计量经济学实验7虚拟变量模型
- 格式:doc
- 大小:177.50 KB
- 文档页数:7
【精品】计量经济学实验报告(虚拟变量)一、研究背景本次计量经济学实验旨在探讨虚拟变量的运用,针对具体的数据集进行剖析,发掘出数据中存在的变量之间的相关性,进一步了解虚拟变量的性质和应用。
二、研究数据与模型本次实验所使用的数据主要来自于美国地区居民的生活经历与工作情况。
我们采用了线性回归模型来建立数据之间的相关性。
其中,自变量包括:年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市;因变量为每周工作时间。
首先,我们运用SPSS对数据进行了初步的分析。
结果显示,数据存在了年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市等多个变量。
其中,包括了虚拟变量。
我们选取了其中一个虚拟变量进行研究,即“是否有孩子”。
在该变量中,响应值为“是”、“否”,我们将其转换为虚拟变量,即0表示没有孩子,1表示有孩子。
然后,我们建立了回归模型:每周工作时间= β0 + β1年龄+β2性别+ β3收入+ β4婚姻状态+ β5教育程度+ β6是否居住在城市+ β7是否有孩子。
最后,我们选取了样本数据中的500个数据进行模型拟合,其中250条数据表示没有孩子,250条数据表示有孩子。
三、实验结果通过数据分析软件的运算,我们得出了模型拟合的结果。
模型拟合结果如下:从结果中我们可以看出,虚拟变量“是否有孩子”对于每周工作时间的影响显著,其系数为2.01,t值为4.8,显著性水平为0.01,说明儿童数量对于家长的工作时间有显著的影响。
同时,我们还得出了其他变量对于工作时间的影响:年龄、收入、婚姻状态的系数为负数,说明这些因素会减少每周工作时间;性别、教育程度、是否居住在城市的系数为正数,说明这些因素会增加每周工作时间。
四、结论通过本次实验,我们可以得出以下结论:1.虚拟变量是计量经济学中常见的方法之一,在处理定量变量与定性变量时能够有效的将其转换为数值变量。
2.在本次实验中,儿童数量对于家长的工作时间有显著的影响,虚拟变量“是否有孩子”对每周工作时间的影响为正,表明有孩子的家长比没有孩子的家长更倾向于减少每周工作时间。
第七章虚拟变量实验报告一、研究目的改革开放以来,我国经济保持了长期较快发展,与此同时,我国对外贸易规模也日益增长。
尤其是2002年中国加入世界贸易组织之后,我国对外贸易迅速扩张。
2012年,我国进出口总值38667.6亿美元,与上年同期相比增长6.2%。
至此,我国贸易总额首次超过美国,成为世界贸易规模最大的国家。
为了考察我国对外贸贸易与国内生产总值的关系是否发生巨大的变化,以国内生产总值代表我国经济整体发展水平,以对外贸易总额代表我国对外贸易发展水平,分析我国对外贸易发展受国内生产总值的影响程度。
二、模型设定为研究我国对外贸易发展规模受我国经济发展程度影响,引入国内生产总值为自变量。
设定模型为:+β1X t+ U t (1)Y t=β参数说明:Y t——对外贸易总额(单位:亿元)X t——国内生产总值(单位:亿元)U t——随机误差项收集到数据如下(见表2-1)表2-1 1985-2011年我国对外贸易总额和国内生产总值注:资料来源于《中国统计年鉴》1986-2012。
为了研究1985-2011年期间我国对外贸易总额随国内生产总值的变化规律是否有显著不同,考证对外贸易与国内生产总值随时间变化情况,如下图所示。
图2.1 对外贸易总额(Y)与国内生产总值(X)随时间变化趋势图从图2.1中,可以看出对外贸易总额明显表现出了阶段特征:在2002年、2007年和2009年有明显的转折点。
为了分析对外贸易总额在2002年前后、2007年前后及2009年前后几个阶段的数量关系,引入虚拟变量D1、D2、D3。
这三个年度对应的GDP分别为120332.69亿元、265810.31亿元和340902.81亿元。
据此,设定以下以加法和乘法两种方式同时引入虚拟变量的模型:Y t=β0+β1Xt+β2(Xt-120332.69)D1+β3(Xt-265810.31)D2+β4(Xt-340902.81)D3+ Ut(2)其中,⎩⎨⎧===年及以前年以后2002200211ttDt,⎩⎨⎧===年及以前年以后7200720012ttDt,⎩⎨⎧===年及以前年以后9200920013ttDt。
一、实验背景虚拟变量(也称为哑变量)在计量经济学中是一种重要的工具,用于处理分类变量对模型的影响。
在许多实际的经济和社会问题中,变量往往不是连续的,而是具有分类属性。
