =的图象经过点1O ,求k 的值(用含a 的代数式表示).4、庆市潼南县2011年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D . (1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由.第3题图χyGFE DCBA(第6题)5、苏省宿迁市2011年)(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x 6(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积; (3)Q 是反比例函数y =x6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .6、苏省宿迁市2011年)(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于 点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所 在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由.题7图(1)E题7图(2)题7图(3)题8图(1)BHFA (D )GC EC (E )B FA (D )题8图(2)7、(11年广东省)10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.8、{1年广东省)21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.AEFPQ 图1 图2C'A'B A DCABCDBCD A (A')C'9、11年凉山州)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
一、解答题1.平面直角坐标系中,点在y轴正半轴,点在x轴正半轴,以线段AB为边在第一象限内作等边ABC,点C关于y轴的对称点为点D,连接AD,BD,且BD交y 轴于点E.(1)补全图形,并填空;①若点,则点D的坐标是__________;②若,则________.(2)若,求证:AD垂直平分BC;(3)若时,探究的数量关系,并证明.2.如图,在平面直角坐标系中,已知一次函数y=kx+b(k>0,b>0)的图象与x轴交于A,与y轴交于C.双曲线y=ax(x>0)的图象交一次函数的图像于第一象限内的点B,BD⊥x轴于D.E是AB中点,直线DE交y轴于F,连接AF.(1)若k=1,点B(2,6)时.①求一次函数和反比例函数的解析式;②求AFD的面积.(2)当k=2,a=12时,求AFD的面积.(3)求证:当k,b,a为任意常数时,AFD的面积恒等于1 2 a3.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)如图1,当∠MBN 绕B 点旋转到AE =CF 时,求证:AE +CF =EF .(2)如图2,当∠MBN 绕B 点旋转到AE ≠CF 时,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,并证明. (3)当∠MBN 绕B 点继续旋转到图3位置时,AE =10,CF =2.求EF 的长度.4.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.5.如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么我们称抛物线1C 与2C 关联.(1)已知抛物线①221y x x =+-,判断下列抛物线②221y x x =-++;③221y x x =++与已知抛物线①是否关联,并说明理由.(2)抛物线211:(1)28C y x =+-,动点P 的坐标为(,2)t ,将抛物线绕点(,2)P t 旋转180︒得到抛物线2C ,若抛物线1C 与2C 关联,求抛物线2C 的解析式.(3)点A 为抛物线211:(1)28C y x =+-的顶点,点B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC ,使其直角顶点C 在y 轴上,若存在,求出C 点的坐标;若不存在,请说明理由.6.已知二次函数2y x bx c =+-图象通过两点(1,),(2,10)P a Q a . (1)如果a ,b ,c 是整数,且8c b a <<,求a ,b ,c 值.(2)设二次函数2y x bx c =+-图象和x 轴交点为A 、B ,和y 轴交点为C .如果有关x 方程20x bx c +-=两个根都是整数,求ABC 面积.7.如图1,直线AB 与x 轴,y 轴分别交于A ,B 两点,点C 在x 轴负半轴上,这三个点的坐标分别为A (4,0),B (0,4),C (−1,0) . (1)请求出直线AB 的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是52时,求点E的坐标;(3)如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若∠DCO+∠DPO=∠α,当tan∠α=4时,请直接写出点P的坐标.8.如图①,在平面直角坐标系中,点A、B的坐标分别为A(4,0)、B(0,3),连结AB.抛物线经过点B,且对称轴是直线.(1)求抛物线的函数关系式.(2)将图①中的△ABO沿x轴向左平移得到△DCE(如图②),当四边形ABCD是菱形时,说明点C和点D都在该抛物线上.(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),过点M作MN∥y轴交直线CD于点N.设点M的横坐标为m,线段MN的长为l.求l与m之间的函数关系式.(4)在(3)的条件下,直接写出m为何值时,以M、N、C、E为顶点的四边形是平行四边形.9.如图1,ABC内接于O,弦AE交BC于点D,连接BO,且ABO DAC∠∠.(1)求证:AE BC⊥;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若ACF OBC∠=∠,求证:MD ED=;(3)如图3,在(2)的条件下,3AM=时,求弦CF∠=∠,若10BFC EACBM=,3的长.10.