过程特性与数学模型
- 格式:doc
- 大小:56.00 KB
- 文档页数:3
第一章自动控制系统基本概念1.什么是化工自动化?它有什么重要意义?答:在化工设备上,配备上一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,这种用自动化装置来管理化工生产过程的办法,称为化工自动化。
实现化工自动化,能加快生产速度、降低生产成本、提高产品产量和质量、减轻劳动强度、保证生产安全,为逐步地消灭体力劳动和脑力劳动之间的差别创造条件。
2.化工自动化主要包括哪些内容?答:化工生产过程自动化,一般包括自动检测、自动操纵、自动保护和自动控制等方面的内容。
3.自动控制系统怎样构成?各组成环节起什么作用?答:自动控制系统主要由两大部分组成。
一部分是起控制作用的全套自动化装置,对于常规仪表来说,它包括检测元件及变送器、控制器、执行器等;另一部分是受自动化装置控制的被控对象。
在自动控制系统中,检测元件及变送器用来感受被控变量的变化并将它转换成一种特定的信号(如气压信号或电压、电流信号等)。
控制器将检测元件及变送器送来的测量信号与工艺上需要保持的设定值信什么叫操纵变量?受控制器操纵的,用以克服干扰的影响,使被控变量保持设定值的物料量或能量。
(或:具体实现控制作用的变量叫做操纵变量)4.闭环控制系统与开环控制系统有什么不同?答自动控制系统按其基本结构形式可分为闭环自动控制系统和开环自动控制系统。
闭环自动控制是指控制器与被控对象之间既有顺向控制又有反向联系的自动控制。
如图1-1 ( a)即是一个闭环自动控制。
图中控制器接受检测元件及变送器送来的测量信号,并与设定值相比较得到偏差信号,再根据偏差的大小和方向,调整蒸汽阀门的开度,改变蒸汽流量,使热物料出口温度回到设定值上。
从图1-1, (b)所示的控制系统方块图可以清楚看出,操纵变量(蒸汽流量)通过被控对象去影响被控变量,而被控变量又通过自动控制装置去影响操纵变量。
从信号传递关系上看,构成了一个闭合回路。
(a) (b)图1-1 闭环自动控制基本结构开环控制系统是指控制器与被控对象之间只有顺向控制而没有反向联系的自动控制系统。
化工仪表及自动化(2013-12-28)第一章自动控制系统基本概念◆化工自动化的内容:自动检测系统、自动信号和联锁保护、自动操纵及自动开停车系统、自动控制系统。
◆自动控制系统的目的:对生产中某些关键性参数进行自动控制,使它们在受到外界干扰(扰动)的影响而偏离正常状态时,能自动地控制而回到规定的数值范围内。
◆自动控制系统的主要组成:起控制作用的全套自动化装置、受自动化装置控制的被控对象。
其中自动化装置还包括测量元件与变送器、自动控制器、执行器等。
各部分的作用:1、测量元件与变送器:用来感受被控变量的变化并将它转换成一种特定的、统一的输出信号。
2、自动控制器:它接受变送器送来的信号,与工艺需要保持的设定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用特定信号发送出去。
3、执行器:通常指控制阀,能自动地根据控制器送来的信号值相应地改变阀门的开启度,克服扰动的影响,最终实现控制要求。
◆方块图是由传递方块、信号线(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。
【方块图中要具体化的东西:给定值、操纵变量、被控对象、被控变量】每一个方块代表系统中的一个组成部分,称为“环节”。
方块内填入表示其自身特征的数学表达式。
方块间用带有箭头的线条表示其信号的相互关系及信号的流向。
【不代表物料联系】线旁的字母表示相互间的作用信号。
◆与工艺管道及控制流程图的区别:【流程图比方块图具体,且图中各项箭头指向含义不同】1、采用方块图可直观地显示系统中各组成部分以及他们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。
2、而工艺管道及控制流程图则是在控制方案确定以后,根据工艺设计给出的流程图,按其流程顺序标注有相应的测量点、控制点、控制系统及自动信号、联锁保护系统的图。
在工艺管道及控制流程图上设备间的连线是工艺管线,表示物料的流动方向,与方块图中线段的含义截然不同。