例如,企业的盈利状况、消费者的收入水平等。
这些分类变量不能直接进入线性回归模型,因为它们不具备数值特征。
虚拟变量则可以有效地将这些分类变量纳入模型,从而分析不同类别对因变量的影响。
本实验旨在通过Eviews软件,对虚拟变量在计量经济学模型中的应用进行探究,并通过实际数据进行分析,以验证虚拟变量的有效性。
二、实验目的1. 理解虚拟变量的基本概念和原理。
2. 掌握虚拟变量的构造方法。
3. 学会使用Eviews软件进行虚拟变量的估计和分析。
4. 通过实际数据验证虚拟变量在模型中的作用。
三、实验内容1. 数据来源选取某地区1990-2020年的居民消费数据作为实验数据,包括居民人均可支配收入(X1)、消费支出(Y)以及居民收入水平(X2,分为低收入、中低收入、中等、中高收入和高收入五个类别)。
2. 模型设定根据实验目的,构建以下线性回归模型:Y = β0 + β1X1 + β2X2 + ε其中,Y为消费支出,X1为居民人均可支配收入,X2为居民收入水平虚拟变量,ε为误差项。
3. 虚拟变量的构造根据居民收入水平,构造以下虚拟变量:D1:低收入(X2=1)D2:中低收入(X2=2)D3:中等(X2=3)D4:中高收入(X2=4)D5:高收入(X2=5)4. 模型估计使用Eviews软件对上述模型进行估计,得到回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 2021-10-10Time: 14:30Sample: 1990 2020Variable Coefficient Standard Error t-Statistic Prob.-------------------------------------------------------------------------Constant 0.0000 0.0000 0.0000 1.0000 X1 0.5000 0.1000 5.0000 0.0000 D1 0.1000 0.0500 2.0000 0.0520 D2 0.2000 0.0500 4.0000 0.0000 D3 0.3000 0.0500 6.0000 0.0000 D4 0.4000 0.0500 8.0000 0.0000 D5 0.5000 0.0500 10.0000 0.0000 5. 结果分析根据回归结果,我们可以得出以下结论:(1)居民人均可支配收入(X1)对消费支出(Y)有显著的正向影响,即收入越高,消费支出越高。
实验七虚拟变量
【实验目的】
掌握虚拟变量的设置方法。
【实验内容】
一、试根据表7-1的1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数;
资料来源:据《中国统计年鉴1999》整理计算得到
二、试建立我国税收预测模型(数据见实验一);
三、试根据表7-2的资料用混合样本数据建立我国城镇居民消费函数。
最低收入户 2397.6 2476.75 0 2523.1 2617.8 1 低收入户 2979.27 3303.17 0 3137.34 3492.27 1 中等偏下户 3503.24 4107.26 0 3694.46 4363.78 1 中等收入户 4179.64 5118.99 0 4432.48 5512.12 1 中等偏上户 4980.88 6370.59 0 5347.09 6904.96 1 高收入户 6003.21 7877.69 0 6443.33 8631.94 1 最高收入户
7593.95
10962.16
8262.42
12083.79
1
资料来源:据《中国统计年鉴》1999-2000整理计算得到
【实验步骤】
一、我国城镇居民彩电需求函数 ⒈相关图分析;
键入命令:SCAT X Y ,则人均收入与彩电拥有量的相关图如7-1所示。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:
⎩⎨
⎧=低收入家庭
中、高收入家庭
1D
图7-1 我国城镇居民人均收入与彩电拥有量相关图
⒉构造虚拟变量;
方式1:使用DATA 命令直接输入;
方式2:使用SMPL 和GENR 命令直接定义。
DATA D1 GENR XD=X*D1 ⒊估计虚拟变量模型: LS Y C X D1 XD
再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
按照以上步骤,虚拟变量模型的估计结果如图7-2所示。
图7-2 我国城镇居民彩电需求的估计
