浪涌保护器选择要点及相关问题
- 格式:doc
- 大小:34.50 KB
- 文档页数:4
浪涌保护器的主要技术参数
摘要:
1.浪涌保护器的定义和作用
2.浪涌保护器的主要技术参数
3.浪涌保护器的应用场景
4.浪涌保护器的选择和安装注意事项
正文:
浪涌保护器,又称电涌保护器(Surge Protective Device,简称SPD),是一种用于保护电子设备、仪器仪表和通讯线路安全的电子装置。
它能够在电气回路或通信线路受到外界干扰而产生尖峰电流或电压时,迅速导通分流,从而避免浪涌对回路其他设备器材造成损害。
浪涌保护器的主要技术参数包括:
1.额定电压:指浪涌保护器正常工作时所能承受的电压范围。
一般而言,浪涌保护器适用于交流50/60HZ,额定电压220V 至380V 的供电系统(或通信系统)。
2.额定放电电流:表示浪涌保护器在瞬间能够承受的最大冲击电流。
常见的额定放电电流有100kA、40kA 等不同规格,适用于不同场景的需求。
3.响应时间:指浪涌保护器从检测到浪涌到启动保护作用的时间。
响应时间越短,保护效果越好。
一般而言,浪涌保护器的响应时间在10/350us 至8/20us 之间。
4.保护级别:根据浪涌保护器对浪涌电流的抑制能力,分为1 级、2 级、
3 级等不同保护级别。
其中,1 级保护级别最高,能够有效抑制100kA 以上的浪涌电流;2 级保护级别次之,能够抑制40kA 至100kA 的浪涌电流;3 级保护级别最低,只能抑制40kA 以下的浪涌电流。
浪涌保护器的应用场景非常广泛,不仅适用于家庭住宅,还广泛应用于第三产业和工业领域的电涌保护。
在选购浪涌保护器时,需根据实际应用场景选择合适的额定电压、额定放电电流和保护级别。
浪涌保护器的选型及使用由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。
风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。
随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。
业主对浪涌保护器的需求越来越普遍。
这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。
为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。
(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规X。
应用指南该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。
该标准也说明了选择过电压保护设备的各种问题。
标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。
简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。
下图是评估中最重要问题的概览:选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT系统等)。
浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。
如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。
仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。
安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。
根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。
浪涌保护器选型标准
浪涌保护器是一种用于保护电子设备免受电力系统中的浪涌干
扰的重要装置。
在选择合适的浪涌保护器时,需要考虑多种因素,
以确保设备能够有效地抵御浪涌干扰。
以下是浪涌保护器选型标准
的一些重要考虑因素。
首先,需要考虑的是设备的额定电压和电流。
浪涌保护器的额
定电压和电流应与被保护设备的额定电压和电流相匹配,以确保在
浪涌干扰发生时能够有效地保护设备。
其次,需要考虑浪涌保护器的响应时间。
浪涌保护器应能够在
浪涌干扰发生时迅速响应并启动保护措施,以最大程度地减少对设
备的损害。
另外,还需要考虑浪涌保护器的耐受能力。
浪涌保护器应能够
在长期、高强度的浪涌干扰下保持稳定可靠的工作,以确保设备长
时间内不受干扰。
此外,浪涌保护器的安装位置也是一个重要的考虑因素。
浪涌
保护器应尽可能靠近被保护设备,以最大程度地减少连接线路长度,
从而减小浪涌干扰的影响。
最后,还需要考虑浪涌保护器的可维护性和可靠性。
浪涌保护器应易于维护和检修,并且具有较高的可靠性,以确保长期稳定地保护设备。
综上所述,选择合适的浪涌保护器需要考虑设备的额定电压和电流、响应时间、耐受能力、安装位置、可维护性和可靠性等多个因素。
只有综合考虑这些因素,才能选择到最适合的浪涌保护器,从而有效地保护设备免受浪涌干扰的影响。
谈谈如何选用浪涌保护器随着电子产品的广泛应用,电子器件的微型化、集成度和精密度也在不断提高,但它们对过电压的耐受能力却越来越差,到了毫瓦級以下。