被控对象:自动控制系统中,工艺参数需要控制的生产过程、设备或机器等。
机械系统数学模型与特性引言机械系统是由多个部件组成的,这些部件通过机械连接件相连,协同工作以完成特定任务。
为了更好地了解和分析机械系统的性能,研究人员需要建立数学模型来描述系统的运动和特性。
本文将介绍机械系统数学模型的基本概念和特性分析方法。
一、机械系统的数学建模机械系统的数学建模是通过建立数学方程来描述系统的运动和相互作用。
机械系统的建模可以从宏观角度和微观角度两个方面进行。
- 宏观建模:通过分析整个机械系统的运动学和动力学特性,建立宏观方程描述系统运动状态和力学行为。
- 微观建模:通过分析每个部件的运动学和动力学特性,建立微观方程描述部件之间的相互作用和运动状态。
机械系统的数学模型通常采用常微分方程、偏微分方程或代数方程等形式来表示。
建模过程中,需要考虑各种机械元件的特性,如惯性、摩擦、弹性等因素。
此外,还需根据系统的实际工作环境和约束条件,确定适当的初始条件和边界条件。
二、机械系统的特性分析机械系统的特性分析是指对机械系统的数学模型进行求解和分析,得到系统的运动状态、力学行为和稳定性等信息。
常见的机械系统特性分析方法包括以下几种。
1. 静态特性分析静态特性分析是对机械系统在静止状态下的特性进行分析。
该分析主要关注系统的平衡状态和力学平衡方程。
通过求解平衡方程,可以获得系统的平衡位置和平衡力。
2. 动态特性分析动态特性分析是对机械系统在运动状态下的特性进行分析。
该分析主要关注系统的运动学和动力学特性。
通过求解运动学和动力学方程,可以得到系统的运动轨迹、速度和加速度等信息。
3. 稳定性分析稳定性分析是对机械系统的稳定性进行评估。
在数学模型求解的基础上,通过线性化分析、特征值分析等方法,可以确定系统的稳定性边界和稳定性失稳点。
4. 响应分析响应分析是对机械系统对外界扰动的响应进行分析。
通过求解系统的强迫响应方程,可以得到系统的频率响应、阻尼特性和共振现象等信息。
5. 优化设计分析优化设计分析是对机械系统的性能进行优化设计。
化工仪表及自动化总复习第一章自动控制系统基本概念一、基本要求1. 掌握自动控制系统的组成,了解各组成部分的作用以及相互影响和联系;2. 掌握自动控制系统中常用术语,了解方块图的意义及画法;3. 掌握管道及控制流程图上常用符号的意义;4. 了解控制系统的分类形式,掌握系统的动态特性和静态特性的意义;5. 掌握闭环控制系统在阶跃干扰作用下,过渡过程的形式和过渡过程的品质指标。
二、常用概念1. 化工自动化的主要内容:自动检测,自动保护,自动操纵,自动控制系统2. 自动控制系统的基本组成: 被控对象和自动化装置(测量元件与变送器、控制器、执行器)。
3. 被控对象:对其工艺参数进行控制的机器或设备4. 被控变量:生产过程需保持恒定的变量5. 操纵变量:具体实现控制作用的变量6. 干扰作用:在生产过程中引起被控变量偏离给定值的外来因素7. 设定值:被控变量的期望值,可固定也可以按程序变化8. 偏差:给定值与测量值之间的差值9. 闭环系统:系统的输出被反馈到输入端并与设定值进行比较的系统10.开环系统:系统的输出被反馈到输入端,执行器只根据输入信号进行控制的系统11. 控制系统的过渡过程:系统由一个平衡状态过渡到另一个平衡状态的过程12. 反馈:把系统的输出直接或经过一些环节后送到输入端,并加入到输入信号中的方法13. 负反馈:反馈信号的作用方向与给定信号相反,即偏差信号为两者之差(e=x—z)14. 正反馈:反馈信号的作用方向与原来的信号相同,使信号增强(e=x+z)三、问答题1. 控制系统按被调参数的变化规律可分为哪几类?简述每种形式的基本含义。
答:定值控制系统:给定值为常数随动控制系统:给定值随机变化程序控制系统:给定值按一定时间程序变化2.在阶跃扰动作用下,控制系统的过渡过程有哪几种形式? 其中哪些形式能基本满足控制要求?答:1.非周期衰减过程2.衰减振荡过程3.等幅振荡过程4.分散振荡过程1,2能基本满足控制要求,但1进程缓慢,只用于系统不允许震振荡时3. 试述控制系统衰减振荡过程的品质指标及其含义。
过程特性与数学模型过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。
