压力容器制作通用工艺
- 格式:pdf
- 大小:242.02 KB
- 文档页数:11
钢制压力容器热处理通用工艺规程钢制压力容器热处理是指通过加热和冷却操作来改变钢材的组织和性能以满足特定要求的工艺。
热处理可以提高材料的强度、硬度、耐磨性和耐蚀性等性能,同时还可以改善材料的韧性和可加工性。
钢制压力容器热处理通用工艺规程主要包括以下几个主要步骤:1. 材料准备:选择合适的钢材作为压力容器的原材料,保证其化学成分和力学性能符合相关标准要求。
原材料的表面应清理干净,去除油污和锈蚀。
2. 加热:将钢材放入热处理炉中进行加热处理。
加热的温度和时间要根据钢材的材质和要求来确定。
一般来说,加热温度可以分为预热温度、保温温度和固溶温度。
预热温度是为了提高材料的均匀加热程度,保温温度是在固溶温度之前将材料保持在特定温度下进行稳定加热,固溶温度是钢材达到均匀的单相固溶状态。
3. 冷却:在达到适当的温度后,将钢材从热处理炉中取出,迅速进行冷却。
冷却的方法有空气冷却、水淬火、油淬火等。
不同的冷却方法会对钢材的组织和性能产生不同的影响,需要根据具体要求选择合适的冷却方式。
4. 回火:通过回火来改善钢材的硬度和内部应力分布。
回火温度和时间要根据钢材的材质和要求来确定。
回火温度一般在450℃以上,时间也根据钢材的厚度和尺寸来确定。
5. 检测和评定:对热处理后的钢材进行检测和评定,确保其性能符合设计和使用要求。
常见的检测方法包括金相显微镜检测、硬度测试、拉伸测试、冲击试验等。
6. 记录和报告:对每一批热处理完成的钢材进行记录和报告,包括加热温度、时间、冷却方式、回火参数、检测结果等。
总结来说,钢制压力容器热处理通用工艺规程包括材料准备、加热、冷却、回火、检测和评定、记录和报告等步骤。
通过合理的热处理工艺可以提高钢材的组织和性能,确保压力容器的安全性和可靠性。
同时,需要根据具体要求选择适当的热处理参数,并进行必要的检测和评定,以确保热处理效果的合格性。
压力容器制造质量保证体系文件压力容器通用工艺规程xxxxxxx机械有限公司压力容器制造质量保证体系文件XXX/RQC01~31-2012压力容器制造通用工艺规程编制审核批准2012-06-01发布 2012-09-06实施xxxxxxx机械有限公司发布目录1.材料标记(XXX/RQC01-2012)-------------------------------------------------12.焊工标记(XXX/RQC02-2012)--------------------------------------------------73.气割(XXX/RQC03-2012)-----------------------------------------------------114.剪板(XXX/RQC04-2012)-----------------------------------------------------165.管板、折流板机加工(XXX/RQC05-2012)---------------------------------------176.清理、油漆、运输、包装(XXX/RQC06-2012)-------------------------------------207.手工电弧焊(XXX/RQC07-2012)-----------------------------------------------258.防止表面损伤(XXX/RQC08-2012)---------------------------------------------289.材料检验(XXX/RQC09-2012)-------------------------------------------------3010.法兰制造与装配(XXX/RQC10-2012)------------------------------------------3411.钢材坯料划线、下料、矫正(XXX/RQC11-2012)---------------------------------3612.筒体卷制(XXX/RQC12-2012)------------------------------------------------4213.