如图,在△ABC中,AB=6,AC=BC=5,CD⊥AB于点D,点P从点A出发,以每秒5个单位长度的速度沿折线AC—CB向终点B运动,当点P不与A,B,C重合时,过点P作PQ⊥AB交AB于点Q,过点P作PM⊥PQ,使得PM=2PQ,点M、点D在PQ的同侧,连结MQ,设点P的运动时间为t(s)(1)线段CD=.(2)当点P在线段BC上时,PC=.(用含t的代数式表示)(3)当点M落在△BCD的内部时,求t的取值范围;(4)连结CM,当△CPM为锐角三角形时,直接写出t的取值范围.11.在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,过点A作AE⊥BC于点E.(1)如图1,求证:AE=CE;(2)如图2,点F是线段CE.上一点,CF=BE,FG⊥BC交BD于点G,连接AG,求证:AG=BE+FG;(3)如图3,在(2)的条件下,若EF=10,FG=7,求AG的长.12.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12△沿着AB翻折得,点H为的BC=,将ABD中点,连接HA、HC,当周长最小时,请直接写出的值.13.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).(1)求抛物线的解析式及tan∠OBC的值;(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.14.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;DB的最小值.(3)以C为圆心,1为半径作⊙C,D为⊙O上一动点,求DA+5515.如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD 交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.16.如图1,点A,点B的坐标分别(a,0),(0,b),且b=+4,将线段BA绕点B逆时针旋转90°得到线段BC.(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求证:2MN +ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值. 17.如图,在长方形ABCD 中,10AB =,9BC =,点E 在AB 上,点G 在AD 上,AEFG 为正方形.点M ,N 分别为BC ,CD 上的动点,MO BC ⊥,NO CD ⊥,且点O 始终在正方形AEFG 的内部,MO 交EF 于点P ,NO 交FG 于点Q .(1)设CM AE a ==,①用含a 的代数式表示四边形EBMP 的周长;②若四边形OPFQ ,GQND 的周长之和恰好为四边形EBMP 周长的两倍,求a 的值. (2)设3CM x =,2CN x =,AE n CN =,是否存在正整数x ,n ,使得EBMP GQND S S =四边形四边形若存在,求出x ,n 的值;若不存在,请说明理由.18.如图,抛物线24y ax bx =++的对称轴是直线x =3,与x 轴交于()2,0A -,B 两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,若3MN =,求点M 的坐标;(3)设点D ,E 是直线3x =上两动点,且1DE =,点D 在点E 上方,求四边形ACDE 周长的最小值.19.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).20.如图1,已知二次函数y =ax 232+x +c 的图象与y 轴交于点C (0,4),与x 轴交于点A 、点B ,点B 坐标为(8,0).(1)请直接写出二次函数的解析式;(2)在直线BC 上方的抛物线上是否存在点P ,使△PBC 的面积为16?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的结论下,过点P作PF⊥x轴于点F,交直线BC于点E,连接AE,点N是抛物线对称轴上的动点,在抛物线上是否存在点M,使得以M、N、A、E为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【参考答案】**科目模拟测试一、解答题1.(1)①D(-2,3) ②∠BEO=60°;(2)答案见解析;(3)DE= AE+2EO,证明见解析.【解析】【分析】(1)①根据关于y轴的对称的性质可得答案,关于y轴的对称的两点,横坐标互为相反数,纵坐标不变;②根据C、D两点关于y轴的对称,可知y轴是线段CD的垂直平分线,得AD=AC、∠CAF=∠DAF,然后由等边△ABC得AC=AB,最后得AD=AB,∠ADB=∠ABD,即可得答案;(2)由|a−3|+b2−6b+9=0,得a=b,得∠BAO=45°,然后根据平角得∠CAF的度数、∠CAG的度数,即可得答案;(3)先证∠EBO=30°,得BE=2EO,然后作HE=AE,证△ADE≌△ABH,得DE=BH,最后证BH= AE+2EO,即可得答案.(1)解:补全图形如下图①∵C、D两点关于y轴的对称的两点,∴横坐标互为相反数,纵坐标不变,∵C(2,3),∴D(-2,3);②∵C、D两点关于y轴的对称,∠CAD=140°,=70°∴∠CAF=∠DAF=140°×12∵△ABC是等边三角形,∴∠CAB=60°,AC=AB,∴∠BAE=180°-70°-60°=50°,∵C、D两点关于y轴的对称,∴AD=AC,∴AD=AB,∴∠ADB=∠ABD=[180°-(360°-140°-60°)] ×1=10°2∴∠BEO=∠BAE+∠ABD=50°+10°=60°;(2)如下图:延长DA交BC于点G,∵|a−3|+b2−6b+9=0,∴|a−3|+(b−3)2=0,∴a=b=3,∴AO=BO,∴∠BAO=45°,∴∠CAF=180°-45°-60°=75°,∴∠CAG=180°-75°-75°=30°,∴∠BAG=60°-30°=30°,∴∠CAG=∠BAG,∴AD垂直平分BC;(3)如下图:作HE=AE,连接AH,∵C、D两点关于y轴的对称,∴∠CAF=∠DAF,∴∠CAE=∠DAE,∵∠CAE=60°+∠BAO,∴∠DAE=60°+∠BAO,∴∠DAB=60°+2∠BAO,=60°-∠BAO,∴∠DBA=[ 180°-(60°+2∠BAO)] ×12∴∠BEO=∠BAO+∠DBA=∠BAO+60°-∠BAO=60°,∴∠EBO=30°,∵∠AOB=90°,∴BE=2EO,∵HE=AE,∠BEA=∠AEH=60°,∴△AEH是等边三角形,∴AH=AE,∠HAE=60°,∴∠DAH=∠BAO,∵∠DAE=∠DAH+60°,∠BAH=∠BAO+60°,∴∠DAE=∠BAH,在△ADE和△ABH中,,∴△ADE≌△ABH,∴DE =BH , ∵HE =AE ,BE =2EO , ∴BH =BE +HE = AE +2EO , ∴DE = AE +2EO . 