同时,自然界雷电磁场所产生的感应也可随电源线或信号线等途径侵入建筑物,其产生的雷电暂态过电压过电流(雷电浪涌)更易对建筑物内的电气设备尤其是电子设备造成破坏。
因此,防雷与安全防护中的浪涌保护技术已成为当前的一个热点,并引起了大家的高度重视。
1、浪涌的危害浪涌分为由雷击引起的浪涌以及电气系统内部产生的操作浪涌。
出现在建筑物内的浪涌从近kV到几十kV,如不加以限制会导致以下问题:1)引起电子设备的误动;2)电源设备和贵重的计算机及各种硬件设备的损坏,造成直接经济损失;3)在电子芯片中留下潜伏性的隐患,使电子设备运行不稳定和老化加速。
2、浪涌保护器的工作原理把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏,由其内部的非线性元件来完成。
在被保护电路正常工作,瞬态浪涌未到来以前,非线性元件呈现极高的电阻,对被保护电路没有影响;而当瞬态浪涌到来时,此元件迅速转变为很低的电阻,将浪涌电流旁路,并将被保护设备两端的电压限制在较低的水平。
到浪涌结束,该非线性元件又迅速、自动地恢复为极高电阻。
3、雷电危害的途径1)通过架空线路、电缆线路、金属管道入侵由于外部架空电源线与信号线进入建筑物,雷电入侵的途径分为以下3种情况:(1)当雷电直接击中线路时,强大的雷电电流通过线路直接对敏感电子元件造成毁灭性破坏,这种入侵沿线路传播,涉及线路广,危害范围大;(2)当雷、雨、云对地面放电时,在其附近的线路上会感应出强大的过电压,击坏与线路相关的设备;(3)多条电缆平行铺设,当某一导线被雷电击中时,会在相邻导线上感应出过电压,同时会击坏敏感电子设备。
2)通过接地装置的地电位反击电压入侵当雷电击中附近的建筑物或其他导电物体、地面时,在接地装置附近形成放射性的电位分布,使连接设备的接地装置产生高压地电位反击,对设备造成损坏。
浪涌保护器选型标准浪涌保护器是电气系统中非常重要的一部分,它可以有效地保护电气设备免受电压浪涌的影响。
在选择浪涌保护器时,需要考虑一系列的标准和因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
以下是浪涌保护器选型的一些标准和建议。
首先,需要考虑的是浪涌保护器的额定电压。
在选择浪涌保护器时,需要确保其额定电压能够覆盖整个系统的工作电压范围,以保护系统免受电压浪涌的影响。
此外,还需要考虑系统中可能出现的过电压情况,以确定浪涌保护器的最大工作电压。
其次,浪涌保护器的额定电流也是一个重要的考虑因素。
在选择浪涌保护器时,需要确保其额定电流能够满足系统中可能出现的电流浪涌情况,以保护系统中的电气设备免受电流过载的影响。
此外,还需要考虑系统中可能出现的短路电流情况,以确定浪涌保护器的最大工作电流。
另外,浪涌保护器的响应时间也是一个需要考虑的因素。
在选择浪涌保护器时,需要确保其响应时间足够快,以在电压浪涌出现时能够及时地引导电流流向地,保护系统中的电气设备免受损坏。
通常情况下,浪涌保护器的响应时间应该在纳秒级别。
此外,浪涌保护器的容量和耐受能力也需要考虑。
在选择浪涌保护器时,需要确保其具有足够的容量和耐受能力,以应对系统中可能出现的大功率电压浪涌情况,保护系统中的电气设备免受损坏。
最后,还需要考虑浪涌保护器的安装和维护便利性。
在选择浪涌保护器时,需要确保其安装和维护便利,以降低系统的维护成本和提高系统的可靠性。
综上所述,浪涌保护器选型的标准包括额定电压、额定电流、响应时间、容量和耐受能力、安装和维护便利性等因素。
在选择浪涌保护器时,需要综合考虑这些因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
浪涌保护器选型标准
浪涌保护器作为电气设备中的重要部件,其选型标准对于保护电气设备和系统具有重要的意义。
在进行浪涌保护器选型时,需要考虑多个方面的因素,以确保所选浪涌保护器能够有效地保护设备免受浪涌电压的影响。
本文将介绍浪涌保护器选型的标准和注意事项,帮助工程师们更好地进行浪涌保护器的选型工作。
首先,选型时需要考虑的因素之一是设备的额定工作电压。
浪涌保护器的额定工作电压应该与被保护设备的额定工作电压相匹配,以确保在正常工作状态下不会发生误动作,同时在浪涌电压作用下能够有效地保护设备。
其次,需要考虑的因素是设备的额定工作电流。
浪涌保护器的额定放电电流应该大于或等于被保护设备的额定工作电流,以确保在浪涌电流作用下能够及时启动放电,保护设备不受损坏。
另外,还需要考虑设备的接入方式和接入位置。
根据被保护设备的不同接入方式和接入位置,选择合适的浪涌保护器,确保其能够有效地接地并保护设备。
此外,还需要考虑设备的环境条件。
在恶劣的环境条件下,如高温、高湿度、腐蚀性气体环境等,需要选择具有相应防护等级的浪涌保护器,以确保其能够在恶劣环境下正常工作。
最后,还需要考虑设备的使用寿命和可靠性要求。
根据设备的使用寿命和可靠性要求,选择具有相应寿命和可靠性指标的浪涌保护器,以确保其能够满足设备的使用要求。
综上所述,浪涌保护器选型需要考虑设备的额定工作电压、额定工作电流、接入方式和位置、环境条件、使用寿命和可靠性要求等多个因素。
只有综合考虑这些因素,才能选择到合适的浪涌保护器,确保设备得到有效的保护。
