(完整版)6-1-22鸡兔同笼问题(二).教师版
- 格式:doc
- 大小:1.24 MB
- 文档页数:7
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪例题精讲 知识精讲 教学目标6-1-9.鸡兔同笼问题(二)得了79分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 做错(52079 ) (52)3⨯-÷+= (道),因此,做对的20317-= (道).【答案】17道【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】 东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472÷=(道),做对题为20218-=(道).【答案】18道【巩固】 某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。
数清脚共九十四双,各有多少鸡和兔。
翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。
问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。
这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。
【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
【例2】★面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?【解析】这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
鸡兔同笼问题的本质:(1) 两种不同的事物如鸡和兔(2) 它们有相同点如鸡兔都有一个头,那么在做鸡兔同笼变形题时把数量相同的特征看做头(3) 它们有不同点如鸡兔腿的数量不同,把数量不同的特征看做腿基本型鸡兔同笼的解决方法:(1) 假设 ;(2) 找总差 ;(3) 找单位差 ;(4) 求出另一种事物的数量。
鸡兔同笼问题的基本公式:(1) 假设全兔:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔脚数-每只鸡脚数)兔数=鸡兔总数-鸡数注意假设全兔时先求出的是鸡的数量。
(2) 假设全鸡:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔脚数-每只鸡脚数)鸡数=鸡兔总数-兔数注意假设全鸡时先求出的是兔子的数量。
不建议孩子们死记硬背公式,希望透彻理解,才能灵活应用。
有若干只鸡和兔同在一个笼子里,从上面数共有35个头;从下面数,有94只脚,问鸡与兔各多少只?【知识点】:鸡兔同笼;【难度】:★★;【出处】:数学奥林匹克【分析】:方法一:共有35个头表示鸡与兔共有35只,如果35只都是兔,一共应有140354=⨯只脚,这比已知的94只脚多了4694140=-只脚.由于我们把鸡看作兔,每只鸡多算了2只脚,才有了这多出来的46只脚,因此这46里面有多少个2,笼子里面就有几只鸡,求出鸡的只数后再拿总只数减去鸡的只数即可.解答:假设全部都是兔,则鸡有:()()232462494354=÷=-÷-⨯(只)兔有:122335=-(只)答:鸡有23只,兔有12只.方法二:砍足法(金鸡独立法) (本方法了解一下即可,不通用,重点还是假设法)假设所有的动物用一半的腿站立,即鸡用1腿,兔用2腿。
这时只剩下100÷2=50条腿 这样的好处是:鸡的头腿数量相同,而兔腿数比头数多一。
所以腿比头多的数量就是兔子的数量,兔数:50-35=15(只)鸡数:35-15=20(只)注:(1)建议孩子们在熟悉之后可以列综合算式解鸡兔同笼问题。
第19讲鸡兔同笼问题二内容概述进一步运用假设法和分组法,解决较复杂的鸡兔同笼问题。
注意观察和分析隐藏的条件,有时需要将多个对象进行恰当组合而转化为两个对象再求解。
典型问题兴趣篇1. 大卡车一次能运7吨土,小卡车一次能运4吨土,现在有大、小卡车70辆,一次恰好能运土400吨。
请问:大卡车有多少辆?【答案】40【详解】假设全小卡车:70×4=280〔吨〕那么大卡车有:〔400-280〕÷〔7-4〕=40〔辆〕2. 一辆卡车运粮食,每次能运5吨,晴天时每天能运8次,雨天时每天只能运3次,这辆卡车10天共运了325吨粮食,在这10天中,晴天和雨天各有几天?【答案】晴天7天;雨天3天【详解】假设全晴天:5×8×10=400〔吨〕那么雨天有:〔400-325〕÷5÷〔8-3〕=3〔天〕晴天有:10-3=7〔天〕3. 有假设干只鸡和兔,其中鸡比兔多12只,它们一共有84条腿,求鸡和兔各自的只数。
【答案】鸡22只,兔10只【详解】84-12×2=24〔条〕兔子:24÷〔2+4〕=10〔只〕鸡:10+12=22〔只〕4. 北京大学乒乓球馆内,一共有34人正在进行乒乓球比赛,其中单打比赛的球台比双打比赛的球台多2张。