【点睛】本题考查了关于y 轴的对称的性质、等边三角形的性质、三角形的内角与外角的性质,垂直平分线的判定、在直角三角形中,30°的所对的边是斜边的一半、全等三角形的判定和性质,做题的关键是作辅助线,构造△ADE ≌△ABH .2.(1)①y =x +4,12y x=; ②6;(2)6;(3)见解析 【解析】 【分析】(1)①把点B (2,6)分别代入y =x +b 和y =kx (x >0),根据待定系数法即可求得; ②求出D ,E 的坐标,求出直线DE 的解析式,得到F 点坐标,故可求出△ADF 的面积; (2)联立两函数求出B 点坐标,再得到E 点坐标,求出直线DE 的解析式,从而得到F 点坐标,根据三角形的面积公式即可求出AFD 的面积 (3)与(2)同理即可求解. 【详解】解:(1)①∵一次函数y =x +b 的图象与反比例函数y =ax(x >0)的图象交于B ,B (2,6), ∴6=2+b ,6=2a , ∴b =4,a =12,∴一次函数解析式为y =x +4,反比例函数解析式为12y x=; ②令一次函数y =x +4=0 解得x =-4 ∴A (-4,0)∵E 是AB 中点,B (2,6) ∴E (-1,3) ∵BD ⊥x 轴于D ∴D (2,0)设直线DE 的解析式为y =mx +n ,代入E (-1,3)、D (2,0)得302m nm n =-+⎧⎨=+⎩解得12m n =-⎧⎨=⎩∴直线DE 的解析式为y =-x +2,令x =0,得y =2 ∴F (0,2) ∴OF =2 ∴AFD 的面积为1162622AD OF ⨯=⨯⨯=; (2)∵一次函数y =2x +b ,反比例函数12y x= 联立得2x +b =12x∴2x 2+bx -12=0解得xx舍去)∴B由A (12b -,0)得到E∵D0)设直线DE 的解析式为y =mx +n ,代入ED)得0m n m n ⎧=⎪=+⎪⎩解得2m n =-⎧⎪⎨=⎪⎩∴直线DE 的解析式为y =-2x令x =0,y∴F (0∴OF∵A (12b -,0),D0) ∴AD =12b∴AFD的面积为11622AD OF ⨯==;(3)∵一次函数y =kx +b ,反比例函数ay x= 联立得kx 2+bx -a =0解得xx舍去)∴B由A (bk -,0)得到E∵D0)设直线DE 的解析式为y =mx +n ,代入ED)得0m n m n ⎧=+⎪=+⎪⎩解得m kn =-⎧⎪⎨=⎪⎩∴直线DE 的解析式为y =-kx令x =0,y∴F (0∴OF∵A (bk -,0),D0)∴AD =b k∴AFD的面积为11212282ak AD OF a k ⨯===.【点睛】本题是反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法求函数的解析式,三角形的面积及一元二次方程的解法.3.(1)见解析;(2)成立,理由见解析;(3)EF =8. 【解析】 【分析】(1)根据SAS 证明Rt △ABE ≌Rt △CBF ,求得BF =BE ,易求得△BEF 是等边三角形,可得BF =2CF ,即可解题;(2)将Rt △ABE 顺时针旋转120°,可得FG =CG +CF =AE +CF ,易证∠GBF =∠EBF =60°,即可求证△GBF ≌△EBF ,可得FG =EF ,即可解题;(3)将Rt △ABE 顺时针旋转120°,可得FG =CG -CF =AE -CF ,易证∠GBF =∠EBF =60°,即可求证△GBF ≌△EBF ,可得FG =EF ,即可解题. 【详解】证明:(1)∵Rt △ABE 和Rt △CBF 中,AB =BC ,CF =AE ,∠C =∠A =90°, ∴Rt △ABE ≌Rt △CBF (SAS ), ∴∠CBF =∠ABE ,BF =BE , ∵∠ABC =120°,∠MBN =60°,∴∠CBF =∠ABE =30°,△BEF 是等边三角形, ∴BF =2CF ,BE =2AE ,BF =EF , ∴EF =BF =2CF =AE +CF ; (2)成立,理由如下:如图2,将Rt △ABE 顺时针旋转120°,∵AB =BC ,∠ABC =120°,∴A 点与C 点重合,AE =CG ,BG =BE , ∵∠BCG =∠BCF =90°, ∴点G 、C 、F 共线, ∴FG =CG +CF =AE +CF ,∵∠ABC =120°,∠MBN =60°,∠ABE =∠CBG , ∴∠GBF =60°, 在△GBF 和△EBF 中, 60BG BE GBF EBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GBF ≌△EBF (SAS ), ∴FG =EF , ∴EF =AE +CF ;(3)如图3,将Rt △ABE 顺时针旋转120°,∵AB =BC ,∠ABC =120°,∴A 点与C 点重合,AE =CG ,BG =BE , ∵∠BCG =∠BCD =90°, ∴点G 、C 、D 共线, ∴FG =CG +CF =AE +CF , ∵∠ABC =∠ABE +∠CBE =120°, ∴∠CBG +∠CBE =∠GBE =120°, ∵∠MBN =60°, ∴∠GBF =60°, 在△BFG 和△BFE 中, 60BG BE GBF EBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△BFG ≌△BFE ,(SAS ) ∴GF =EF ,∴EF =AE -CF =10-2=8. 【点睛】本题考查了全等三角形的判定和性质,30°角所对直角边是斜边一半的性质,旋转的性质等知识点,本题中求证△BFG ≌△BFE 是解题的关键.4.