埋弧自动焊(XXX/RQC13-2012)----------------------------------------------4714.手工碳弧气刨(XXX/RQC14-2012)--------------------------------------------5015.焊接接头返修(XXX/RQC15-2012)--------------------------------------------5216.外形尺寸检验(XXX/RQC16-2012)-------------------------------------------5417.等离子切割(XXX/RQC17-2012)----------------------------------------------5618.焊接检验(XXX/RQC18-2012)------------------------------------------------5919.手工钨极氩弧焊(XXX/RQC19-2012)------------------------------------------6220.不锈钢手工电弧焊(XXX/RQC20-2012)----------------------------------------6421.焊材烘焙(XXX/RQC21-2012)------------------------------------------------6522.热处理(XXX/RQC22-2012)--------------------------------------------------6623.射线检测(XXX/RQC23-2012)------------------------------------------------6824.超声波检测(XXX/RQC24-2012)----------------------------------------------7525.磁粉检测(XXX/RQC25-2012)-----------------------------------------------8026.渗透检测(XXX/RQC26-2012)-----------------------------------------------8327.冲击试验(XXX/RQC27-2012)-----------------------------------------------8628.拉伸、弯曲试验(XXX/RQC28-2012)------------------------------------------8729.液压试验(XXX/RQC29-2012)-----------------------------------------------9030.气压试验(XXX/RQC30-2012)------------------------------------------------9131.气密性试验(XXX/RQC31-2012)----------------------------------------------92材料标记(XXX/RQC01-2012)1.目的通过对材料编号的标识和确认,使材料在制造过程中得到追踪,保证材料的正确使用。
钢制压力容器热处理通用工艺规程范文一、前言本文旨在制定钢制压力容器热处理通用工艺规程,以确保热处理过程中的操作规范性和产品质量稳定性。
本规程适用于钢制压力容器的热处理工艺。
二、材料准备1. 选用符合设计要求和制造标准的钢材作为原料。
2. 对材料进行化学成分分析,确保其满足标准要求。
3. 对材料进行外观检查,确保无裂纹、沟槽等表面缺陷。
三、热处理工艺1. 普通碳钢材料的热处理工艺:(1) 预热:将材料置于加热炉中,以100℃/h的升温速度升温至预定温度(取决于材料种类和规格)。
保持预热温度30分钟。
(2) 淬火:将预热至所需温度的材料迅速放入冷却介质(如水、油等)中进行淬火处理。
(3) 回火:在600-700℃温度范围内对淬火后的材料进行回火处理,保持时间根据材料规格和硬度要求而定。
保持温度时间应符合设计要求。