请问:一共有多少张球台正在进行比赛?【答案】12【详解】34-2×2=30〔人〕双打台:30÷〔4+2〕=5〔张〕单打台:5+2=7〔张〕一共:5+7=12〔张〕5. 有假设干只鸡和兔,其中鸡和兔的数量一样多,兔的总腿数比鸡的总腿数多30条。
请问:鸡、兔各有多少只?【答案】鸡15,兔15只【详解】30÷〔4-2〕=15〔只〕6. 癞蛤蟆和天鹅一块玩游戏,癞蛤蟆比鹅多12只,癞蛤蟆的总腿数比天鹅的总腿数多68条,那么癞蛤蟆和天鹅各有多少只?【答案】癞蛤蟆22只,天鹅10只【详解】68-12×4=20〔只〕天鹅:20÷〔4-2〕=10〔只〕癞蛤蟆:10+12=22〔只〕7. 癞蛤蟆和于鹅一块研究“鸡兔同笼〞问题,天鹅比癞蛤蟆多15只,癞蛤蟆的总腿数比天鹅的总腿数多36条,那么癞蛤蟆和天鹅各有多少只?【答案】癞蛤蟆33,天鹅48【详解】36+15×2=66〔条〕癞蛤蟆:66÷〔4-2〕=33〔只〕天鹅:33+15=48〔只〕8. 鸡兔同笼,鸡和兔共30只,鸡的总腿数和兔的总腿数一样多,那么鸡和兔各有多少只?【答案】鸡20,兔10【详解】鸡的总腿数和兔一样多,说明鸡的只数是兔的2倍兔:30÷〔2+1〕=10〔只〕鸡:30-10=20〔只〕9. 一群黄鼠狼给鸡拜年,黄鼠狼和鸡一共24只,鸡的总腿数比黄鼠狼的总腿数多18条,求黄鼠狼和鸡各几只?【答案】鸡19只,黄鼠狼19只【详解】假设全是鸡:24×2=48〔腿〕那么黄鼠狼有:〔48-18〕÷〔4+2〕=5〔只〕那么鸡有24-5=19〔只〕10. 第二天,又有一群黄鼠狼给鸡拜年,一群黄鼠狼给鸡拜年,黄鼠狼和鸡一共有24只,黄鼠狼的总腿数比鸡的总腿数多54条,求黄鼠狼和鸡各有几只?【答案】黄鼠狼17;鸡7。
鸡兔同笼问题讲解及习题之袁州冬雪创作例1 小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那末就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了.如果我们以同样数量的兔去换同样数量的鸡,那末每换一只,头的数目不变,脚数增加了2只.因此只要算出12外面有几个2,便可以求出兔的只数.‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只).答:有6只兔,10只鸡.当然,我们也可以假设16只都是兔子,那末就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了.我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只).因此只要算出20外面有几个2,便可以求出鸡的只数.有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只).由例1看出,解答鸡兔同笼问题通常采取假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔.因此这类问题也叫置换问题.例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看做鸡和兔,馍看做腿,那末就成了鸡兔同笼问题,可以用假设法来解.假设100人全是大和尚,那末共需馍300个,比实际多300—140=160(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人).同样,也可以假设100人都是小和尚,同学们无妨自己试试.在下面的例题中,我们只给出一种假设方法.例3 黑色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元.问:两种文化用品各买了多少套?分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚.这样,就将买文化用品问题转换成鸡兔同笼问题了.假设买了16套黑色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换黑色文化用品,每换一套少用19—11=8(元),所以买普通文化用品24÷8=3(套),买黑色文化用品 16-3=13(套).例4 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?分析:假设100只都是鸡,没有兔,那末就有鸡脚200只,而兔的脚数为零.这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只).现在以免换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只).解:有兔(2×100—20)÷(2+4)=30(只),有鸡100-30=70(只).答:有鸡70只,兔30只.例5 现有大、小油瓶共50个,每一个大瓶可装油4千克,每一个小瓶可装油2千克,大瓶比小瓶共多装20千克.