希望本文能够帮助工程师们更好地进行浪涌保护器的选型工作。
浪涌保护器选择要点及相关问题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浪涌保护器浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。
本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,。
可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。
而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。
浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。
当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。
浪涌保护器(也称防雷器)的分级防护由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。
第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。
第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。
同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。
第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。
1、第一级保护目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。
入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。
该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。
一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。
浪涌保护器选择要点1. 电气参数:浪涌保护器的主要功能是限制过电压,因此关键的性能参数是其额定电压(Uc)和放电电流(In)。
额定电压应与所保护设备的额定电压匹配,而放电电流应能够有效地抑制电压浪涌。
另外,还需考虑保护器的额定运行电流(Imax)和极限电压(Up),以确保其能够正常工作。
2.设备类型:不同类型的设备可能对浪涌保护器的要求不同。
例如,电力系统可能需要采用高压浪涌保护器,而计算机设备可能只需要较低压的保护。
了解所保护设备的类型和特点,选择适合的浪涌保护器,可以有效地提供保护。
3.保护级别:浪涌保护器一般分为几个级别,如C、D、B等等。
级别越高,保护能力越强。
根据所需保护的设备和环境,选择适当的保护级别。
一般来说,重要的设备或易受损坏的环境应选择高级别的保护。
4.安全性能:浪涌保护器不仅需要有效地限制电压浪涌,还需要具备一定的安全性能,以防止火灾等危险。
关注保护器的灭弧能力、自恢复能力和外壳材料,确保其满足相关的安全标准和要求。
5.可靠性和寿命:浪涌保护器作为一种长期使用的设备,其可靠性和寿命也是需要考虑的因素。
查看产品说明,了解其可靠性指标和使用寿命,选择具有高可靠性和长使用寿命的浪涌保护器。
6.安装方式:根据实际情况,选择合适的浪涌保护器安装方式,如导轨安装、插头式安装、板式安装等。
考虑保护器的安装空间和对设备及系统的影响,选择适合的安装方式。
7.价格和供应:最后,还需考虑浪涌保护器的价格和供应情况。
比较不同品牌和型号的浪涌保护器的价格和性能,选择性价比高的产品。
同时,还需考虑供应商的信誉和交货能力,确保能够及时供应所需的保护器。
综上所述,选择浪涌保护器时,需要考虑电气参数、设备类型、保护级别、安全性能、可靠性和寿命、安装方式、价格和供应等要素。
根据实际需求,权衡这些要素,选择适合的浪涌保护器,以保护电气设备免受过电压浪涌的影响。
防雷浪涌保护器选型方案防雷浪涌保护器是一种用于保护电气设备免受雷电或其他电源干扰引起的过电压或过电流的装置。
防雷浪涌保护器的选型应根据国家标准、设备要求和实际工程条件进行,以达到既满足防雷验收要求,又能有效保护设备的目的地凯科技介绍一些常用的防雷浪涌保护器选型方法和技巧,以及一些具体的行业浪涌保护器选型方案。
一、防雷浪涌保护器选型的基本原则根据GB50057-2010《建筑物防雷设计规范》1、GB50343-2012《建筑物电子信息系统防雷技术规范》2和IEC61312《雷电电磁脉冲的防护》3等标准,防雷浪涌保护器选型应遵循以下基本原则:根据建筑物的防雷等级、设备的重要性和敏感性,确定所需的浪涌保护器的试验等级、通流容量和保护水平;根据供电系统的类型、电压等级和波形,确定所需的浪涌保护器的最大持续工作电压和保护模式;根据浪涌保护器的安装位置和距离,确定所需的浪涌保护器的响应时间和后备保护措施;根据工程实际情况,选择合适的浪涌保护器产品,考虑其结构、尺寸、安装方式、遥信报警功能等因素。
二、防雷浪涌保护器选型的主要参数防雷浪涌保护器选型时,需要关注以下几个主要参数:试验等级:指浪涌保护器按照不同的测试波形进行试验时所达到的等级,分为口、T2、T3三个等级。