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】 【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案; (3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCDCEFBEFCDBF S SSS=++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案. 【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C ,∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++.(2)∵22131325222228y x x x ⎛⎫=-++=--+⎪⎝⎭, ∴抛物线的对称轴是直线32x =. ∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+ ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形, ∴123CP DP DP CD ===. 作CH ⊥对称轴于点H , ∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =,∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭.∵BCDCEFBEFCDBF S SSS=++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.5.(1)①、②关联,理由见解析;(2)21(7)68y x =--+或21(9)68y x =-++;(3)存在,(0,1)或(0,3+420,3-42 【解析】 【分析】(1)首先求得抛物线①的顶点坐标,然后检验是否此点在抛物线②与③上,再求得抛物线②的顶点坐标,检验是否在抛物线①上即可求得答案;(2)首先求得抛物线C 1的顶点坐标,则可得:点P 在直线y =2上,则可作辅助线:作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则可求得:点N 的坐标,利用顶点式即可求得结果;(3)分别从当A ,B ,C 逆时针分布时与当A ,B ,C 顺时针分布时分析,根据全等三角形的知识,即可求得点C 的坐标,注意别漏解. 【详解】解:(1)∵①抛物线y =x 2+2x -1=(x +1)2-2的顶点坐标为M (-1,-2), ∴②当x =-1时,y =-x 2+2x +1=-1-2+1=-2, ∴点M 在抛物线②上;∵③当x =-1时,y =x 2+2x +1=1-2+1=0, ∴点M 不在抛物线③上; ∴抛物线①与抛物线②有关联;∵抛物线②y =-x 2+2x +1=-(x -1)2+2,其顶点坐标为(1,2), 经验算:(1,2)在抛物线①上, ∴抛物线①、②是关联的;(2)抛物线C 1:211:(1)28C y x =+-的顶点M 的坐标为(-1,-2),∵动点P 的坐标为(t ,2), ∴点P 在直线y =2上,作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则ME =NF =4,∴点N 的纵坐标为6,当y =6时,21(1)268x +-=,解得:x 1=7,x 2=-9,①设抛物C 2的解析式为:y =a (x -7)2+6, ∵点M (-1,-2)在抛物线C 2上, ∴-2=a (-1-7)2+6,∴a =18-,∴抛物线C 2的解析式为:21(7)68y x =--+,②设抛物C 2的解析式为:y =a (x +9)2+6, ∵点M (-1,-2)在抛物线C 2上, ∴-2=a (-1+9)2+6,∴a =18-,∴抛物线C 2的解析式为:21(9)68y x =-++;(3)点C 在y 轴上的一动点,以AC 为腰作等腰直角△ABC ,令C 的坐标为(0,c ),则点B 的坐标分两类:①当A ,B ,C 逆时针分布时,如图中B 点,过点A ,B 作y 轴的垂线,垂足分别为H ,F , 在等腰直角△ABC 中,AC =BC ,∠ACB =90°,即∠ACH +∠BCH =90°, ∵∠ACH +∠CAH =90°,∴∠CAH =∠BCH ,又∠AHC =∠BFC =90°, 则△BCF ≌△CAH (AAS ),∴CF =AH =1,BF =CH =c +2,点B 的坐标为(c +2,c -1),当点B 在抛物线C 1:y =221(1)8x +-上时,c -1=18(c +2+1)2-2,解得:c =1.②当A ,B ,C 顺时针分布时,如图中B ′点,过点B ′作y 轴的垂线,垂足为D , 同理可得:点B ′的坐标为(-c -2,c +1),当点B ′在抛物线C 1:y =18(x +1)2-2上时,c +1=18(-c -2+1)2-2,解得:c =3+42c =3-42综上所述,存在三个符合条件的等腰直角三角形,其中C 点的坐标分别为:C 1(0,1),C 2(0,3+42C 3(0,3-42【点睛】此题考查了待定系数法求二次函数的解析式以及二次函数的顶点坐标的求解方法,全等三角形的性质等知识.此题综合性很强,难度较大,注意数形结合思想与分类讨论思想的应用.6.(1)a=2,b=15,c=14;(2)1【解析】【分析】(1)代入两点坐标,求得b、c(用a表示),再由已知c<b<8a,联立不等式组求得a、b、c的值;(2)设出程x2+bx-c=0的两个根,根据根与系数的关系与因式分解求得两根,得出函数解析式,进一步求得图象与x、y轴的交点A、B、C三点解答问题.【详解】解:点P(1,a)、Q(2,10a)在二次函数y=x2+bx-c的图象上,故1+b-c=a,4+2b-c=10a,解得b=9a-3,c=8a-2;(1)由c<b<8a知8293 938a aa a-<-⎧⎨-<⎩,解得1<a<3,又a为整数,所以a=2,b=9a-3=15,c=8a-2=14;(2)设m,n是方程的两个整数根,且m≤n.由根与系数的关系可得m+n=-b=3-9a,mn=-c=2-8a,消去a,得9mn-8(m+n)=-6,两边同时乘以9,得81mn-72(m+n)=-54,分解因式,得(9m-8)(9n-8)=10.