问:大、小瓶各有多少个?分析:本题与例4非常近似,仿照例4的解法即可.解:小瓶有(4×50—20)÷(4+2)=30(个),大瓶有50—30=20(个).答:有大瓶20个,小瓶30个.例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那末这批钢材有多少吨?分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.操纵假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨).根据条件,要装完这144吨钢材还需要45—36=9(辆)小卡车.这样每辆小卡车能装144÷9=16(吨).由此可求出这批钢材有多少吨.解:4×36÷(45—36)×45=720(吨).答:这批钢材有720吨.例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那末每打破一只不但不给运费,而且还要赔偿1.26元,成果搬运站共得运费115.5元.问:搬运过程中共打破了几只花瓶?分析:假设500只花瓶在搬运过程中一只也没有打破,那末应得运费0.24×500=120(元).实际上只得到115.5元,少得120—115.5二4.5(元).搬运站每打破一只花瓶要损失0.24+1.26=1.5(元).因此共打破花瓶4.5÷1.5=3(只).解:(0.24×500-115.5)÷(0.24+1.26)=3(只).答:共打破3只花瓶.例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下.已知小喜比小乐每分钟多跳12下,那末小喜比小乐共多跳了多少下?分析与解:操纵假设法,假设小喜的跳绳速度减少到与小乐一样,那末两人跳的总数减少了12×(2+3)=60(下).可求出小乐每分钟跳(780-60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳780—270×2=240(下).操练题1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生停止活动.问:象棋与跳棋各有多少副?3.班级购买活页簿与日记本合计32本,花钱74元.活页簿每本L9元,日记本每本3.1元.问:买活页簿、日记本各几本?4.龟、鹤共有100个头,鹤腿比龟腿多20只.问:龟、鹤各几只?5.小蕾花40元钱买了14张贺年卡与明信片.贺年卡每张3元5角,明信片每张2元5角.问:贺年卡、明信片各买了几张?6.一个工人植树,晴天天天植树20棵,雨天天天植树12棵,他接连几天共植树112棵,平均天天植树14棵.问:这几天中共有几个雨天?7.振兴小学六年级进行数学比赛,共有20道试题.做对一题得5分,没做或做错一题都要扣3分.小建得了60分,那末他做对了几道题?8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完.已知每只大筐比每只小筐多装运20千克,那末这批水果有多少千克?9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现有三种小虫共18只,有118条腿和20对翅膀.问:每种小虫各有几只? 10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只.问:鸡、兔各几只?。
鸡兔同笼问题学生/课程年级学科授课教师日期时段核心内容鸡兔同类问题课型一对一教学目标1.理解鸡兔同笼问题的数量关系2.会根据题目所给条件,选择假设法,分组法等方法解题;3.理解鸡兔同笼中各数量间的关系,并能够灵活运用解决实际生活问题重、难点重点:教学目标2,3 难点:教学目标3知识导图导学一:鸡兔同笼——基本题型知识点讲解 1:列表法解鸡兔同笼当题中数字比较小时,可以用列表法解决鸡兔同笼问题例 1. 笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?我爱展示1.笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?知识点讲解 2:假设法解鸡兔同笼(1)使用假设法的前提:已知鸡与兔头的和,腿的和,求鸡和兔的只数。
(2)解题步骤(3)公式解法1:假设全部都是兔:设兔得鸡(兔的脚数×总只数-总脚数)÷鸡与兔的腿差=鸡的只数总只数-鸡的只数=兔的只数解法2:假设全部都是鸡:设鸡得兔(总脚数-鸡的脚数×总只数)÷鸡与兔的腿差=兔的只数总只数-兔的只数=鸡的只数例 1. 笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有多少只?我爱展示1.鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?知识点讲解 3:鸡兔同笼变形题对错得分题:腿差=得分+扣分赔偿型:腿差=运费+赔偿解题关键:学会找题中的鸡或兔,找头的和,腿的和例 1.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?例 2. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例 3.开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?我爱展示1.运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。