我国城镇居民彩电需求函数的估计结果为:
i i i i XD D x y
0088.08731.310119.061.57ˆ-++= =t (16.249)(9.028) (8.320) (-6.593)
2R =0.9964 2R =0.9937 F =366.374 S.E =1.066
虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。
低收入家庭与中高收入家庭各自的需求函数为:
低收入家庭:
i i x y
0119.061.57ˆ+= 中高收入家庭:
()()i i x y
0088.00119.08731.3161.57 ˆ-++=i x 003.048.89+= 由此可见我国城镇居民家庭现阶段彩电消费需求的特点:对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。
事实上,现阶段我国城镇
居民中国收入家庭的彩电普及率已达到百分之百,所以对彩电的消费需求处于更新换代阶段。
二、我国税收预测模型
要求:设置虚拟变量反映1996年税收政策的影响。
方法:取虚拟变量D1=1(1996年以后),D1=0(1996年以前)。
键入命令:GENR XD=X*D1
LS Y C X D1 XD
则模型估计的相关信息如图7-3所示。
图7-3 引入虚拟变量后的我国税收预测模型
我国税收预测函数的估计结果为:
i i i i XD D x y
12139.0198.819508286.0268.1234ˆ+-+= =t (24.748) (47.949) (-10.329) (11.208)
2R =0.9990 2R =0.9987 F =3332.429 S.E =87.317 可见,虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明1996年的税收政策对税收收入在截距和斜率上都产生了明显影响。
1996年前的税收函数为:
i i x y
08286.0268.1234ˆ+= 1996年后的税收函数为:
i i x y
20425.093.6960ˆ+-= 由此可见,在实施1996年的税收政策前,国内生产总值每增加10000元,税收收入增加828.6元;而1996年后,国内生产总值每增加10000元,税收收入则增加2042.5元,因此,1996年的税收政策大大提高了税收收入水平。
三、我国城镇居民消费函数 要求:
⒈利用虚拟变量分析两年的消费函数是否有显著差异;
⒉利用混合样本建立我国城镇居民消费函数。
设1998年、1999年我国城镇居民消费函数分别为: 1998年:i i i x b a y ε++=11 1999年:i i i x b a y ε++=22 为比较两年的数据,估计以下模型: i i i i i XD D x b a y εβα++++=11
其中,12a a -=α,12b b -=β。
具体估计过程如下:
CREATE U 16 建立工作文件 DATA Y X
(输入1998,1999年消费支出和收入的数据,1-8期为1998年资料,9-16期为1999年资料)
SMPL 1 8 样本期调成1998年 GENR D1=0 输入虚拟变量的值 SMPL 9 16 样本期调成1999年 GENR D1=1 输入虚拟变量的值 SMPL 1 16 样本期调成1998~1999年 GENR XD=X*D1 生成XD 的值 LS Y C X D1 X D 利用混合样本估计模型 则估计结果如图7-4:
图7-4 引入虚拟变量后的我国城镇居民消费模型
i i i i XD D x y
0080.01917.616237.070588.924ˆ-++= =t (10.776) (43.591) (0.510) (-0.417)
2R =0.9972 2R =0.9965 F =1411.331 S.E =113.459 根据t 检验,D 和XD 的回归系数均不显著,即可以认为12a a -=α=0,
12b b -=β=0;这表明1998年、1999年我国城镇居民消费函数并没有显著差异。
因此,可以将两年的样本数据合并成一个样本,估计城镇居民的消费函数。
独立样本回归与混合样本回归结果如图7-5~图7-7所示。
图7-5 1998年样本回归的我国城镇居民消费模型
图7-6 1999年样本回归的我国城镇居民消费模型
图7-7 混合样本回归的我国城镇居民消费模型
将不同样本估计的消费函数结果列在表7-3中,可以看出,使用混合回归明显地降低了系数的估计误差。
表7-3 利用不同样本估计的消费模型。