∴9819810mn-=⎧⎨-=⎩或9810981mn-=-⎧⎨-=-⎩或985982mn-=-⎧⎨-=-⎩或982985mn-=⎧⎨-=⎩,解得:12mn=⎧⎨=⎩或2979mn⎧=-⎪⎪⎨⎪=⎪⎩或1323mn⎧=⎪⎪⎨⎪=⎪⎩或109139mn⎧=⎪⎪⎨⎪=⎪⎩;又∵m,n是整数,所以后面三组解舍去,故m=1,n=2.因此,b=-(m+n)=-3,c=-mn=-2,二次函数的解析式为y=x2-3x+2.令y=0,则x=1或x=2,令x=0,则y=2,∴点A、B的坐标为(1,0)和(2,0),点C的坐标为(0,2),∴△ABC的面积为12×(2−1)×2=1.【点睛】此题主要考查二次函数图象上点的坐标特点、根与系数的关系、不等式组、以及三角形的面积计算公式.7.(1)4y x =-+;(2)点E 坐标为3,02⎛⎫⎪⎝⎭;(3)点P 的坐标为(19,0)或(-17,0).【解析】 【分析】(1)利用待定系数法即可求解;(2)同理利用待定系数法求得直线BC 的解析式为y =4x +4,再求得直线EF 的解析式,联立求得点F 的坐标,利用BEF OAB OBE AEF S S S S ∆∆∆∆=--列式求解即可; (3)计算得到tan 4DGDOG OG∠==,推出∠α=∠DOG ,∠DPO =∠CDO ,设点P 的坐标为(p ,0),分p <0和p >0两种情况讨论,利用相似三角形的判定和性质求解即可. 【详解】解:(1)∵直线AB 经过点A (4,0),B (0,4), ∴设直线AB 的解析式为y =kx +4, 把A (4,0)代入得:4k +4=0, 解得:k =-1,∴直线AB 的解析式为y =-x +4; (2)设点E (m ,0),同理求得直线BC 的解析式为y =4x +4, ∵EF //BC ,∴设直线EF 的解析式为:4y x n =+,将点E 坐标代入上式并解得:04m n =+, ∴4n m =-,∴直线EF 的解析式为:44y x m =-, ∴444x x m -+=-, 解得:()415x m =+, 把x 的值代入4y x =-+,得1645my -=.∴点F 坐标为4416455m m +-⎛⎫⎪⎝⎭,, ()1111645444422252BEF OAB OBE AEF m S S S S m m -=--=⨯⨯-⨯--⨯=△△△△,解得:32m =, ∴点E 坐标为302⎛⎫⎪⎝⎭,; (3)将点B (0,4)向右平移1个单位长度得到点D ,则D (1,4), 过点D 作DG ⊥x 轴于点G ,则∠OGD =90°,OG =1,GD =4,CG =2, ∴tan 4DGDOG OG∠==,OD =22224117DG OG +=+=, 在Rt △CDG 中,CD =22222425CG DG +=+=, ∵tan ∠α=4, ∴∠α=∠DOG ,∵∠DCO +∠DPO =∠α,∠DCO +∠CDO =∠DOG , ∴∠DPO =∠CDO , ∵点P 在x 轴上∴设点P 的坐标为(p ,0),当p <0时,PO =-p ,∵∠POD =∠DOC ,∠DPO =∠CDO , ∴△POD ~△DOC , ∴PO DODO CO=, ∴PO =2171DO CO ==17,此时,点P 的坐标为(-17,0);当p>0时,PO=p,PC=p+1,∵∠PCD=∠DCO,∠DPC=∠ODC,∴△PCD~△DCO,∴PC DC DC CO=,∴PC=(22201DCCO==,∴p=PC-1=19,此时,点P的坐标为(19,0);综上,点P的坐标为(19,0)或(-17,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的性质,相似三角形的性质和判定,三角形函数等,分类讨论是解第(3)问的关键.8.(1) y=;(2)见解析;(3)l=或l=;(4)m=或或−3时,以点M、N、C、E为顶点的四边形是平行四边形.【解析】【分析】(1)把点B的坐标代入抛物线解析式、联合对称轴x=列出关于系数b、c的方程组,通过解方程组来求它们的值;(2)由平移的性质易求点C、D的坐标,将它们的坐标分别代入抛物线解析式进行验证即可;(3)根据点C、D的坐标易求直线CD的解析式为y=.根据已知条件知点M、N 的横坐标都是m,则l的值就是点M、N的纵坐标之差.(4)由平行四边形的对边相等的性质推知MN=CE=3,利用所求的l与m间的函数式可以求得相应的m的值.【详解】解:(1)由已知,得,解得,∴二次函数的解析式为y=;(2)在Rt△ABO中,∵OA=4,OB=3,∴AB=5.又∵四边形ABCD是菱形,∴BC=AD=AB=5.∵△ABO沿x轴向左平移得到△DCE,∴CE=OB=3.∴C(−5,3)、D(−1,0).当x=−5时,y==3,当x=−1时,y==0,∴C、D在该抛物线上;(3)设直线CD的解析式为y=kx+b,则,解得,∴y=,∵MN//y轴,∴M、N的横坐标均为m,当M在直线CD的上方时,有l=MN=()−()=;当M在直线CD的下方时,有l=MN=()− ()=.∴l与m之间的函数解析式为l=或l=.(4)由于MN//CE,要使以点M、N、C、E为顶点的四边形是平行四边形,只需MN=CE=3,当=3时,解得;当=3时,解得.即当m=或或−3时,以点M、N、C、E为顶点的四边形是平行四边形.【点睛】本题综合考查了待定系数法求一次函数、二次函数解析式,平行四边形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.9.(1)见解析;(2)见解析;(3)53.【解析】【分析】(1)作⊙O的直径AF,连接BF,证明∠ACD+∠CAE=90°即可;(2)连接BE,利用角的转换证明∠BMD=∠BEM,从而可得BM=BE,进而根据等腰三角形三线合一即可得出结论;(3)如图3,证明BEM AEB得2=即可求出DE长,进而由勾股定理求出BE EM AEBD,再由相交线弦定理求出CD,即可得出CE长,EC FC=.=可得EC FC【详解】解:(1)如图1,作⊙O的直径AF,连接BF,∴∠AFB+∠OAB=90°,∵OA=OB,∴∠ABO=∠OAB,又∵∠DAC=∠ABO,∴∠DAC=∠ABO=∠OAB.