过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。
§4.1过程特性被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉等。
这些被控过程的特性是由工艺生产过程和工艺设备决定的。
被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。
通道------被控过程的输入量与输出量之间的信号联系控制通道-----操纵变量至被控变量的信号联系扰动通道-----扰动变量至操纵变量的信号联系一、过程特性的类型多数工业过程的特性可分为下列四种类型:1.自衡的非振荡过程2. 无自衡的非振荡过程3. 有自衡的振荡过程4. 具有反向特性的过程二、描述过程特性的参数用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。
(主要针对自衡的非振荡过程)1.放大系数K⑴K的物理意义K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。
⑵放大系数K对系统的影响对控制通道的影响对扰动通道的影响2. 时间常数T⑴时间常数T的物理意义时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。
时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。
⑵时间常数T对系统的影响对控制通道的影响对扰动通道的影响3. 滞后时间τ⑴纯滞后τ0(P142)⑵容量滞后τn⑶滞后时间τ对系统的影响对控制通道的影响对扰动通道的影响§4.2 过程数学模型的建立过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描述。
过程的输入是控制作用u(t)或扰动作用f(t),输出是被控变量y(t).数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线和频率特性曲线;另一种是参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、状态空间表达式等。
第一章,自动控制系统1、化工自动化主要包括哪些内容。
自动检测,自动保护,自动操纵和自动控制等。
2、闭环控制系统与开环控制系统的区别。
闭环控制系统有负反馈,开环系统中被控变量是不反馈到输入端的。
3、自动控制系统主要有哪些环节组成。
自动化装置及被控对象。
4、什么是负反馈,负反馈在自动控制系统中的意义。
这种把系统的输出信号直接或经过一些环节重新返回到输入端的做法叫做反馈,当反馈信号取负值时叫负反馈。
5、自动控制系统分类。
定值控制系统,随动控制系统,程序控制系统6、自动控制系统衰减振荡过渡过程的品质指标有及影响因素。
最大偏差,衰减比,余差,过渡时间,振荡周期对象的性质,主要包括换热器的负荷大小,换热器的结构、尺寸、材质等,换热器内的换热情况、散热情况及结垢程度等。
7、什么是静态和动态。
当进入被控对象的量和流出对象的量相等时处于静态。
从干扰发生开始,经过控制,直到系统重新建立平衡,在这一段时间中,整个系统的各个环节和信号都处于变动状态之中,所以这种状态叫做动态。
第二章,过程特性及其数学模型1、什么是对象特征,为什么要研究它。
1/9对象输入量与输出量之间的关系系统的控制质量与组成系统的每一个环节的特性都有密切的关系。
特别是被控对象的特性对控制质量的影响很大。
2、建立对象的数学模型有哪两类机理建模:根据对象或生产过程的内部机理,列写出各种有关的平衡方程,从而获取对象的数学模型。
实验建模:用实验的方法来研究对象的特性,对实验得到的数据或曲线再加以必要的数据处理,使之转化为描述对象特性的数学模型。
混合建模:将机理建模和实验建模结合起来的,先由机理分析的方法提供数学模型的结构形式,然后对其中某些未知的或不确定的参数利用实测的方法给予确定。
3、反映对象特性的参数有哪些。
各有什么物理意义。
它们对自动控制系统有什么影响。
放大系数K:对象重新稳定后的输出变化量与输入变化量之比。
对象的放大系数K越大,就表示对象的输入量有一定变化时对输出量的影响越大。