T1试验用10/350μs波形模拟直接雷击效应,T2试验用8/20μS波形模拟间接雷击效应,T3试验用12/50Us波形模拟开关效应。
不同试验等级对应不同通流容量参数。
通流容量:指浪涌保护器能够承受并泄放的最大放电电流或冲击电流,是衡量其性能利可靠性的重要指标。
通流容量有以下几种表述方式:冲击电流1imp:指T1试验下通过浪涌保护器的峰值电流,单位为kA;最大放电电流Imax:指T2试验下通过浪涌保护器的峰值电流,单位为kA;标称放电电流In:指T2试验下通过浪涌保护器多次重复放电时不损坏其性能的峰值电流,单位为kA;额定负载电流I1:指在最大持续工作电压下通过浪涌保护器不引起其损坏或影响其性能的有效值交流或直流负载电流,单位为A。
浪涌保护器(防雷器)综合选型应用方案浪涌保护器器是一种用于保护电力系统和电子设备免受雷击或其他瞬态过电压影响的装置,它可以将过电压限制在设备或系统所能承受的范围内,或将过电流引入地线,从而减少或避免设备的损坏。
浪涌保护器器的选型和应用是防雷工程中的重要内容。
地凯科技将从以下几个方面进行介绍:浪涌保护器器的分类和原理浪涌保护器器的安装位置和方法浪涌保护器器的选型原则和步骤浪涌保护器器的分类和原理根据不同的工作原理,浪涌保护器器可以分为间隙型、压敏型和开关型三种。
间隙型浪涌保护器是利用空气间隙的击穿特性来实现过电压保护的,它在正常情况下是高阻态,当过电压达到一定值时,空气间隙会击穿形成低阻态,将过电流导入地线。
压敏型浪涌保护器是利用压敏电阻或氧化锌压敏片等非线性元件来实现过电压保护的,它在正常情况下是高阻态,当过电压超过一定值时,其阻值会急剧下降,形成低阻态,将过电流分流。
开关型浪涌保护器是利用气体放电管、晶闸管等可控开关元件来实现过电压保护的,它在正常情况下是断开状态,当过电压达到触发值时,开关元件会导通,将过电流切断或分流。
根据不同的应用场合,浪涌保护器器可以分为电源线路浪涌保护器、信号线路浪涌保护㈱和天馈线路浪涌保护器三种。
地凯科技电源线路浪涌保护器是用于保护交流或直流电源线路上的设备免受雷击或其他瞬态过电压影响的,它通常安装在配电箱或总开关柜内,并联于被保护线路上.信号线路浪涌保护器是用于保护通信、数据、控制等信号线路上的设备免受雷击或其他瞬态过电压影响的,它通常安装在信号端口或机柜内,并联于被保护线路上。
天馈线路浪涌保护甥是用于保护无线通信、广播、卫星等天馈线路上的设备免受雷击或其他瞬态过电压影响的,它通常安装在机房内设备附近或机架上,并联于被保护线路上。
地凯科技浪涌保护器器的安装位置和方法浪涌保护器器的安装位置应根据其作用范围和等级进行选择。
一般来说,建筑物内部可以划分为不同的防雷区域(1PZ),每个防雷区域之间有一定的等电位连接。
建筑电气——浪涌保护器的选择电涌保护器选择是电气应用中十分复杂的一个问题,其中涉及到系统接地形式、暴露程度、防雷分区、电缆长度、级间保护、保护点短路电流大小、分流回路数等方面。
一、电涌保护器电涌保护器(Surge Protective Device, SPD)是一种用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护电气或电子系统免遭雷电或操作过电压及涌流的损害。
树上鸟教育电气设计视频教程二、电涌保护器的分类可以按照非线性元件的特性进行分类,也可以按照不同系统中的不同使用要求分类2.1 按照非线性元件的特性进行分类(1)电压开关型电涌保护器:无电涌出现时为高阻抗,当出现电压电涌时突变为低阻抗。
通常采用放电间隙、充气放电管、硅可控整流器或三端双向可控硅元件做电压开关型电涌保护器的组件。
也称'克罗巴型'电涌保护器。
具有不连续的电压、电流特性。
(2)限压型电涌保护器无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。
通常采用压敏电阻、抑制二极管作限压型电涌保护器的组件。
也称'箝压型'电涌保护器。
具有连续的电压、电流特性。
树上鸟教育电气设计视频教程(3)组合型电涌保护器由电压开关型元件和限压型元件组合而成的电涌保护器,其特性随所加电压的特性可以表现为电压开关型、限压型或电压开关型和限压型皆有。
2.2 按照不同系统中的不同使用要求分类按用途分为电源系统 SPD、信号系统 SPD 和天馈系统 SPD;三、选择电源系统SPD的几个关键参数3.1 SPD试验类别的选择SPD的试验类别共计3类,即IIIIII类。
一般总配电柜使用I类或II类;分配电箱可用II和III类;后端也可用II和III类;规范中如下描述:(1)进入建筑物的交流供电线路,在线路的总配电箱等LPZ0A 或LPZ0B与LPZ1区交界处,应设置Ⅰ类试验的浪涌保护器或Ⅱ类试验的浪涌保护器作为第一级保护;(2)在配电线路分配电箱、电子设备机房配电箱等后续防护区交界处,可设置Ⅱ类或Ⅲ类试验的浪涌保护器作为后级保护;树上鸟教育电气设计视频教程(3)特殊重要的电子信息设备电源端口可安装Ⅱ类或Ⅲ类试验的浪涌保护器作为精细保护使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源线路浪涌保护器。
浪涌保护器(SPD)如何选型?其实并不难,读懂这篇文章足
矣!