鸡兔同笼问题〔假设法〕〔第一讲〕我国古代数学名著《子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡〞和“兔〞的两种量,全部假设看作“鸡〞或“兔〞,然后找出与实际数量的差,由此求出“鸡〞或“兔〞,这种解决问题的方法就是假设法。
鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那局部置出来。
解鸡兔同笼问题的根本关系式是:解法1:鸡的只数=〔每只兔脚数×兔总数-实际脚数〕÷〔每只兔子脚数-每只鸡的脚数〕兔的只数=总只数-鸡的只数解法2:兔的只数=〔总脚数-鸡的脚数×总只数〕÷〔兔的脚数-鸡的脚数〕鸡的只数=总只数-兔的只数例1 、鸡兔同笼,头共46,足共128,鸡兔各几只?分析:假设 46只都是兔,一共应有 4×46=184只脚,这和的128只脚相比多了184-128=56只脚。
如果用一只鸡来置换一只兔,就要减少4-2=2〔只〕脚。
那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。
所以,鸡的只数就是28,兔的只数是46-28=18。
例2、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32〔只〕脚,但实际上有44只脚,比假设的情况多了44-32=12〔只〕脚,出现这种情况的原因是把兔当作鸡了。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔〔44-2×16〕÷〔4-2〕=6〔只〕,有鸡16-6=10〔只〕。
答:有6只兔,10只鸡。
我们也可以假设16只都是兔子,那么就应该有4×16=64〔只〕脚,但实际上有44只脚,比假设的情况少了64-44=20〔只〕脚,这是因为把鸡当作兔了。
星系站备课教员:第五讲鸡兔同笼问题一、教学目标: 1. 了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2. 尝试用假设的方法解决“鸡兔同笼”问题。
3. 在解决问题的过程中,培养学生的思维能力。
二、教学重点:用假设法解决“鸡兔同笼”问题。
三、教学难点:让学生认识、理解、运用假设法。
四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:同学们,你们知道我国古典文学的四大名著是什么吗?生:幻灯片:《西游记》、《红楼梦》、《三国演义》、《水浒传》。
师:这些名著你们读过吗?师:四大名著是中国乃至全人类共同拥有的宝贵文化遗产,在整个华人世界中有着深远的影响。
我建议大家去读一读。
师:这是我们的古人在文学方面的伟大成就,其实我们的古人在数学方面也有很多了不起的成就,为我们留下许多有名的著作。
你知道吗?让我们一起来看一看吧。
展示:(幻灯片)《周髀算经》、《九章算术》、《海岛算经》、《王曹算经》、《孙子算经》、《缉古算经》等。
师:你们见过这些书吗?在哪里见过?生:我在数学书上见过。
生:我在网络上见到过。
师:今天我们要学习的“鸡兔同笼”就在这其中的一部书里,大家一起说是哪部?生:《孙子算经》。
师:对了,这是一部成书于1500多年前的数学著作,书中记载着很多有趣的数学名题。
“鸡兔同笼”就是其中的一道。
师:你们知道鸡兔同笼是什么意思吗?生:鸡兔同笼就是鸡兔在一个笼子里。
生:鸡兔同笼就是把鸡和兔关在一个笼子里,告诉我们鸡兔的总头数和总脚数,求出鸡兔各几只。
师:是的,鸡兔同笼不仅仅是鸡和兔关在一个笼子里,更是一种数学问题。
【板书课题:鸡兔同笼问题】二、星海遨游(30分钟)(一)星海遨游1(10分钟)鸡兔共笼,兔比鸡多5只,共有脚56只,鸡、兔各多少只?师:题目中说兔比鸡多5只,总共有56只脚,如果兔子的只数减少5只,则兔子的只数和鸡的只数有什么关系?生:相等。
师:则当兔子的只数和鸡的只数相等时,共有多少只脚呢?生:因为一只兔子是4只脚,所以共有56-4×5=36(只)。