化⼯仪表及⾃动化总复习及答案(吉珠专⽤)化⼯仪表及⾃动化总复习第⼀章⾃动控制系统基本概念⼀、基本要求1. 掌握⾃动控制系统的组成,了解各组成部分的作⽤以及相互影响和联系;2. 掌握⾃动控制系统中常⽤术语,了解⽅块图的意义及画法;3. 掌握管道及控制流程图上常⽤符号的意义;4. 了解控制系统的分类形式,掌握系统的动态特性和静态特性的意义;5. 掌握闭环控制系统在阶跃⼲扰作⽤下,过渡过程的形式和过渡过程的品质指标。
⼆、常⽤概念1. 化⼯⾃动化的主要内容:⾃动检测,⾃动保护,⾃动操纵,⾃动控制系统2. ⾃动控制系统的基本组成: 被控对象和⾃动化装置(测量元件与变送器、控制器、执⾏器)。
3. 被控对象:对其⼯艺参数进⾏控制的机器或设备4. 被控变量:⽣产过程需保持恒定的变量5. 操纵变量:具体实现控制作⽤的变量6. ⼲扰作⽤:在⽣产过程中引起被控变量偏离给定值的外来因素7. 设定值:被控变量的期望值,可固定也可以按程序变化8. 偏差:给定值与测量值之间的差值9. 闭环系统:系统的输出被反馈到输⼊端并与设定值进⾏⽐较的系统10.开环系统:系统的输出被反馈到输⼊端,执⾏器只根据输⼊信号进⾏控制的系统11. 控制系统的过渡过程:系统由⼀个平衡状态过渡到另⼀个平衡状态的过程12. 反馈:把系统的输出直接或经过⼀些环节后送到输⼊端,并加⼊到输⼊信号中的⽅法13. 负反馈:反馈信号的作⽤⽅向与给定信号相反,即偏差信号为两者之差(e=x—z)14. 正反馈:反馈信号的作⽤⽅向与原来的信号相同,使信号增强(e=x+z)三、问答题1. 控制系统按被调参数的变化规律可分为哪⼏类?简述每种形式的基本含义。
答:定值控制系统:给定值为常数随动控制系统:给定值随机变化程序控制系统:给定值按⼀定时间程序变化2.在阶跃扰动作⽤下,控制系统的过渡过程有哪⼏种形式? 其中哪些形式能基本满⾜控制要求?答:1.⾮周期衰减过程2.衰减振荡过程3.等幅振荡过程4.分散振荡过程1,2能基本满⾜控制要求,但1进程缓慢,只⽤于系统不允许震振荡时3. 试述控制系统衰减振荡过程的品质指标及其含义。
马尔可夫决策过程算法马尔可夫决策过程(Markov Decision Process,MDP)是一个用来描述具有随机过程和决策过程特性的数学模型。
MDP广泛应用于强化学习中,其中智能体通过观察环境的状态以及选择行动来最大化累积奖励。
MDP模型由一个五元组(S,A,P,R,γ)组成:-S:状态集合,表示智能体可观察到的所有可能的状态。
-A:行动集合,表示智能体可以选择的所有可能行动。
-P:状态转移概率矩阵,表示在特定状态下,执行一些行动之后转移到另一个状态的概率分布。
-R:奖励函数,表示在特定状态执行一些行动后,智能体获得的即时奖励。
-γ:折扣因子,用来衡量未来奖励的重要程度。
MDP算法旨在找到一个最优策略,使智能体在每个状态下选择最优的行动,以获得最大的长期累积奖励。
下面将介绍两种常见的MDP算法:值迭代和策略迭代。
值迭代(Value Iteration)是一种基于动态规划的方法,用于计算MDP中每个状态的最优值函数。
该算法通过迭代的方式更新状态的值函数,直到收敛到最优值函数。
值迭代的基本步骤如下:1.初始化各个状态的值函数为任意值,通常为0。
2. 对于每个状态s,计算出在每个可能行动下的状态价值函数,即V(s) = max(R(s,a) + γΣP(s',s,a)V(s'))。
3.根据上一步计算的状态价值函数更新每个状态的值函数,即V'(s)=V(s)。
4.重复第2和第3步,直到状态值函数收敛。
值迭代算法通过反复计算状态的值函数,逐渐逼近最优值函数,从而找到最优策略。
策略迭代(Policy Iteration)是一种基于反复迭代策略评估和策略改进的方法,用于计算MDP的最优策略。
策略迭代的基本步骤如下:1.初始化一个随机的策略。
2.根据当前策略,通过解线性方程组得到策略的价值函数。
3.根据当前策略的价值函数,改进策略,即对每个状态选择具有最大价值的行动。
4.如果策略没有发生变化,则终止算法,否则重复第2和第3步。
第四章过程特性与数学模型
教学要求:了解过程特性的类型的四种类型
掌握描述过程特性的参数的物理意义及对控制通道、扰动通道的影响
学会一阶对象、二阶对象的建模