(1)电涌保护器的功能是什么?哪些情况下需要使用电涌保护器?
(2)过电压分为几种类型?是否都可以采用电涌保护器来保护?
(3)什么是操作过电压?产生操作过电压的原因是什么?
(4)防雷分为哪些区域?SPD可在什么范围内进行保护?
高层住宅防雷方案
(5)什么叫做雷暴日?
(6)电涌保护器中的一级测试、二级测试是如何界定的,电涌保护器可以承受多少次In和Imax电流的冲击?
(7)8/20微秒标准电流波形和1.2/50微秒标准电压波形是什么意思?
(8)In、Imax、Un、Us.max、Up、Uc、Uchoe的含义是什么?
(9)最大冲击电流(冲击放电电流)Iimp和最大放电电流Imax 的区别是什么?
(10)新增加的电涌保护器术语有哪些?
(11)电涌保护器的选择配合原则是什么?
(12)选择电涌保护器要遵循哪些步骤?
(13)电涌保护器SPD中3P、3P+N与4P如何应用?
(14)对间隙型电涌保护器的安装位置有什么特别要求?
(15)电涌保护器安装引线截面的选取?
电涌保护器的连接导线最小截面积图表
(16)电涌保护器的上口进线端为什么要配一断路器?该断路器应如何选型?
后备断路器选择表
(17)客户选择熔断器和断路器作为浪涌保护器的后备保护有哪些区别?
(18)浪涌保护器的后备断路器应该怎样选型?。
浪涌保护器如何选型1、在选择浪涌保护器的大小的时候,一般需要根据浪涌保护器的实际安装位置来进行选择,也就是根据电源来进行选择。
若浪涌保护器是被安装在变压器的低压侧面位置的话,那么就应该选择使用高于60KA的浪涌保护器,一般可以选择使用120KA或者是100KA,10/350US型的浪涌保护器。
2、若浪涌保护器是被安装在配电柜的进线侧面位置的话,那么就应该选择使用高于40KA的浪涌保护器,一般可以选择使用80KA或者是60KA,8/20US型的浪涌保护器。
若浪涌保护器是被安装在配电箱的进线侧面位置的话,那么就应该选择使用高于20KA的浪涌保护器,一般可以选择使用20KA或者是40KA,8/20型的的浪涌保护器。
3、家中若要安装空开的话,那么就是根据浪涌保护器的放电电流来选择空开大小的,一般情况下,浪涌保护器的放电电流若是60KA的话,则应该选择63A 的空开,浪涌保护器的放电电流若是40KA的话,则应该选择40A的空开,浪涌保护器的放电电流若是20KA的话,则应该选择25A的空开。
浪涌保护器前面为什么要加熔断器和断路器当通过浪涌保护器的涌流大于其Imax,浪涌保护器将被击穿失效,从而造成回路的短路故障,为切断短路故障,需要加装断路器或熔断器。
每次发生雷击都会引起浪涌保护器的老化,如漏电流长时间存在,浪涌保护器会过热加速老化,此时需要断路器或熔断器的热保护系统在浪涌保护器达到最大可承受热量前动作断开电涌器。
浪涌保护器加熔断器的目的:1,防止因雷击而产生的工频续流(针对放电间隙型器件)对SPD及其线路的损坏。
2,方便维护更换SPD。
3,防止因SPD老化(如mov器件的漏流增大)而造成线路故障 SPD前端熔断器应根据避雷器厂家的参数安装。
如厂家没有规定,一般选用原则:根据(浪涌保护器的最大保险丝强度A)和(所接入配电线路最大供电电流B)来确定(开关或熔断器的断路电流C)。
确定方法:当:B大于A时 C小于等于A当:B等于A时 C小于A或不安装C当:B小于A时 C大于等于A浪涌保护器选型的误区:相电压和线电压很多人在进行浪涌保护器选型的时候,经常发现这样一个问题:为什么线路电压是380v或440v,而防雷厂家给我选用的浪涌保护器型号Uc值只有320v 或385v?浪涌保护器的工作电压小于我的电压值,这样选出来的浪涌保护器安装在线路上能防雷吗?其实,这里存在一个对浪涌保护器选型电压参数的误区,也就是相电压和线电压的区别。
浪涌保护器的选用原则浪涌爱护器是通过泄放雷电流、限制浪涌电压来爱护电子设备,是电子设备防雷的主要手段,也是内部防雷爱护的主要措施,从而成为综合防雷体系中的重要组成部分。
浪涌爱护器并联在被爱护设备两端,通过泄放浪涌电流、限制浪涌电压来爱护电子设备。
泄放雷电流、限制浪涌电压这两个作用都是由其非线性元件(一个非线性电阻,或是一个开关元件)完成的。
在被爱护电路正常工作,瞬态浪涌未到来以前,此元件呈现极高的电阻,对被爱护电路没有影响;而当瞬态浪涌到来时,此元件快速转变为很低的电阻,将浪涌电流旁路,并将被爱护设备两端的电压限制在较低的水平。