(4) 退火:对需要软化处理的材料,可进行退火处理。
退火温度和时间根据材料种类和要求进行调整。
2. 合金钢材料的热处理工艺:(1) 固溶处理:将材料放入加热炉中,以100℃/h的升温速度升温至固溶温度。
保持温度1小时。
(2) 淬火:将固溶处理后的材料迅速放入冷却介质(如水、油等)中进行淬火处理。
(3) 回火:在450-600℃温度范围内对淬火后的材料进行回火处理,保持时间根据材料规格和硬度要求而定。
保持温度时间应符合设计要求。
四、操作注意事项1. 操作人员应经过相关培训,熟悉工艺要求和操作规程,严格按照规程进行操作。
2. 加热炉和冷却介质的温度应定期校准,确保温度准确性。
3. 热处理过程中,应定期检查冷却介质的质量,如有杂质应及时更换。
4. 淬火工艺中,应控制冷却介质的冷却速率,以避免材料出现裂纹等缺陷。
5. 温度控制器和计时器的准确性需要定期检查和校准。
五、质量控制1. 热处理后的材料应进行硬度测试和金相组织检查,确保满足标准要求。
2. 对热处理过程进行记录,包括材料种类、规格、加热炉温度、保温时间等重要参数。
上海氯碱机械有限公司压力容器制造通用工艺规程(第二版)发布日期:2009-04-15 实施日期: 2009-05-01 编写:褚宾峰审核:陈锡祥批准:曹稼斌编写说明本规程适用于我公司一、二类压力容器、类外压力容器(正文中简称容器)及管壳式换热器(正文中简称换热器)的制造。
常压容器的制造及容器、换热器的修理可参照执行。
本规程根据GB150-1998《钢制压力容器》、GB151-1999《管壳式换热器》、HG20584-199&钢制化工容器制造技术要求》、《压力容器安全技术监察规程》(1999)的有关规定,并结合我公司几年来压力容器、换热器制造经验和现有装备能力而制订。
对于制造较复杂的、大型的、有特殊要求的容器设备,应由公司技术总负责人、技术管理部门、技术人员及有经验的工人师傅一起讨论研究,制订出具体可行的施工方案进行施工。
施工人员在施工过程中,应严格按图纸和工艺卡要求进行施工,如因图纸错误或加工制作误差等原因影响到零部件组装,应及时与工艺人员取得联系,以求问题解决。
在制造过程中,要树立质量第一的思想,严把质量关,制造出高质量的产品。
1、总则1.1、容器、换热器应按图纸、工艺卡、本规程及有关国家、行业标准和法规的要求进行制造。
并严格按我公司压力容器质量保证体系的要求运行。
1.2、制造容器、换热器用材料必须符合相应国家标准、行业标准规定。
材料采购时应从材料生产单位获取符合相应标准的材料质量合格证(原件);如果从非材料生产单位获得压力容器用材料时,应取得材料质量证明书原件或加盖供材单位检验章和经办人章的有效复印件(有效指复印件上盖有供材单位红色印泥检验章)。
对有复验或特殊检验要求的材料,须经复验或检验合格才能使用。
1.3、容器、换热器的焊接应按焊接工艺及我公司的《通用焊接工艺规程》要求进行。
1.4、对我公司无能加工的零部件,如封头、膨胀节等要严格按有关标准进行验收把关,确保外协件质量。
1.5、要通过装备能力的不断提升,工艺手段的不断完善,实现产品质量的持续提高。
钢制压力容器热处理通用工艺规程1. 前言钢制压力容器常用于石油化工、能源、船舶等重要领域,为确保其安全使用,热处理是不可或缺的步骤。
本文主要介绍钢制压力容器的热处理通用工艺规程,以提高热处理效果,确保生产安全。
2. 热处理前准备工作在进行钢制压力容器的热处理前,需要进行以下准备工作:•对容器进行外部清洗,确保表面不带杂质、油脂等;•对容器进行内部水冲洗及脱蜡处理,并将脱蜡液、水分彻底清除;•对容器进行预热,以避免在升温过程中产生应力,造成变形和破裂;•对容器进行标记,以便追溯生产过程。
以上准备工作是热处理成功的重要保障,要做到认真细致,确保安全生产。
3. 热处理工艺钢制压力容器的热处理包括退火、正火和淬火,下面分别介绍。
3.1 退火退火是一种热处理方法,通过升温使材料达到一定温度,然后在空气中冷却,使其组织和性能得到改善。
在钢制压力容器热处理中,退火主要是为了回火处理,提高材料强度和韧性。