∵AB AB=∵∠AFB=∠ACD,∵AF是直径∴∠AFB+∠OAB=90°,∴∠ACD+∠CAE=90°,∴∠ADC=90°,即AE⊥BC;(2)连接BE,∵AF AF=∴∠ACF=∠ABF,又∵∠ACF=∠OBC,∴∠ABF=∠OBC,∴∠ABO+∠OBF=∠FBC+∠OBF,∴∠ABO=∠FBC,∵∠DAC=∠ABO,∴∠DAC=∠MBC,∵∠BMD+∠MBC=∠ACD+∠DAC=90°,∴∠BMD=∠ACD,∵AB AB=∴∠BEM=∠ACD,∴∠BMD=∠BEM,∴BM=BE,∵AE⊥BC,∴MD=ED;(3)如图2,连接EC,∵BC BC=∴BFC BAC∠=∠,∵3BFC EAC∠=∠,∴3BAC EAC∠=∠,∴2BAE BAC EAC EAC∠=∠-∠=∠,∵EBC FBC DAC∠=∠=∠,∴=2MBE EBC FBC EAC∠=∠+∠∠,∴MBE BAE∠=∠,又∵E E∠=∠,∴BEM AEB,∴BE AE EM BE=,∵10BM BE=3AM= 1010=1010=∴=2EM,由(2)可知MD =ED ,BM =BE ,∴1DM DE ==,314AD AM DM =+=+=在Rt BDM 中,BD =,在Rt BDA 中,AB =, ∵=BE BE , ∴BAD DCE ∠=∠, 又∵BDA CDE ∠=∠, ∴BDA EDC ,∴=EC DE AB BD,即1=53EC ∴5=3EC ,∵CAE FBC ∠=∠, ∴EC FC =,∴5=3EC FC =【点睛】本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)4;(2);(3)或;(4)或.【解析】 【分析】(1)首先根据等腰三角形三线合一的性质得到,然后根据勾股定理即可求出线段CD 的长度;(2)根据点P 运动的速度求出点P 运动的路程,然后减去AC 的长度即可求出PC 的长度;(3)分两种情况,当点P 在线段AC 上时和点P 在线段BC 上时,分别利用相似三角形的性质计算出点M 在线段CD 上时和点M 在线段BC 上时的时间,即可求出t 的取值范围; (4)分两种情况,当点P 在线段AC 上时和点P 在线段BC 上时,分别得出点M 在线段CD 上时和点M 在线段BC 上时是直角三角形,然后利用相似三角形的性质求出t 的值,即可得出△CPM 为锐角三角形时t 的取值范围. 【详解】解:(1)∵在△ABC 中,AC =BC =5 ∴ABC ∆是等腰三角形 ∵CD ⊥AB 于点D∴(三线合一)∴在中,由勾股定理得,故答案为:4;(2)∵点P从点A出发,以每秒5个单位长度的速度沿折线AC—CB向终点B运动∴点P运动的路程为5t∴当点P在线段BC上时,故答案为:;(3)当点P在线段AC上时,由题意得,,AC=5,如图所示,当点M在线段CD上时,∵PQ⊥AB,CD⊥AB,∴∴∴∴,即,解得:,,∴,∵PM=2PQ,∴,∵CD⊥AB,PQ⊥AB,PM⊥PQ,∴四边形PQDM是矩形,∴,∴,解得:,如图所示,当点M在线段BC上时,同理可得,,,,,,∵PQ⊥AB,PM⊥PQ,∴∴∴∴,即,解得:,∴当时,点M落在△BCD的内部;如图所示,当点P在线段BC上时,当点M在线段CD上时,设,则,同理可得,四边形MDQP是矩形,,∴,,∴,即,解得:,∴,∴,∴,当点P运动到B点时,,∴当时,点M落在△BCD的内部,综上所述,当点M落在△BCD的内部时,t的取值范围是或;(4)当点M在线段CD上时,,即是直角三角形,由(3)可得,此时,当时,如图所示,∵,,,则,,∵,,又∵,∴∴,即,解得:,∴当时,是锐角三角形;当点M在线段BC上时,当时,即是直角三角形,如图所示,设,则,,,,同理可得,,∴,即,解得:,∴,∴,∵当点M在CD上时,此时,即是直角三角形,由(3)可得,此时,∴当时,是锐角三角形,∴综上所述,当△CPM为锐角三角形时,t的取值范围是或.【点睛】此题考查了相似三角形的性质和判定,等腰三角形的性质,勾股定理,三角形动点问题等知识,解题的关键是根据题意画出相应的图形,分情况讨论利用相似三角形的性质求解.11.(1)见详解;(2)见详解;(3)29 2【解析】【分析】(1)过点D作DM⊥AE于点M,证明ABE△≌DAM△,即可得到结论;(2)延长GF到点M,使FM=BE,则BE+FG=MG,先证明ABE△≌BMF,再证明ABG≌MBG△,进而即可得到结论;(3)过点G作GN⊥AE,设BE=x,则AG=BE+FG=x+7,AN= 3+x,结合勾股定理,列出方程,进而即可求解.【详解】解:(1)过点D作DM⊥AE于点M,∵∠DME=∠MEC=∠C=90°,∴四边形CDME是矩形,∴DM=CE,又∵∠BAD=∠AMD=90°,∴∠1+∠EAD=∠2+∠EAD=90°,∴∠1=∠2,在ABE△和DAM△中,∵1290AMD AEB AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴ABE △≌DAM △, ∴AE=DM , ∴AE =CE ;(2)延长GF 到点M ,使FM =BE ,则BE +FG =MG ,∵BE =CF , ∴BF =CE =AE , 在ABE △和BMF 中,∵90AE BF AEB BFM BE MF =⎧⎪∠=∠=︒⎨⎪=⎩, ∴ABE △≌BMF , ∴∠BAE =∠MBF ,AB =BM , ∵∠BAE +∠ABE =90°, ∴∠MBF +∠ABE =90°, ∴∠ABM =90°, ∵∠BAD =90°,AB =AD , ∴∠A BD=45°, ∴∠DBM =45°, ∴∠ABD =∠DBM , ∴ABG ≌MBG △, ∴AG=MG=BE +FG ;(3)过点G 作GN ⊥AE ,设BE =x ,则AG =BE +FG =x +7,∵∠GNE =∠NEF=EFG =90°, ∴四边形EFGN 是矩形, ∴NG =EF =10,EN=FG =7, 又∵AE =BF =10+x , ∴AN =AE -EN =10+x -7=3+x ,在直角ANG 中,()()2223107x x ++=+,解得:x =152, ∴AG =x +7=152+7=292.