高压电气设备的试验与状态诊断7
- 格式:ppt
- 大小:335.50 KB
- 文档页数:32
电气设备状态监测与评估电气设备在现代工业生产中起着至关重要的作用,它们负责供电、传输能源,并维持工艺的正常运转。
然而,由于长时间运行、恶劣工作环境和设备老化等原因,电气设备存在着各种隐患和风险。
因此,电气设备状态监测与评估成为了一项至关重要的工作。
一、状态监测与评估的重要性电气设备状态监测与评估是指对电气设备的各项参数、工作状态和寿命进行动态监测,并评估其可靠性和安全性的工作。
首先,它可以帮助企业及时发现设备运行中的故障和问题,从而减少停机时间,提高生产效率。
其次,通过对设备状态的评估,可以制定合理的维护计划,延长设备的使用寿命,降低维修成本。
此外,及时的状态监测与评估还有助于提高电气设备的安全性,避免事故的发生,保障员工的生命财产安全。
二、状态监测与评估的方法和技术状态监测与评估可以通过多种方法和技术来实施。
目前,常用的方法包括使用传感器、数据采集器和监测系统等工具,对电气设备的温度、振动、电流、电压、湿度等参数进行实时监测。
其中,传感器是状态监测与评估的关键技术之一,它可以将设备产生的信号转换为可供处理和分析的电信号。
传感器的种类有很多,比如光纤传感器、应力传感器、温度传感器等,可以根据具体情况选择适合的传感器类型。
除了传感器,数据采集器也是状态监测与评估的重要一环。
数据采集器可以采集传感器获取到的数据,并通过有线或无线方式传输到监测系统。
在选择数据采集器时,需要考虑采集的频率、传输的距离和稳定性等因素。
监测系统是状态监测与评估的核心组成部分,它接收并处理数据采集器传输过来的数据,并进行分析和判断。
监测系统可以使用人工智能算法、神经网络和数据挖掘等技术,对设备的状态进行实时分析和预测。
通过监测系统,可以实现对设备的远程监控和故障诊断,提高维护效率和准确性。
三、状态监测与评估的难点和挑战状态监测与评估虽然具有重要意义,但也面临着一些难点和挑战。
首先,由于电气设备种类繁多,每种设备的状态监测与评估方法都不尽相同,需要根据具体设备的特点进行选择和设计。
《电气设备状态监测与故障诊断技术》复习提纲1预防性试验的缺乏之处〔P4〕答:1、需停电进展试验,而不少重要电力设备,轻易不能停顿运行。
2、停电后设备状态〔如作用电压、温度等〕与运行中不符,影响推断准确度。
3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期内发生故障。
4、由于是定期检查和修理,设备状态即使良好时,按打算也需进展试验和修理,造成人力物力铺张,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度修理。
2状态修理的原理〔P4〕答:绝缘的劣化、缺陷的进展虽然具有统计性,进展的速度也有快慢,但大多具有肯定的发展期。
在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。
随着电子、计算机、光电、信号处理和各种传感技术的进展,可以对电力设备进展在线状态监测,准时取得各种即使是很微弱的信息。
对这些信息进展处理和综合分析,依据其数值的大小及变化趋势,可对绝缘的牢靠性随似乎做出推断并对绝缘的剩余寿命做出推测,从而能早期觉察埋伏的故障,必要时可供给预警或规定的操作。
3老化的定义〔P12〕答:电气设备的绝缘在运行中会受到各种因素〔如电场、热、机械应力、环境因素等〕的作用,内部将发生简单的化学、物理变化,会导致性能渐渐劣化,这种现象称为老化。
4电气设备的绝缘在运行中通常会受到哪些类型的老化作用?(P12)答:有热老化、电老化、机械老化、环境老化、多应力老化等。
5热老化的定义〔P12〕答:由于在热的长期作用下发生的老化称为热老化。
6 什么是8℃规章?〔P13〕答:依据 V.M.Montsinger 提出的绝缘寿命与温度间的阅历关系式可知,lnL 和 t 呈线性关系,并且温度每上升 8℃,绝缘寿命大约削减一半,此即所谓8℃规章。