退火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至退火温度(通常为600℃至700℃);•保温:在退火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•冷却:将容器从电炉中取出,并在空气中自然冷却至室温。
3.2 正火正火是将钢制压力容器加热至一定温度,然后经过一定时间的保温,使结构组织发生变化,达到改进强度和韧性的一种热处理方法。
正火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至正火温度(通常为860℃至920℃);•保温:在正火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•冷却:在正火的保温时间内,将容器放置于电炉中,然后关毛细气门和灭火开关,打开强制冷却装置,等待温度下降到指定温度时进行电炉冷却。
3.3 淬火淬火是通过将钢制压力容器加热至临界温度,然后迅速冷却,使其具有优良的强度和硬度。
淬火的具体工艺如下:•升温:在电炉中以每小时约50℃的速度升温,升至淬火温度(与材料种类及厚度有关);•保温:在淬火温度下保温一定时间,以保证材料达到一定的晶界稳定性;•淬火:将容器在淬火液中迅速冷却。
钢制压力容器热处理通用工艺规程模版1. 引言钢制压力容器是各种工业领域中常见的重要设备,其热处理工艺的正确应用对于保证容器的性能和安全运行至关重要。
本文旨在提供钢制压力容器热处理通用工艺规程模版,以指导相关工程技术人员实施热处理工艺。
2. 材料准备2.1 确保钢制压力容器的材料质量符合设计要求和相关标准;2.2 检查材料的标识、成分、性能等信息,确保其准确、完整。
3. 设备准备3.1 检查热处理设备的运行状况,确保其安全可靠;3.2 清理热处理设备及附件,确保其无杂质、油污等有害物质;3.3 校准设备的温度、压力、时钟等参数显示和控制装置。
4. 工艺步骤4.1 预热4.1.1 将钢制压力容器放置在预热炉中,以提高整体温度;4.1.2 控制预热速度,一般按照设计要求和材料规范进行;4.1.3 预热温度根据不同材料和要求确定,但通常不低于材料的下临界温度。
4.2 保温4.2.1 将预热后的钢制压力容器转移到保温炉中;4.2.2 控制保温炉内的温度,确保达到设计要求;4.2.3 根据材料和要求确定保温时间,一般不少于规定的最低保温时间。
4.3 冷却4.3.1 将保温后的钢制压力容器转移到冷却装置中;4.3.2 控制冷却速率,一般根据材料和要求进行调整;4.3.3 冷却时避免剧烈的温度变化和冷却介质中存在的有害物质。
4.4 退火处理(可选)4.4.1 对特殊要求的钢制压力容器,可以进行退火处理;4.4.2 控制退火温度、时间和冷却速率,根据材料和要求进行调整。
5. 检验与评估5.1 对热处理后的钢制压力容器进行必要的检验,如金相分析、硬度测试等;5.2 检查热处理后的钢制压力容器的外观和尺寸,确保没有变形、开裂等缺陷;5.3 根据检验结果进行评估,判断热处理的效果是否符合要求。
6. 记录与报告6.1 对热处理过程中的温度、时间、压力等参数进行记录;6.2 记录热处理前后钢制压力容器的尺寸、外观等信息;6.3 编写热处理报告,包括工艺参数、检验结果和评估等内容。
钢制压力容器热处理通用工艺规程钢制压力容器在工业领域中得到了广泛的应用。
钢制压力容器通常具有高强度、高韧性、易加工、高精度等优点。
然而,由于其制造过程中存在着焊接等加工工艺,使得钢制压力容器内部的应力分布不均匀。
在使用过程中,这些应力简单导致钢制压力容器的变形、裂纹、分裂等事故的发生,给生产和安全带来了严重的隐患。
为了解决这些问题,钢制压力容器的制造过程中会进行热处理,以除去内部应力,加添硬度,改善钢的性能,提高钢制压力容器的使用寿命。
本文将介绍钢制压力容器的热处理通用工艺规程。
一、材料的选择钢制压力容器的材料应具有良好的机械性能和热处理性能,通常选择碳素钢、合金钢、不锈钢等。
在材料的选择方面,应注意材料的化学成分、机械性能、热处理性能等指标,确保所选择的材料符合容器设计要求,并能够充足使用寿命的要求。
二、预处理在进行热处理之前,应对钢制压力容器的表面进行清洗、除油、除锈等预处理,以保证钢制压力容器的表面干净度和清洁度。
三、加热1. 加热方式钢制压力容器的加热通常采纳电加热、气体加热、燃气加热等方式。