掌握机理分析法建模的一般步骤
了解实验测试法
重点:描述过程特性的参数的物理意义及对控制通道、扰动通道的影响
运用机理分析法建模
难点:时间常数的物理意义
过程特性的参数对控制通道、扰动通道的影响
过程控制系统的品质是由组成系统的各个环节的结构及其特性所决定。
过程即为被控对象,它是否易于控制,对整个系统的运行情况有很大影响。
§4.1过程特性
被控过程的种类常见的有:换热器、锅炉、精馏塔、化学反应器、贮液槽罐、加热炉
等。
这些被控过程的特性是由工艺生产过程和工艺设备决
定的。
被控过程特性-----指被控过程输入量发生变化时,过程输出量的变化规律。
通道------被控过程的输入量与输出量之间的信号联系
控制通道-----操纵变量至被控变量的信号联系
扰动通道-----扰动变量至操纵变量的信号联系
一、过程特性的类型
多数工业过程的特性可分为下列四种类型:
1.自衡的非振荡过程
2. 无自衡的非振荡过程
3. 有自衡的振荡过程
4. 具有反向特性的过程
二、描述过程特性的参数
用放大系数K、时间常数T、滞后时间τ三个物理量来定量的表示过程特性。
(主要针对自衡的非振荡过程)
1.放大系数K
⑴K的物理意义
K的物理意义:如果有一定的输入变化量ΔQ作用于过程,通过过程后被放大了K倍,变为输出变化量ΔW。
⑵放大系数K对系统的影响
对控制通道的影响
对扰动通道的影响
2. 时间常数T
⑴时间常数T的物理意义
时间常数是被控过程的一个重要的动态参数,用来表征被控变量的快慢程度。
时间常数T的物理意义还可以理解为:当过程受到阶跃输入作用后,被控变量保持初始速度变化,达到新的稳态值所需要的时间就是时间常数T。
⑵时间常数T对系统的影响
对控制通道的影响
对扰动通道的影响
3. 滞后时间τ
⑴纯滞后τ0(P142)
⑵容量滞后τn
⑶滞后时间τ对系统的影响
对控制通道的影响
对扰动通道的影响
§4.2 过程数学模型的建立
过程的(动态)数学模型---是指表示过程的输出变量与输入变量间动态关系的数学描
述。
过程的输入是控制作用u(t)或扰动作用f(t),
输出是被控变量y(t).
数学模型:非参数模型,即用曲性或数据表格来表示,如阶跃响应曲线、脉冲响应曲线
和频率特性曲线;另一种是
参数模型,即用数学方程式来表示,如微分方程(差分方程)、传递函数、
状态空间表达式等。
本节所涉及的模型均为用微分方程描述的
线性定常动态模型。
建立数学模型的基本方法
机理分析法-----通过对过程内部运动机理的分析,根据其物理或化学变化规律,
在忽略一些次要因素或做出一些近似处理后得到过程特性方
程,用微分方程或代数方程。
这种方法完全依赖于足够的先验
知识,所得到的模型称为机理模型。
机理分析法一般只能用于
简单过程的建模。
机理分析法
实验测试法-----由过程的输入输出数据确定模型的结构和参数。
4.2.1机理分析法
微分方程建立的步骤归纳如下:
⑴根据实际工作情况和生产过程要求,确定过程的输入变量和输出变量。
⑵依据过程的内在机理,利用适当的定理定律,建立原始方程式。
⑶确定原始方程式中的中间变量,列写中间变量与其他因素之间的关系。
⑷消除中间变量,即得到输入、输出变量的微分方程。
⑸若微分方程是非线性的,需要进行线性化处理。
⑹标准化。
即将与输入有关的各项放在等号右边,与输出有关的各项放在等号左边,并按将幂排序。
例4.1
试列写图4.13所示RC无源网络的动态数学模型。
设u i为输入变量,u o为输出变量。
例4.2
图4.14所示为一测温热电偶,它可将被测温度转换为热电势E。
图中介质的温度为T i,热电偶热端温度为T o。
试列写热电偶的微分方程。
例4.3
一个串联液体贮槽,通过改变贮槽2的流出量Q out来控制其液位h2在一定高度。
图中A1 、A2分别为两贮槽的截面积;R1、R2分别为阀1、阀2的阻力系数。
是建立串联液体贮槽液位高度h2与流入量Q in的数学模型。
(当输入输出参数对平衡状态影响不大时,该过程可近似为线性,阻力系数R1、R2可近似为常数)
二、实验测试法
实验测试法-----是在需要建立数学模型的被控过程上,人为的施加一个扰动作用,然后用仪表测量并纪录被控变量随时间变化的曲线,这条曲线既是被控过程的特性曲线。
将曲线进行分析、处理,就可得到描述过程特性的数学表达式。