7在弱电场和强电场的作用下,设备绝缘的电气特性有哪些?答:〔1〕在强电场〔外施场强大于该介质的击穿强度〕下,将消灭放电、闪络、击穿等现象,这在气体中表现最为明显。
高压开关柜的在线监测与故障诊断技术高压开关柜是电力系统中重要的电气设备之一,用于控制和保护电力系统中的电器设备。
其在线监测与故障诊断技术的研究和应用对于确保电力系统的稳定运行和故障快速处理具有重要意义。
本文将从高压开关柜的在线监测技术和故障诊断技术两个方面展开论述。
高压开关柜的在线监测技术是指通过传感器和数据采集装置将开关柜的运行状态参数进行实时监测,并通过远程通信技术传输到监控中心,进行实时分析和监控。
其主要包括以下几个方面的内容:第一,温度监测。
高压开关柜中的电器设备在运行时会产生一定的热量,如果温度过高可能导致设备失效或发生故障。
因此,通过设置温度传感器对高压开关柜的关键部位进行温度监测,可以及时发现异常情况并进行预警。
第二,电流监测。
高压开关柜中的电流是电力系统正常运行的基本依据,通过安装电流传感器对高压开关柜中电流进行实时监测,可以掌握设备的运行状态,提前预防设备过载或短路等故障的发生。
第三,压力监测。
高压开关柜中的气体压力是其正常运行的重要参数,通过安装压力传感器对高压开关柜中的气体压力进行监测,可以及时发现气体泄漏或压力异常,防止设备损坏或发生爆炸等事故。
第四,湿度监测。
高压开关柜中的湿度会影响设备的绝缘性能和运行稳定性,通过安装湿度传感器对高压开关柜中的湿度进行监测,可以及时发现湿度过高或过低的情况,采取相应的措施保障设备的正常运行。
高压开关柜的故障诊断技术是指通过监测和分析高压开关柜运行时产生的信号,判断设备是否存在故障,并通过相应的算法和方法对故障进行诊断和定位。
其主要包括以下几个方面的内容:第一,振动分析。
高压开关柜在运行时会产生一定的振动信号,通过对振动信号进行分析,可以判断设备是否存在运行不稳定、松动或其他故障。
第二,红外热像技术。
通过红外热像仪对高压开关柜的外观进行拍摄,可以观察设备局部温度分布情况,通过温度异常点的识别和定位,判断设备是否存在故障。
第三,气体分析。
高压开关柜在运行时会产生一定的气体,通过对开关柜内气体的成分和浓度进行分析,可以判断设备是否存在绝缘失效、短路故障等情况。
电力设备高压试验方法及其安全措施的探讨摘要:随着社会经济的快速发展,电力在国民经济和人民生活中占主要到位,电力设备能否安全可靠的运行,直接关系到电网的安全和人民的利益。
本文笔者结合自身工作经验,以电力设备高压试验为研究对象,对高压试验分类、方法及安全技术措施进行了探讨。
关键词:电力设备高压试验试验方法措施1、电力设备高压试验概述电力试验就是用电力试验设备按照规定的要求对电力设备进行连续或间断的试验,然后根据监测信息进行技术参数评估和状态诊断。
对电力设备的试验是保证电力设备健康运行的必要手段,它关系着设备的利用率、事故率、使用寿命、人力物力财力的消耗,以及电力企业的整体效益等诸多问题。
对电力设备做高电压试验主要目的是:在制造厂时,对所有的原材料的试验,制造过程的中间试验,产品定型及出厂试验。
其目的是检验新的高压电气设备是否符合有关的技术标准规定,严禁不合格的高压设备出厂。
对于大修后的设备进行高电压的各种试验。
其目的是判定设备在维修、运输过程中是否出现绝缘损伤或性能变化,以及大修后修理部位的质量是否符合原标准。
对于正在运行中的电力设备,则按规定周期进行例行的试验,一般将这种例行试验称作预防性试验。
通过预防性试验可以及时发现电气设备内部隐藏的缺陷,配合检修加以消除,以避免设备绝缘在运行中由于工作电压尤其是系统过电压的作用被击穿,造成严重的设备事故以及人身事故。
这样就能做到预防为主,使设备能长期、安全、经济的运行。
2、试验的分类在绝缘故障检测中,高压试验属于一个非常重要的组成部分,是必不可缺的一个试验。
大致在些检测过程中根据试验的目的性有别可分:型式试验、出厂试验、系统中进行的交接试验和预防性试验四种。
下面就绝缘故障检测中的绝缘特性试验和绝缘耐压试验两大类进行逐一分析:2.1 绝缘特性试验绝缘特性试验是检测电气系统运行和维护工作中的一个重要环节,是诊断检测电气设备绝缘缺陷或故障的重要手段。