【点睛】本题主要考查矩形的性质,全等三角形的判定和性质,勾股定理,等腰自交三角形的性质,添加辅助线构造全等三角形,掌握“截长补短法”是解题的关键.12.3(2)证明见解析 (3)【解析】 【分析】(1)如图所示,过点B作BG⊥AE交AE延长线于G,先证明∠ACF=∠GAB,即可证明△ABG≌△CAE得到BG=AE,由勾股定理得,再由,得到,则点B到AE的距离为(2)如图所示,延长AE到H使得,AE=HE,连接DH,CH,先证明△AEB≌△HED得到AB=HD=AC,∠ABE=∠HDE,则∠HCD=∠HDC,AB∥DH,从而推出∠BAC=∠HDC=∠HCD,再证明CE是AH的垂直平分线,得到AC=HC,则∠ACE=∠HCE,即∠HCA=2∠ACE,然后推出∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,即可证明△AFD≌△GFD(AAS),得到AF=GF,则CF=GF+CG=AF+DG;(3)如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,然后证明,得到,则点D在线段BC的垂直平分线上,即AF⊥BC,求出,由H 是的中点,得到直线A关于点H的对称点A'在直线BE上,则要使△AHC的周长最小,则要最小,即最小,即当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,先证明,得到,由平行线之间的间距相等,得到,然后求出,再证明,求出,由此求解即可.(1)解:如图所示,过点B作BG⊥AE交AE延长线于G,∵AE⊥CF,AG⊥BG,∴∠BAC=∠AGB=∠AEF=∠AEC=90°,∠AFC+∠ACF=90°,∴∠FAE+∠AFE=90°,∴∠ACF=∠GAB,又∵AB=CA,∴△ABG≌△CAE(AAS),∴BG=AE,在直角△AFC中,由勾股定理得,∵,∴,∴点B到AE(2)解:如图所示,延长AE到H使得,AE=HE,连接DH,CH,∵FD平分∠AFC,∴∠AFD=∠CFD,∵E是BD的中点,∴BE=DE,又∵AE=HE,∠AEB=∠HED,∴△AEB≌△HED(SAS),∴AB=HD=AC,∠ABE=∠HDE,∴∠HCD=∠HDC,∴∠BAC=∠HDC=∠HCD,∴∠ACE=∠HCE,即∠HCA=2∠ACE,∵∠GDC=∠GCD,∠FGD=∠GDC+∠GCD,∴∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,又∵FD=FD,∠AFD=∠GFD,∴△AFD≌△GFD(AAS),∴AF=GF,∴CF=GF+CG=AF+DG;(3)解:如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,∴,又∵AB=AC,,∴,∴,∴点D在线段BC的垂直平分线上,即AF⊥BC,∴,∵H是的中点,∴直线A关于点H的对称点A'在直线BE上,∴,∴要使△AHC的周长最小,则要最小,即最小,∴当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,∵BE⊥BC,AF⊥BC,∴,∴,,又∵,∴,∴,∵,BC⊥BE,∴,∵平行线之间的间距相等,∴∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴AB=2AF,∴,∴,∴,∵P在线段BC的垂直平分线上,∴PB=PC,∴∠PBC=∠PCB,∵,∴,∴,∴,∴,∴,∴,∴【点睛】本题主要考查了全等三角形的性质与判定,线段垂直平分线的性质,等腰三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,熟练掌握相关知识是解题的关键.13.(1)y=﹣x2+2x+3,1(2)(1,1)或(1,2)或(1,83)(3)【解析】【分析】(1)用待定系数法即可求解;(2)①当为直角时,证明,则,即,即可求解;②当为直角时,同理可解;③当为直角时,同理可解;(3);,即可求解.(1)解:设抛物线的表达式为,则,则,解得1a=-,故抛物线的表达式为2y x2x3=-++,则;(2)解:当1m=时,则直线l为抛物线的对称轴,如图1,连接AC,设点(1,)P m,①当为直角时,则,,,,过点C作于点N,,,,,即,∴,解得1m=或2,故点P的坐标为(1,1)或(1,2);②当为直角时,同理可得:点P'的坐标为8 (1,)3;③当为直角时,。
1.(本题满分12分) 如图,二次函数m x mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点. (1)求点A 、B 的坐标(可用含字母m 的代数式表示);(2)如果这个二次函数的图象与反比例函数xy 9=的图象相交于点C ,且 ∠BAC 的余弦值为4,求这个二次函数的解析式. 1分)04)4(2=+++m x m x ,m x x -=-=21,4.……………………………(2分) ∵4<m ,∴A (–4,0),B (m -,0)………………………………(4分) (2) 过点C 作CD ⊥x 轴,垂足为D ,cos ∠BAC 54==AC AD ,设AD =4k ,AC =5k , 则CD =3k . ……………………(5分) ∵OA =4,∴OD =4k –4, 点C (4k –4,3k ) . …………………………………(6分)∵点C 在反比例函数x y 9=的图象上,∴4493-=k k . ………………(7分) ,03442=--k k 23),(2121=-=k k 舍去. ……………………………(8分)∴C (2,29).……………………(1分) ∵点C 在二次函数的图象上,∴m m+++⨯=)14(2241292,………(1分) ∴,1=m ………………(10分) ∴二次函数的解析式为145412++=x x y . ……………………………(12分)2.(本题满分14分)如图,直角梯形ABCD 中,AD ∥BC ,∠A =90o ,∠C =60°,AD =3cm ,BC =9cm .⊙O 1的圆心O 1从点A 开始沿折线A —D —C 以1cm/s 的速度向点C 运动,⊙O 2的圆心O 2从点B 开始沿BA 边以3cm/s 的速度向点A 运动,⊙O 1半径为2cm ,⊙O 2的半径为4cm ,若O 1、O 2分别从点A 、点B同时出发,运动的时间为t s(1)请求出⊙O 2与腰CD 相切时t 的值;(2)在0s <t ≤3s 范围内,当t 为何值时,⊙O 1与⊙O 2外切?解:(1)如图所示,设点O 2运动到点E 处时,⊙O 2与腰CD 相切.过点E 作EF ⊥DC ,垂足为F ,则EF =4cm .………………1分方法一,作EG ∥BC ,交DC 于G ,作GH ⊥BC ,垂足为H .通过解直角三角形,求得EB =GH =3)3389(⨯-cm .………………4分 所以t =(3389-)秒.………………6分 方法二,延长EA 、FD 交于点P .通过相似三角形,也可求出EB 长. 