到浪涌结束,该非线性元件又快速、自动地恢复为极高电阻。
首先划分建筑物内的雷电爱护区,分为:LPZOA区、LPPB区、LPZl 区及LPZn+l后续防雷区。
全部进入建筑物的外来导电物均在L-P20A 或LP2PB与LPZl区交界处做等电位连接,并设置SPD,如有后续分区,一般也适用此原则。
然后,进行雷电流分流计算与雷击风险评估分级,并据此进行浪涌爱护器的选择。
浪涌爱护器从工作原理和性能上分为电压开关型、限压型和组合型。
(1)电压开关型SPD在无浪涌消失时为高阻抗,当浪涌电压达到肯定值时突变为低阻抗,此类SPD通常采纳放电间隙、充气放电管、闸流管和三端双向可控硅元件作为组件。
它的特点是放电力量强,但残压较高,通常为2-4kV,测试该器件一般采纳10/350ps的模拟雷电:中击电流波形。
电压开关型SPD完全可以爱护电气线路免遭雷电造成的涌流损害,特殊适用于I级雷电过电压爱护,所以,一般安装在建筑物LP20与LPZl区的交界处,可最大限度地消退电网后续电流,疏导10/350us的雷电冲击电流。
(2)限压型SPD在无浪涌消失时为高阻抗,随着浪涌电流和电压的增加,阻抗连续变小。
此类SPD通常采纳压敏电阻、抑制二极管等作为组件,有时称这类SPD为钳制型SPD。
它的残压较低,测试该器件一般采纳8/20us的模拟雷电:中击电流波形。
浪涌保护器选择的几个原则(1) SPD的电压保护水平Up应始终小于被保护设备的冲击耐受电压Uchoc,并且大于根据接地类型得出的电网最高运行电压Usmax,即UsmaxUpUchoc,若线路无屏蔽,尚应计入线路感应电压,Uchoc宜按其值的80%考虑(2) SPD与被保护设备两端引线应尽可能短,控制在0.5m以内(3) 如果进线端SPD的Up加上其两端引线的感应电压以及反射波效应与距其较远处的被保护设备的冲击耐受电压相比过高,则需在此设备处加装第二级SPD,其标称放电电流In不宜小于8/20s 3kA当进线端SPD距被保护设备不大于10m时,若该SPD的Up加上其两端引线的感应电压小于设备的Uchoc的80%,一般情况在该设备处可不装SPD(4) 当按上述第3点要求装的SPD之间设有配电盘时,若第一级SPD的Up加上其两端引线的感应电压保护不了该配电盘内的设备,应在该配电盘内安装第二级SPD,其标称放电电流In 不宜小于8/20s 5kA(5) 当在线路上多处安装SPD时,电压开关型SPD与限压型SPD之间的线路长度不宜小于10m,限压型SPD之间的线路长度不宜小于5m。
例如:被保护设备与配电中心距离较近,在线路敷设上可特意多绕一些导线(6) 当进线端的SPD与被保护设备之间的距离大于30m时,应在离被保护设备尽可能近的地方安装另一个SPD,通流容量可为8kA(7) 选择SPD时应注意保证不会因工频过压而烧毁SPD,因SPD是防瞬态过电压(s级),工频过电压是暂态过电压(ms级),工频过电压的能量是瞬态过电压能量的几百倍,因此,应注意选择较高工频工作电压的SPD(8) SPD的保护:每级SPD都应设保护,可采用断路器或熔断器进行保护,保护器的断流容量均大于该处最大短路电流(9) 此外,选用SPD时还应注意:响应时间尽可能快使用寿命的长短、价格因素、可维护性要好、通流容量的大小、耐湿性能等方面。
-低压配电系统浪涌保护器的选择及保护一、浪涌的来源所谓浪涌又被称为瞬态过电压,是电路中出现的一种短暂的电压波动,在电路中通常持续约百万分之一秒。
浪涌保护器(SPD)的设计要点和选型原则当前随着科技发展,电子产品种类越来越多,应用领域也越来越广广泛。
但是这些电子产品耐冲击电压水平一般都低于低压配电装置。
因此它们很容易受到电压波动-即浪涌电压-的损害,所谓浪涌又称瞬态过电压,是在电路中出现的一种瞬时的电压波动,在电路中通常可以持续约百万分之一秒,比如在雷电天气中,雷电脉冲可能会在电路中产生电压波动。
220V电路系统中会产生持续瞬间可达到5000或10000V的电压波动,也就是浪涌或者瞬态过电压。
我国的雷电区较多,而雷电又作为在线路中产生浪涌电压的一个重要因素,因此加强在低压配电系统中的防雷电保护就显得十分必要。
浪涌保护器既过电压保护器,工作原理是当电力线、信号传输线出现瞬时过电压时,浪涌保护器就会将过电压泄流来将电压限制在设备所能承受的电压范围内,从而保护设备不受电压冲击。
