计量经济学第二章 一元线性回归方程
- 格式:ppt
- 大小:1.51 MB
- 文档页数:57
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
计量经济学(第三版)李子奈潘文卿编著第二章第12题解题答案P61:1.作散点图,建立税收和GDP的一元线性回归方程,解释斜率经济意义。
1.1散点图图表1税收Y和国内生产总值GDP散的样本点图1.2税收Y随国内总值GDP(X)变化的一元线性回归方程,以及斜率的经济意义。
图表2中国内地税收的平均状态对国内生产总值平均状态的回归∴又回归估计结果可得一元线性回归方程为Y I=-10.6296+0.0710X I斜率的经济意义:表示国内生产总值GDP每1元的变化所引起的税收的平均变化为0.071.2.对建立的回归方程进行检验。
2.1拟合优度检验----可决系数R2统计量从回归估计的结果看,模型拟合还行。
可决系数R2=0.7603,表明税收变化的76.03%可以由国内生产总值GDP的变化来解释。
2.2变量的显著性检验假设:H0:βi=0 H1:βi≠0给定显著性性水平0.05,查t分布表得到临界值t(a/2)(31-2)=2.045i.对于β1,从回归分析结果中斜率的t检验值来看9.591245>2.045,所以在95%的置信度下拒绝原假设H0,即变量X是显著的,通过显著性检验。
ii.对于β0,从回归分析结果中截距t检验值来看-0.1235<2.045, 所以在95%的置信度下接受原假设H0,没有通过显著性检验。
3.若2008年某地区GDP为8500亿元,求该地区税收收入的预测值及预测区间?解:由回归方程Y I=-10.6296+0.0710X I可得该地区税收收入的预测值Y=-10.6296+0.0710x8500=592.8704(亿元)由于国民生产总值X的样本均值和样本方差为:E(X)=8891.126 Vax(X)=5782313在给定95%的置信度水平下,该地区税收收入的预测区间为:=592.704±641.288或(-48.584,1233.992)。
第二章 一元线性回归模型一、单项选择题1、表示X 与Y 之间真实线性关系的是【 】A tt X Y 10ˆˆˆββ+= B E t t X X Y 10)(ββ+= C t t t u X Y ++=10ββ D t t X Y 10ββ+=2、参数β的估计量βˆ具备有效性是指【 】 A Var(βˆ)=0 B Var(βˆ)为最小 C (βˆ-β)=0 D (βˆ-β)为最小 3、设样本回归模型为i i i e X Y ++=10ˆˆββ,则普通最小二乘法确定的iβˆ的公式中,错误的是【 】 A∑∑---=21)())((ˆX X Y Y X X ii iβ B ∑∑∑∑∑--=221)(ˆi ii i i i X X n Y X Y X n βC ∑∑-⋅-=221)(ˆX n X YX n Y X ii i β D 21ˆxii i i Y X Y X n σβ∑∑∑-= 4、对于ii i e X Y ++=10ˆˆββ,以σˆ表示估计标准误差,r 表示相关系数,则有【 】 A σˆ=0时,r =1 B σˆ=0时,r =-1 C σˆ=0时,r =0 D σˆ=0时,r =1 或r =-1 5、产量(X ,台)与单位产品成本(Y , 元/台)之间的回归方程为Yˆ=356-1.5X ,这说明【 】A 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少1.5元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少1.5元6、在总体回归直线E X X Y 10)(ββ+=中,1β表示【 】 A 当X 增加一个单位时,Y 增加1β个单位B 当X 增加一个单位时,Y 平均增加1β个单位C 当Y 增加一个单位时,X 增加1β个单位D 当Y 增加一个单位时,X 平均增加1β个单位7、对回归模型t t t u X Y ++=10ββ进行统计检验时,通常假定t u 服从【 】 A N (0,2i σ) B t(n-2) C N (0,2σ) D t(n)8、以Y 表示实际观测值,Yˆ表示回归估计值,则普通最小二乘法估计参数的准则是使【 】 A )ˆ(iiYY -∑=0 B 2)ˆ(iiY Y -∑=0 C)ˆ(iiYY -∑为最小 D 2)ˆ(iiY Y -∑为最小9、设Y 表示实际观测值,Yˆ表示OLS 回归估计值,则下列哪项成立【 】 A Y Y=ˆ B Y Y =ˆ C Y Y=ˆ D Y Y =ˆ 10、用普通最小二乘法估计经典线性模型t t t u X Y ++=10ββ,则样本回归线通过点【 】A (X ,Y )B (X ,Y ˆ)C (X ,Yˆ) D (X ,Y ) 11、以Y 表示实际观测值,Yˆ表示回归估计值,则用普通最小二乘法得到的样本回归直线 ii X Y 10ˆˆˆββ+=满足【 】 A )ˆ(iiYY -∑=0 B 2)ˆ(Y Y i-∑=0 C2)ˆ(iiY Y -∑=0 D2)(Y Y i-∑=012、用一组有30个观测值的样本估计模型t t t u X Y ++=10ββ,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于零的条件是其统计量t 大于【 】A 05.0t (30)B 025.0t (30)C 05.0t (28)D 025.0t (28)13、已知某一直线回归方程的判定系数为0.64,则解释变量与被解释变量间的相关系数可能为【 】A 0.64B 0.8C 0.4D 0.32 14、相关系数r 的取值范围是【 】A r ≤-1B r ≥1C 0≤ r ≤1D -1≤ r ≤1 15、判定系数2R 的取值范围是【 】A 2R ≤-1B 2R ≥1C 0≤2R ≤1D -1≤2R ≤1 16、某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则【 】 A 预测区间越宽,精度越低 B 预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D 预测区间越窄,预测误差越大 17、在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施【 】 A 增大样本容量 n B 提高置信水平C 提高模型的拟合优度D 提高样本观测值的分散度18、对于总体平方和TSS 、回归平方和ESS 和残差平方和RSS 的相互关系,正确的是【 】 A TSS>RSS+ESS B TSS=RSS+ESS C TSS<RSS+ESS D TSS 2=RSS 2+ESS 219、对样本相关系数r ,以下结论中错误..的是【 】 A r 越接近于1,Y 与X 之间线性相关程度越高 B r 越接近于0,Y 与X 之间线性相关程度越弱 C -1≤r ≤1D 若r=0,则X 与Y 独立20、若两变量x 和y 之间的相关系数为-1,这说明两个变量之间【 】 A 低度相关 B 不完全相关 C 弱正相关 D 完全相关21、普通最小二乘法要求模型误差项u i 满足某些基本假定,下列结论中错误的是【 】。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。
其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。
其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。
一般说来,随机项来自以下几个方面:1、变量的省略。
由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。
2、统计误差。
数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。
3、模型的设定误差。
如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。
4、随机误差。
被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。
若相互依赖的变量间没有因果关系,则称其有相关关系。
对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。
他们各有特点、职责和分析范围。
相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。
回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。