方法三,连结ED 、EC ,根据面积关系,列出含有t 的方程,直接求t . (2)由于0s<t ≤3s ,所以,点O 1在边AD 上.………………7分 如图所示,连结O 1O 2,则O 1O 2=6cm .………………8分 由勾股定理得,2226)336(=-+t t,即01892=+-t t .………………10分解得t 1=3,t 2=6(不合题意,舍去).………………12分 所以,经过3秒,⊙O 1与⊙O 2外切.………………14分正方形ABCD 的边长为4,P 是BC 上一动点,QP ⊥AP 交DC 于Q ,设PB =x ,△ADQ 的面积为y .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积,若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标.(第26题)B B26题)(3)画出这个函数的图象.(4)点P 是否存在这样的位置,使△APB 的面积是△ADQ 的面积的32,若存在,求出BP 的长,若不存在,说明理由.解:(1)画出图形,设QC =z ,由Rt △ABP ~Rt △PCQ ,x -44=z x , z =4)4(x x -,①y =21×4×(4-z ),② 第25题图(1)把①代入② y=21x 2-2x +8(0<x <4).(2)y=21x 2-2x +8=21(x -2)2+6.∴对称轴为x =2,顶点坐标为(2,6).(3)如图所示 第25题图(2) (4)存在,由S △APB =32S △ADQ ,可得y =3x , ∴21x 2—2x +8=3x , ∴x =2,x =8(舍去),∴当P 为BC 的中点时,△PAB 的面积等于△ADQ 的面积的32.4.(14分)函数y =-43x -12的图象分别交x 轴,y 轴于A ,C 两点, (1)求出A 、C 两点的坐标.(2)在x 轴上找出点B ,使△ACB~△AOC ,若抛物线经过A 、B 、C 三点,求出抛物线的解析式.(3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同的速度沿AC 、BA 向C 、A 运动,连结PQ ,设AP=m ,是否存在m 值,使以A 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出所有的m 值;若不存在,请说明理由.解.(1)A (-16,0) C (0,-12) ··········································· 2分 (2)过C 作CB ⊥AC ,交x 轴于点B ,显然,点B 为所求, ············ 3分 则OC2=OA ×OB 此时OB=9,可求得B (9,0) ··························· 5分 此时经过A ,B ,C 三点的抛物线的解析式为:y=121x2+127x-12 ···································································· 8分(3)当PQ ∥BC 时,△APQ ~△ACB ·········································· 9分得AC AP =AB AQ ········································································· 10分∴20m =2525m -解得m=9100 ····················································· 11分当PQ ⊥AB 时,△APQ ~△ACB ·················································· 12分得:AC AQ =AB AP ······································································ 13分 ∴2025m -=25m 解得m=9125 ·················································· 14分5.(本题满分10分)如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式.(3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.解:(1)连结AD ,得OA=3,AD=23 ……………………1分∴OD =3, D(0,-3) ………………………………………………2分 (2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上,……3分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ON ∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) (9)分xx∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分6、(12分)如图3.以A(0,3)为圆心的圆与x 轴相切于坐标点O,与y 轴相交于点B,弦BD 的延长线交x 轴的负半轴于点E, 且∠BEO = 600 , AD 的延长线交x 轴于点C.(1)分别求点E, C 的坐标.(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式.(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心, ME 为半径的圆与☉A 的位置关系,并说明理由.7、一个圆柱的一条母线为AB,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的表面爬行到点C .⑴如图①,如果底面周长为24cm,高为4cm,那么蚂蚁的最短行程是多少cm?⑵如图②,如果底面半径为rcm,高为hcm,那么你认为蚂蚁可能有哪几种行程较短的路径?试画出平面展开图说明路径(至少画两种不同的路径),不必说明理由.⑶通过计算比较②中各种路径的长度,你能得到什么一般性的结论?或者说,蚂蚁选择哪条路径可使行程最短?8、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。