不同的加热方式对钢制压力容器的性能有不同的影响,因此应依据实际情况选用合适的加热方式。
2. 加热温度在热处理过程中,加热温度是特别紧要的。
加热温度过高或过低都会影响钢制压力容器的性能。
通常采纳在材料的热稳定区内进行热处理,即加热温度应当高于材料的临界点,但又不能超过材料的固溶温度,通常在850℃-950℃之间。
3. 加热时间加热时间也是一个关键参数,加热时间过短或过长都会对钢制压力容器的性能产生不良影响。
每种材料的加热时间有所不同,需要针对不同的材料进行合理的掌控。
四、降温1. 冷却方式在加热完成后,需要进行降温,以稳定钢的组织结构并除去应力。
通常采纳气冷、水冷、油冷等方式进行冷却。
不同的冷却方式对钢制压力容器的性能有不同的影响,应依据实际情况选用合适的冷却方式。
2. 降温速率降温速度也是一个关键参数,过快的降温会导致钢的脆性加添,而过慢的降温则会影响钢的机械性能。
1目的本标准为公司对钢制压力容器的焊接通用技术规定。
2适用范围本标准适用于公司压力容器的制造,若设计图纸和专用工艺文件有特殊要求时按设计图纸和专用工艺文件执行。
压力管道元件焊接参照执行。
3焊接材料3.1凡用于压力容器的焊接材料,必须NB/T47015《承压设备用焊接材料订货技术条件》进行采购并有焊接材料的质量证明书(原件)。
在使用过程中对焊接材料产生疑义或焊接材料用于重要设备时,由焊接试验室对焊接材料的工艺性能、熔敷金属的化学成分、力学性能、弯曲性能等进行复验。
具体复验按相应的标准执行。
3.2焊接材料的代用,必须按材料代用手续经焊接责任人员批准。
母材代料可能导致焊接材料的变更,其代料单必须经由焊接责任人员会签并依照材料代用规定另行补充下达焊接材料变更手续及相应焊接工艺变更手续。
3.3焊接材料的选择3.3.1相同钢号母材的相焊1)碳素钢、低合金钢的焊缝金属应保证力学性能,且其抗拉强度不应超过母材标准规定的上限值加30Mpa。
耐热型低合金钢的焊缝金属还应保证化学成分。
2)高合金钢的焊缝金属应保证力学性能和耐腐蚀性能。
3)不锈钢复合板基层的焊缝金属应保证力学性能,且其抗拉强度不应超过母材标准规定的上限值加30Mpa;复层的焊缝金属应保证耐腐蚀性能,当有力学性能要求时还应保证力学性能;复层焊缝与基层焊缝以及复层焊缝与基层钢板的交界处宜采用过渡焊缝。
3.3.2不相同钢号母材的相焊不同强度钢号的碳素钢、低合金钢之间的焊缝金属应保证力学性能,且其抗拉强度不应超过强度较高母材标准规定的上限值。
奥氏体高合金钢与碳素钢或低合金钢之间的焊缝金属应保证力学性能和抗裂性能。
宜采用铬镍含量较奥氏体高合金钢母材高的焊接材料。
3.3.3用于焊接压力容器受压元件及与受压元件相焊的焊条、焊剂应尽量选用碱性或低氢型的4焊前准备4.1焊缝坡口型式应符合图纸或焊接工艺规程的要求。
碳素钢和标准抗拉强度下限值不大于540Mpa的强度型低合金钢可采用冷加工方法,也可采用热加工方法制备坡口。
钢制压力容器热处理通用工艺规程
1. 预处理:在热处理之前,应对压力容器的表面进行清洗和除油处理,以确保表面的干净和无杂质。
2. 加热:将压力容器置于加热设备中,升温速率一般为200℃/h。
加热温度根据压力容器的材料和规格确定,通常在800℃到1200℃之间。
3. 保温:将压力容器保持在设定的加热温度下一定时间,以保证热处理的效果。
保温时间一般根据厚度和材料类型确定,通常为1到4小时。
4. 冷却:将保温结束的压力容器缓慢冷却至室温。
冷却速率一般为100℃/h,可通过空气冷却或水冷却等方法实现。
5. 温度检测:使用温度计或热处理仪器检测压力容器的冷却温度,确保其达到设定要求。
6. 检验:对热处理后的压力容器进行金相组织检验、硬度测试等,以评估其热处理效果和性能。
7. 完工:对经过热处理并合格的压力容器进行标记和存储,准备下一步的使用或出售。
注意事项:
1. 热处理过程中应确保冷却速率和温度控制的稳定性,以避免产生过多的应力和变形。
2. 不同类型的钢制压力容器可能需要采用不同的热处理工艺,具体工艺规程应根据材料和设计要求来确定。
3. 热处理前应对压力容器进行适当的预处理,以清除表面的污染物和杂质,避免对热处理结果产生影响。