第17讲鸡兔同笼问题二兴趣篇1.★笼子里有一些3腿鸡和6腿兔,共有8个头,30条腿.请问:其中有多少只3腿鸡?答案:6只解答假设全是6腿兔,那么一共有腿6×8=48(条),比实际多了48-30=18(条).每把1只6腿兔换成1只3腿鸡,腿就会少6-3=3(条),则换了18÷3=6(次).所以3腿鸡有6×1=6(只).2-★因生存环境的变化,出现了3条腿的变异青蛙;现在捕到4条腿的正常青蛙和3条腿的变异青蛙共30只,总共115条腿.请问:捕到多少只3条腿的变异青蛙?答案5只解答假设全是正常青蛙,那么一共有腿30×4=120(条),比实际多了120-115=5(条).每把1只正常青蛙换成1只变异青蛙,腿就会少4-3 =1(条),则换了5÷1=5(次).所以3条腿的变异青蛙有5×1=5(只).3.★大卡车一次能运7吨土,小卡车一次能运4吨土,现在有大、小卡车70辆,一次恰好能运土400吨.请问:大卡车有多少辆?答案40辆解答假设全是小卡车,那么一共能装4×70=280(吨),比实际少了400 -280=120(吨).每把1辆小卡车换成1辆大卡车,就多装7-4=3(吨),则换了120÷3=40(次).所以大卡车有40×1=40(辆). 14.★★一辆卡车运粮食,每次能运5吨,晴天时每天能运8次,雨天时每天只能运3次,这辆卡车10天共运了325吨粮食,在这10天中,晴天和雨天各有几天?答案7个晴天,3个雨天解答方法一:由题意得,晴天每天能运5×8=40(吨),雨天每天能运5×3=15(吨).假设全是晴天,则一共能运40×10=40O(吨),比实际多了400-325=75(吨).每把1个晴天换成1个雨天,就会少运40-15 =25(吨),则换了75÷25=3(次).所以雨天有3天,晴天有10-3=7(天)方法二:因为卡车每次能运5吨粮食,运了325吨粮食需要325÷5=65(次).假设全是晴天,那么一共能运8×10=80(次),比实际多运了80 - 65—15(次).每把1个晴天换成1个雨天,就会少运8-3=5(次),则换了15÷5=3(次).所以雨天有3天,晴天有10-3=7(天).5.★★有若干只鸡和兔,其中鸡比兔多12只,它们一共有84条腿,问鸡和兔各有多少只?答案鸡22只,兔10只解答方法一:把1只鸡和1只兔分成一组,每组用虚线的方框表示,如下图所示:右边的12只鸡有2×12=24(条)腿,因此所有组内一共有84-24=60(条)腿.又每组里有2+4=6(条)腿,那么一共有60÷6=10(组).所以兔有10×1= 10(只),鸡有10 +12=22(只).方法二:假设兔有0只,则鸡就有12只,那么一共有腿O×4+2×12=24(条).比实际少了84-24=60(条)腿.每增加1只兔,鸡也随着增加了1只,腿数就会增加4+2=6(条).为了补上少了的60条腿,就需要增加60÷6=10(只)兔.因此兔有0+10=10(只),鸡就有10 +12=22(只).6.北京大学乒乓球馆内,一共有34人正在进行乒乓球比赛,其中单打比赛的球台比双打比赛的球台多2张.请问:一共有多少张球台正在进行比赛?答案12张解答把1张单打球台和1张双打球台配成一组,全部分组后,单打球台剩下2张.用数字2代表单打球台,数字4代表双打球台,用虚线方框把一组框在一起,如下图所示:由上图可知,组内一共有34-2×2=30(人).每组有4+2=6(人),则应有30÷6=5(组).因此,双打球台有5×1=5(张),单打球台有5+2=7(张),则一共有5+7=12(张)球台正在进行比赛.7.★★有若干只鸡和兔,其中鸡和兔的数量一样多,兔的总腿数比鸡的总腿数多3C条,请问:鸡、兔各有多少只? 8.★★癞蛤蟆和天鹅一块玩游戏,癞蛤蟆比天鹅多12只,癞蛤蟆的总腿数比天鹅的总腿数多68条.那么癞蛤蟆和天鹅各有多少只?答案各15只解答因“鸡和兔的数量一样多”’则将1只鸡和1只兔分为一组,如下图所示:每组兔腿比鸡腿多2条,又兔腿比鸡腿一共多30条,那么一共有30÷2=15(组)。
年级春季 尖子班习题班讲义 姓名: ◇三 巨人学校数学尖子班2011年4月第4讲 鸡兔同笼问题二 1. 一个大人一餐可以吃2个面包,两个小孩一餐可以吃一个面包.现有大人小孩共99人,一餐刚好吃99个面包,那么,大人、小孩各有多少人?(大人33人,小孩66人)2.1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,那么1分的硬币有多少枚?(51) 3.买电影票,10元、16元、24元一张的一共150张,用去2280元,其中10元和16元的张数相等,那么24元的电影票有多少张?(34) 4.学校买回足球、篮球、排球共66个,共用了5910元.每个足球90元,每个篮球110元,每个排球75元,已知买回的足球个数是篮球个数的3倍,求足球、篮球和排球各买几个?(36,12,18) 5. 某校购买大、中、小三种型号的投影仪一共47台,它们的单价分别是700元、300元、200元,共支出21200元.已知中型投影仪的台数是小型投影仪台数的2倍,那么购买了多少台大型投影仪? (20台)年级春季 尖子班习题课讲义 姓名: ◇五 巨人学校数学尖子班2011年4月 6. 一共有大中小三种杯子30个,大杯子8元一个,中杯子6元一个,小杯子4元一个,已知大杯子比中杯子的3倍少1个,并且所有杯子一共价值200元.求三种杯子各有多少个? (大杯子17个,中杯子6个,小杯子7个) 7. 