现在电力设备朝着高电压化,结构多样化的趋势发展,这就需要绝缘测量指标的多样化、测量结果的准确性、测量过程的简单性和迅速性。
电网智能化中的电气设备状态监测与故障诊断方法随着电力系统的快速发展和智能化的推进,电气设备的状态监测与故障诊断变得越来越重要。
电网智能化技术的应用,可以实现对电气设备的实时监测、故障预警和快速诊断,从而提高电网运行的可靠性和安全性。
本文将介绍电网智能化中常用的电气设备状态监测与故障诊断方法。
一、电气设备状态监测方法1. 传统监测方法传统的电气设备状态监测方法主要包括温度、振动、湿度、颗粒物等参数的监测。
通过安装传感器和监测仪器,实时获取电气设备的工作状态,并将数据传输到监测系统中进行分析和处理。
例如,温度是电气设备运行状态的重要指标之一,可以通过温度传感器实时监测设备的温度变化。
当温度超过设定的阈值时,系统会自动发出预警信号,以便及时采取措施。
2. 特征参数提取方法特征参数提取方法是对电气设备工作状态进行识别和判断的一种常用方法。
通过对电气信号进行信号处理和特征提取,可以得到反映设备状态的特征参数。
例如,对于变压器来说,可以通过提取电流波形、电压波形和频谱特征等参数,判断变压器是否存在故障。
通过比较实际测量的特征参数与预设的故障特征参数,可以实现对变压器故障的诊断和判断。
3. 数据挖掘与智能算法方法数据挖掘与智能算法方法是在大数据背景下,利用机器学习、人工智能等技术来实现电气设备状态监测的方法。
通过对大量历史数据进行分析和挖掘,建立模型,从而实现对电气设备的状态监测和预测。
例如,可以利用神经网络算法对大量的电气设备数据进行训练,建立模型,用于识别和预测设备的工作状态。
通过将实时数据输入模型中,可以及时发现设备异常和故障,并提供相应的预警或诊断结果。
二、电气设备故障诊断方法1. 规则推理方法规则推理方法是一种基于规则库的故障诊断方法。
通过建立故障规则库,将设备故障类型和相应的特征参数进行匹配,从而实现对设备故障的诊断。
例如,设备故障规则库中定义了某一特征参数超过一定阈值,则判定为设备故障。
当实时监测到该参数超过阈值时,即可根据规则库进行故障诊断,并给出相应的处理建议。
电气设备状态监测与故障诊断1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。
特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。
电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。
“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。
设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。
“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。
设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。
简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。
广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。
1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。
提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。
但这样会导致制造成本增加。
此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。
因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。
早期是对设备使用直到发生故障,然后维修,称为事故维修。