4. 热处理结束后,应对热处理后的压力容器进行必要的检验和测试,确保其达到设计和安全要求。
5. 注意热处理设备和操作人员的安全,避免发生火灾、爆炸等事故。
钢制压力容器热处理通用工艺规程是指钢制压力容器在制造过程中进行热处理的一系列工艺步骤和规范。
以下是一般的钢制压力容器热处理通用工艺规程:
1. 炉前处理:在进行热处理之前,需要对钢制压力容器进行炉前处理,包括检查和清洁。
检查主要是检查容器的外观和尺寸是否符合要求,清洁主要是用溶剂和刷子清洁容器的表面,以去除表面的油污和污垢。
2. 加热:将钢制压力容器放入热处理炉中,逐渐升温到指定温度。
升温速度通常在10-50℃/小时之间,具体根据材料和工艺要求确定。
加热温度一般根据材料的性质和所需的组织结构来确定。
3. 保温:将钢制压力容器保持在指定温度下一定的时间,以使组织结构发生相应的变化。
保温时间一般根据材料的尺寸和要求来确定,通常为数小时到数十小时。
4. 冷却:将钢制压力容器从保温温度降温到室温。
冷却速度一般根据材料的性质和工艺要求来确定,可以是自然冷却、空气冷却或水冷却等方式。
5. 退火:在热处理后,对钢制压力容器进行退火处理,以消除残余应力和改善综合性能。
退火温度和时间一般按照材料的性质和工艺要求进行确定。
6. 验证和检测:对热处理后的钢制压力容器进行验证和检测,确保其质量和性能符合要求。
包括检查外观缺陷、尺寸偏差、硬度、强度和化学成分等。
总的来说,钢制压力容器热处理通用工艺规程是根据具体的材料和要求来制定的,其中的具体参数和步骤需要根据实际情况进行调整和优化。
压力容器装配通用工艺规程1范围本规程规定了公司压力容器产品装配焊缝布置、装配错边量棱角度不等厚度对接、装配尺寸公差、热处理、无损检测和管箱装配的要求;本规程适用于本公司压力容器产品的装配;非压力容器产品可参照本标准执行;本规程不适用于按ASM规范制造生产的压力容器的装配;2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款;凡是注日期的引用文件, 其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本;凡是不注日期的引用文件, 其最新版本适用于本标准;G150 《压力容器》GB151 《管壳式换热器》HG20584 《钢制化工容器制造技术要求》JB4730 《压力容器无损检测》JB/T4750 《制冷装置用压力容器》3总则3.1当本标准与图纸或专用工艺的规定不一致或图纸另有规定时,应以图纸或专用工艺文件规定为准;3.2操作工在操作前应先看图纸和专用工艺文件, 熟悉装配方法、顺序和装配要求;3.3装配时应核对装配零件的P/N号是否与BO一致;受压元件是否有材料标记;上道工序的加工是否合格;是否已经过必要的检验;3.4操作工在本工序完工后应首先自检, 合格后再转下道工序;3.5需经相关检验人员(以下简称检验员)检验的控制点在自检合格后交相关检验员检验;停止点必须经检验员和压力容器体系相关责任人检验确认;3.6不准强力装配;3.7装配时使用的临时拉筋、吊耳等应采用与容器焊接性能相似的材料、焊材及焊接工艺;装配后留下的焊疤应磨平, 打磨后的厚度不应小于设计母材厚度;3.8制造中应避免钢板表面的机械损伤;对尖锐伤痕以及不锈钢容器防腐蚀表面的局部伤痕、刻槽等缺陷应予修磨, 修磨范围的斜度至少为1:3;修磨的深度应不大于该部位钢材厚度的5% S n,且不大于2mm否则应予补焊;对于复合钢板,其修磨深度不得大于复层厚度的3%且不大于1mm 否则应予补焊;钢板的补焊按Q/YWT0204的规定3.9凡被支座、腹板、垫板、补强圈等覆盖的焊缝,均应打磨至母材平齐; 3.10壳体内凡妨碍管束顺利装入或抽出的焊接接头均应打磨至与母材平齐;3.11 容器封闭前(装配封头、管板等)均应对容器内进行清洁检查, 并检查是否有工具或杂物遗留在容器内;3.12容器在生产过程中应对暂时不加工的管口进行封闭, 防止杂物进入容器内;有螺纹的接管在焊接过程中应用闷盖保护, 防止飞溅进入容器或损坏螺纹; 3.13加工过程中如发现标记会被覆盖或加工掉, 则应事先进行标记移植; 4焊缝布置4.1筒节长度一般应不小于300mm相邻筒节间纵缝及筒节纵缝与封头拼缝应错开,焊缝中心错开间距(外圆弧长)应大于名义厚度S