浪涌保护器在正常情况时,处于高电阻状态,不发生漏流;当电路中出现过电压时,浪涌保护器就会在极短时间内被触发,将过电压的能量漏流,保护设备;过电压消失后,浪涌保护器恢复高阻状态,完全不会影响电源的正常供电。
一、浪涌保护器的设计(1)SPD设计的不足目前,SPD的设计还存在很多不足的地方,在实际的施工中造成了很多问题,甚至造成工程延期,具体如下:1)对设计的描述太过简单,意思表达不清晰,安装要求也不够具体,施工时容易造成很多的不确定性,可能会使要被保护的电子设备受到破坏或经济损失。
2)浪涌保护器的设计不够灵活,有时甚至直接套用固定的防雷施工图,没有根据配电系统的接地制式进行针对性的设计,可能会导致SPD在具体接线安装时出现错误。
3)在配电系统图中,SPD的设计参数不够完整,如电压保护水平UP、是否防爆、最大运行电压Uc等重要参数未设计或部分设计,又或者部分参数不准确,造成浪涌保护器实际运行中出现故障或对电子设备的损坏。
4)设计说明书不详细。
一般地,要有针对SPD设计进行详细说明的设计说明书,如建设项目概况、设计的依据、是否包含有电子信息系统、SPD设计的防护等级等。
浪涌保护器
浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。
本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,。
可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。
而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。
浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。
当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。
浪涌保护器(也称防雷器)的分级防护
由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。
第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。
第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。
同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。
第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。
1、第一级保护
目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。
入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。
该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。
一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。
这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流
到大地。
它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。
第一级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的最高防护标准。
其技术参考为:雷电通流量大于或等于100KA(10/350μs);残压值不大于2.5KV;响应时间小于或等于100ns。
2、第二级防护
目的是进一步将通过第一级防雷器的残余浪涌电压的值限制到1500—2000V,对
LPZ1—LPZ2实施等电位连接。
分配电柜线路输出的电源防雷器作为第二级保护时应为限压型电源防雷器,其雷电流容量不应低于20KA,应安装在向重要或敏感用电设备供电的分路配电处。
这些电源防雷器对于通过了用户供电入口处浪涌放电器的剩余浪涌能量进行更完善的吸收,对于瞬态过电压具有极好的抑制作用。
该处使用的电源防雷器要求的最大冲击容量为每相45kA以上,要求的限制电压应小于1200V,称之为CLASS II级电源防雷器。
一般用户供电系统做到第二级保护就可以达到用电设备运行的要求了