高压电气设备运行试验规范要求一、引言高压电气设备在电力系统中起着至关重要的作用,为确保其正常运行和安全性,必须进行运行试验。
本文将介绍高压电气设备运行试验的规范要求。
二、试验目的高压电气设备运行试验的目的是验证设备在正常和异常工作条件下的性能和安全性,确保其满足运行要求,预防事故的发生。
三、试验内容1. 高压电气设备的外观检查:包括设备的外观、连接线路、接地等。
设备应无损坏、杂质和腐蚀等问题。
2. 开关设备试验:对高压开关设备进行合适的试验,包括操纵试验、断口试验和机械特性试验等。
3. 绝缘试验:对高压电气设备的绝缘性能进行验证,包括绝缘电阻试验和绝缘强度试验等。
4. 电气性能试验:包括设备的额定电流、电压、频率和短路等试验,确保设备在不同工作条件下的稳定性和安全性。
5. 过渡过流试验:对高压电气设备的过载能力进行验证,以确保设备在额定负荷下能正常运行。
6. 稳定工况试验:对设备在稳定工况下的性能进行验证,确保其满足工作要求。
7. 湿气试验:对高压电气设备在潮湿环境下的性能进行验证,以确保设备具有良好的防潮性能。
8. 部分放电试验:对设备的绝缘性能进行部分放电检测,以判断其绝缘状况是否符合要求。
9. 温度试验:对设备在不同温度环境下的性能进行验证,以确保设备具有良好的温度适应性。
四、试验程序1. 前期准备:对试验设备和环境进行检查和准备,包括清洁设备、连接线路、检查试验设备等。
2. 检查记录:对试验前后的设备状态和试验数据进行记录,以备后续分析和比对。
3. 进行试验:按照试验内容和要求进行试验,确保各项试验的顺利进行。
4. 试验结果分析:对试验结果进行比对和分析,判断设备是否符合规定的要求。
5. 试验报告编制:根据试验结果和数据,编制试验报告,包括试验目的、试验过程、试验结果和结论等。
五、试验要求1. 试验应按照国家相关标准进行,确保试验的科学性和规范性。
2. 试验设备和仪器应满足准确度和精确度的要求,以保证试验数据的可靠性。
高压电气试验操作规程一、引言高压电气试验是对电气设备进行安全、性能及可靠性验证的重要方法之一,为确保试验操作的安全和有效性,制定本操作规程。
二、试验准备1. 试验前应检查试验设备、试验装置及安全设施是否完好。
2. 试验人员应穿戴符合安全要求的工作服及防护用具。
3. 试验记录应提前准备好,并核对试验项目及参数。
4. 试验区域应进行划定,并禁止无关人员进入。
三、试验操作1. 检查试验设备电源是否正常,未发现异常后方可进行试验。
2. 检查试验装置及连接线路是否连通,无异常后方可进行试验。
3. 预先设置试验设备参数,并确保设备处于待机状态。
4. 按照试验记录要求调整试验设备参数,如电压、电流等。
5. 按照试验项目要求设置试验持续时间,并启动试验设备。
6. 在试验过程中,密切观察试验设备运行状态及试验装置工作情况。
7. 如出现试验设备异常,应立即停止试验,并进行故障排查。
8. 试验完成后,关闭试验设备,待设备完全停止后方可离开试验区域。
四、事故处理1. 如试验过程中发生事故,应立即切断试验设备电源,并通知相关人员。
2. 如有人员受伤,应立即进行急救并送往医院治疗。
3. 对事故原因进行调查,并制定相应措施以避免类似事故再次发生。
五、试验记录1. 每次试验均应详细记录试验开始时间、结束时间及试验参数。
2. 在试验过程中发现的异常情况应及时记录,并采取相应措施。
3. 对试验结果进行分析及评价,并记录在试验记录中。
4. 试验记录应妥善保存,便于后期分析及查阅。
六、安全注意事项1. 操作人员应具备一定的电气知识及操作经验。
2. 禁止试验设备过载运行,以免损坏设备或引发事故。
3. 在试验过程中严禁触碰试验装置及电缆等高压部件。
4. 注意试验区域内的通风、防火及防爆等安全要求。
5. 注意保持试验区域的整洁,避免杂物堆放,防止意外触电等事故发生。
6. 试验结束后,应彻底清理试验区域,确保设备无任何残留。
七、总结本操作规程详细规定了高压电气试验的操作流程及注意事项,操作人员必须严格按照规程要求进行试验操作,确保试验过程安全可靠。