n的三倍、且不小于100mm图1);4.2设备内外装配件与壳体相焊接的焊缝,其焊缝边缘应尽量避开筒体焊缝;4.3当装配件与壳体主焊缝交叉时,应在附件上开一槽口,以使连接焊缝跨越主焊缝(图1); 4.4筒体或封头上开孔,以开孔中心为圆心,1.5倍开孔直径为半径的范围内不要布置焊缝 (图1)若不能避开,则在此范围内的A B 类焊缝应全部进行无损检测; 4.5筒体焊缝布置时应尽量不被支座、垫板等覆盖;如被覆盖则按3.9条执行外,还应对被覆盖 部分的焊缝全部进行无损检测;5装配错边量b 、棱角度E 、不等厚对接的要求5.1A 、B 类焊接接头对口错边量b 按表1和图2规定;5.1.1用焊接检验尺检验,当壳体为不等厚钢板时,按薄板计算,且测量时不计入钢板的厚度 差; 5.1.2对于封头压制后接头部分的增厚情况,装配应以外表对齐为准,测量时不计入增厚因素 5.1.3装配时先测量两零件的外周长,计算差值,确定错边量值,以便装配时保证错边量在圆周 方向均匀分布;图2:错边量示意图b表1 A 、 B 类焊接接头的错边量单位:mm对口处钢材厚度S s A 类焊接接头对口错边量b B 类焊接接头对口错边量b< 12 b< 1/4 S s b< 1/4 S s >12~20 b< 3 b< 1/4 S s >20~40 b< 3 b< 5.0 >40~50b< 3b< 1/8 S s > 50b< 1/16,且w 10b< 1/8 S s,且 w 205.2B 类焊接接头在轴向形成的棱角度 EW (0.1 S n+2.0)mm 且不大于5mm 用长度不小于300mm 的直尺或样板测量(图3);图3:棱角度示意图5.3当对接壳体两侧钢板厚度不等时,当薄板厚度大于10mm 两板厚度差超过3mr 时,或当薄板 厚度大于10mm 两板厚度差大于薄板厚度的30%或超过5mr 时,均应按下图4所示的要求单面或 双面削薄厚板边缘,或按同样要求采用堆焊方法将薄板边缘焊成斜面 ;EDdL24 - |r(L1,L2) > 3( S 1—S 2)图4不等厚对接5.4最大最小直径差,壳体上同一截面上最大最小直径差应该不大于该截面内径的1%;如果为换热容器,则壳体上同一截面上最大最小直径差应该不大于该截面内径的0.5 %;当被检断面Eb住J=2ES 2S2”位于开孔中心一倍开孔内径范围内时,则该断面最大内径与最小内径应不大于该断面内径的1%与开孔内径的2%之和;5.5当筒体由几节拼接而成时,拼接后的筒体直线度△ LW L%。
钢制压力容器热处理通用工艺规程钢制压力容器是一种常用的工业设备,广泛应用于石化、化工、机械制造等行业。
为了确保钢制压力容器的性能和安全,需要对其进行热处理。
下面是钢制压力容器热处理通用工艺规程,主要包括预热、退火、正火和淬火等过程。
一、预热阶段预热是指在进行淬火或正火之前,将工件加热到一定温度以减少冷裂风险。
预热时应注意以下几点:1. 预热温度和保温时间应按照材料、工件尺寸和工艺要求确定,一般应在材料转变温度的50~100℃范围内。
2. 预热应逐渐升温,避免出现温度梯度过大的情况。
3. 预热结束后,应将工件快速转移到热处理设备中,避免温度降低。
二、退火阶段退火是指将工件加热到一定温度并保温一段时间,然后缓慢冷却到室温。
退火有以下几种类型:1. 归纳退火:将工件加热到材料的再结晶温度以上,然后经过一定时间的保温,最后缓慢冷却。
2. 简化退火:将工件加热到材料的过共晶区,然后保温一定时间,最后缓慢冷却。
3. 正火退火:将工件加热到材料的纤维体区,然后保温一段时间,最后缓慢冷却。
在退火过程中,应注意以下几点:1. 退火温度和保温时间应按照材料和工件尺寸确定,一般应在材料的转变温度以上,且保温时间要足够。
2. 退火过程中,要保证工件表面的气氛和真空氛围,避免氧化和表面质量受损。
3. 退火后,要对工件进行良好的冷却,以避免形成大晶粒或负的组织。
三、正火阶段正火是指将工件加热到相对较高的温度并保温一段时间,然后迅速冷却。
正火的目的是增加材料的硬度和强度。
正火过程中,应注意以下几点:1. 正火温度和保温时间应根据材料类型和工件要求确定,一般在比转变温度高50~100℃的范围内进行。
2. 正火过程中,要保证工件的均匀加热,避免产生温度梯度过大的情况。