第二级电源防雷器采用C类保护器进行相—中、相—地以及中—地的全模式保护,主要技术参数为:雷电通流容量大于或等于40KA(8/20μs);残压峰值不大于1000V;响应时间不大于25ns。
3、第三级保护
目的是最终保护设备的手段,将残余浪涌电压的值降低到1000V以内,使浪涌的能量有致损坏设备。
在电子信息设备交流电源进线端安装的电源防雷器作为第三级保护时应为串联式限压型电源防雷器,其雷电通流容量不应低于10KA。
最后的防线可在用电设备内部电源部分采用一个内置式的电源防雷器,以达到完全消除微小的瞬态过电压的目的。
该处使用的电源防雷器要求的最大冲击容量为每相20KA或更低一些,要求的限制电压应小于1000V。
对于一些特别重要或特别敏感的电子设备具备第三级保护是必要的,同时也可以保护用电设备免受系统内部产生的瞬态过电压影响。
对于微波通信设备、移动机站通信设备及雷达设备等使用的整流电源,宜视其工作电压的保护需要分别选用工作电压适配的直流电源防雷器作为末级保护。
4、根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,
就只需要做两级保护,假如设备的耐压水平较低,可能需要四级甚至更多级的保护。
第四级保护其雷电通流容量不应低于5KA。
浪涌保护器从级别上分三个等级:
第一级可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。
一般用于总配电。
第二级目的是进一步将通过第一级防雷器的残余浪涌电压的值限制到1500—2000V,对LPZ1—LPZ2实施等电位连接。
分配电柜线路输出的电源防雷器作为第二级保护时应为限压型电源防雷器,其雷电流容量不应低于20KA。
第三级目的是最终保护设备的手段,将残余浪涌电压的值降低到1000V以内,。
作为第三级保护时应为串联式限压型电源防雷器,其雷电通流容量不应低于10KA。
一般用于终端配电设备。
不同的配电系统应该选择相应浪涌保护器,可分TN(TN-S,TN-C,TN-C-S),IT,TT。
浪涌保护器前面为什么要配熔断器和断路器?
当通过浪涌保护器的涌流大于其Imax,浪涌保护器将被击穿失效,从而造成回路的短路故障,为切断短路故障,需要加装断路器或熔断器。
每次发生雷击都会引起浪涌保护器的老化,如漏电流长时间存在,浪涌保护器会过热加速老化,此时需要断路器或熔断器的热保护系统在浪涌保护器达到最大可承受热量前动作断开电涌器。
浪涌保护器对配熔断器和断路器要求:在额定电流下施加20个标准的8/20微秒和
1.2/50微秒测试脉冲时,断路器或熔断器不脱扣。
浪涌保护器被击穿短路时断路器或熔断器要动作。
如果浪涌保护器是开关型模块,由于其损坏方式为开路,因此可以不用装微型断路器和熔断器作为保护。
熔断器和断路器都可以作为浪涌保护器的上级保护用。
熔断器的特点;熔断器有反时限特性的长延时和瞬时电流两段保护功能,分别作为过载和短路防护用,就是故障熔断后必须更换熔断体。
用断路器的特点:断路器有瞬时电流保护和过载热保护,故障断开后,可以手操复位,不必更换元件。
看进线区别:三相280V五线制或者三相380V四线制的选用440V浪涌保护器。
单相220V 两线制或者单相220V三线制的选用220V浪涌保护器。
另外注意:选用的浪涌保护器的防护
级别,住宅楼进线处三相280V用2级;单相220V用3级。
TN-C-S系统线路在进入建筑物总配电箱后,PEN线分为N线和PE线独立布线,只需在相线――PEN线之间加装电涌保护器。
浪涌保护器前面的开关可选用熔断器和断路器。
一般Imax>40KA的宜选40~63A的,Imax<40KA的宜选20~32A的。
浪涌保护器和避雷器不是一回事。
虽然二者都有防止过电压,特别是防止雷电过电压的功能,但在应用上还是有许多区别。
1、避雷器有多个电压等级,从0.38KV低压到500KV特高压均有,而浪涌保护器一般只有低压产品;
2、避雷器多安装在一次系统上,防止雷电波的直接侵入,而浪涌保护器大多安装在二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;
3、避雷器是保护电气设备的,而浪涌保护器大多是为保护电子仪器或仪表的;
4、避雷器由于接于电气一次系统上,要有足够的外绝缘性能,外观尺寸比较大,而浪涌保护器由于接于低压,尺寸制作的可以很小。