3. 正火后,应采用迅速冷却的方式,如水淬或油淬,以保证工件的硬度和强度。
四、淬火阶段淬火是指将工件加热到材料的临界转变温度以上并保温一段时间,然后迅速冷却到室温。
压力容器制造、检验通用工艺规程文件编号Q/PV-Q-3-102-2003第 1 版筒体制造通用工艺规程第0 次修改修改日期:第 1 页共8 页1总则1.1 本守则依据GB150—1998《钢制压力容器》和GB151—1999《管壳式换热器》标准,以及《压力容器安全技术监察规程》99版,结合我厂设备及技术力量,编制的压力容器筒体制造通用工艺守则。
1.2 由于压力容器种类较多,各种类型之间要求各不相同,因此,本守则若同产品设计或工艺文件有矛盾时,应以产品设计图样设计要求或工艺文件规定为准。
1.3 操作工人必须熟悉图样和工艺文件,对本岗位所使用的设备结构性能和操作规程必须了解。
1.4 筒体焊缝必须由持证合格焊工施焊。
2 材料2.1 制造筒体用的材料质量及规格应符合《容规》第10条国标、部标及相应的国家标准、行业标准有关的规定,并具有质量证明书,材料上明显部位有清晰、牢固的钢印标志或其他标志。
2.2 属下列之一的主要受压元件材料应复验2.2.1 设计图样要求复验的;2.2.2 用户要求复验的;2.2.3 制造单位不能确定材料真实性或材料的性能和化学成分有怀疑的;2.2.4 钢材质量证明书注明复印件无效或不等效的。
2.3 需要代用的材料,原则上应事先取得原设计单位出具的设计更改批准文件。
2.4 制造筒体的钢板表面不得有严重锈蚀或裂纹、斑疤、夹层等影响强度的缺陷。
2.5 严禁使用未经检验或检验不合格的材料。
3 筒体加工3.1 领料3.1.1 领料人员应根据领料单、图样、工艺过程卡,核对材料规格,材质标记,并在工艺过批准: 审核:编制: 2003.08.15实施压力容器制造、检验通用工艺规程文件编号Q/PV-Q-3-102-2003第 1 版筒体制造通用工艺规程第 0 次修改 修改日期: 第 2 页 共8 页程卡上作记录。
3.1.2 所领钢板平直度必须在允差范围内,其弧曲度与波浪度可根据具体产品图样要求确 定。
钢制压力容器下料通用工艺守则(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1 适用范围本守则规定了压力容器受压元件下料的通用技术要求。
本工艺守则规定了下料工序的操作要点、质量要求和控制的主要内容。
本守则适用于压力容器制造零部件的下料工序。
2 引用标准《压力容器安全技术监察规程》GB150-98《钢制压力容器》(第1、2号修改单)GB151-99《管壳式换热器》(第1号修改单)公司《质量手册》及相关程序文件、管理制度3 材料压力容器用材料的质量及规格应符合《压力容器安全技术监察规程》、GB150-2011《钢制压力容器》、GB151-2012《管壳式换热器》及相应国家标准、行业标准的规定。
制造压力容器受压元件的材料必须具有材料生产单位按照相应标准规定提供的质量证明书(原件)。
质量证明书的内容必须齐全、完整,并应有材料生产单位质量检验部门盖章确认。
如质量证明书为材料生产单位出具的复印件,应由材料销售单位在质量证明书的复印件中加盖销售单位质量检验章和经办人章。
购进的压力容器受压元件用材,应有明显清晰的标志,且和质量证明书一致,图样及相关标准要求复验及对质量证明书中的某项性能有怀疑时均需复验,没有完成的材料检验,未经材料责任师签署验收入库单的材料不得进入下料现场。
投入下料现场的材料未种植本单位材料代号标识及检查员见证标识,不允许进行划线下料。
主要受压元件用材必须进行标记的种植,且应经材料检查员确认。
在使用中始终保留有标识,当制造中需要使用时,应进行标记的移植,并有材料检验员的确认标记。
主要受压元件包括:压力容器中筒体,封头(端盖),人孔盖、人孔法兰、人孔接管、膨涨节、开孔补强圈、设备法兰、换热器的管板和换热管、M36mm以上的设备主螺栓及直径大于等于250mm的接管和管法兰。
标记位置图1 筒节钢板拼接标记位置封头拼缝图2 封头钢板标记位置图3 圆形锻件标记位置图4管板、法兰标记位置4 划线划线工人必须熟悉图样和制造卡的要求,划线前应核对材料的品种、规格是否符合图样和工艺文件的要求。