蜘蛛有8条腿,蜻蜓有6条腿和两对翅膀,蝉有6条腿和一对翅膀,现在有这三种动物共18只,总共有118条腿和20对翅膀,则这18只中,蜘蛛、蜻蜓和蝉分别有多少只?(5,7,6)8. 某次考试52人参加,一共考了5道题目,每题做错人数统计如下表所示还知道每人都至少做对了1题,做对1题有7人,5题全对有6人,做对2道题目和做对3道题目的人数相同,那么做对4道题目的有多少人?(31人)9. 3个水果糖和2个奶糖可以组成小礼包一个,3个水果糖和6个巧克力糖可以组成大礼包一个,2个奶糖和5个巧克力糖可以组成中礼包一个.现有60个水果糖,50个奶糖,80个巧克力糖,那么这些糖全部用完可以组成多少个礼包?(小礼包15个、中礼包10个、大礼包5个)10. 红、黄、绿三种颜色的卡片,一共100张,其中红色卡片正反两面上分别写了1和2,黄色卡片正反两面上分别写了1和3,绿色卡片的正反两面上分别写了2和3,现在把这些卡片放在桌子上,让每张卡片写有较大数字的那一面朝上,经过计算,各卡片所显示数字和为234.若把所有卡片都翻过来,再次统计各卡片所显示数字的和,则得到和等于123.那么黄色卡片共有多少张?(11) 题号 一 二 三 四 五做错的人数 4 6 10 20 39。
鸡兔同笼问题在我国古代的数学著作《孙子算经》中,记载着流传甚广的数字歌谣:鸡兔同笼不知数,三十五头笼中露。
数清脚共九十四双,各有多少鸡和兔。
翻译成现代数学语言为:今有鸡兔共居一笼,已知鸡头与兔头共有35个,鸡脚与兔脚一共有94只。
问鸡和兔一共有多少只?这就是我们通常说的“鸡兔同笼”问题。
这一古老的数学问题在现实生活中普遍存在,解法多种多样,但一般采用假设法。
【例1】★今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?【解析】鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
【小试牛刀】小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?【解析】假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
【例2】★面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?【解析】这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
鸡兔同笼第一部分:知识介绍鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解鸡兔同笼的基本步骤1.砍足法(金鸡独立):解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。
因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只)了。
-=(只).显然,鸡的只数就是351223这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。
除此之外,还有“鸡兔同笼”问题的经典思路“假设法”。
2.假设法:假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到。
解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数3.鸡兔关系:当头数一样时,脚的关系:兔是鸡的2倍;当脚数一样时,头的关系:鸡是兔的2倍。
在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程、行程、方程等专题中也都会接触到假设法。
第二部分:例题精讲【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只?【考点】鸡兔同笼【解析】假设46只都是兔,一共应有446184⨯=(只)脚,这和已知的128只脚相比多了18412856-=(只)脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多422-=(只)脚,那么56只脚是我们把56228÷=(只)鸡当成了兔子,所以鸡的只数就是28,兔的只数是462818-=(只)。
解决问题的策略---假设一、复习导入师:同学们,回顾一下,我们已经学习了哪些解决问题的策略?生:画图、列表、一一列举、倒推、假设。
(增)师:假设是我们上学期刚学过的一种策略,当已知总量同时分配给两个未知量,并告诉我们这两个未知量之间的关系时。
我们可以利用倍数关系或相差关系把两种未知量假设成一种未知量来解题,可以使数量关系更清晰,计算更简便。
师:是的,利用这些策略可以帮助我们更方便的解决一些实际问题。
这节课我们就来继续学习解决问题的策略。
(板书:解决问题的策略)二、教学新知,感知策略1、同学们,我们一起先来研究一道千古名题,在数学界把它叫做“鸡兔同笼”问题。
早在1500多年前,在《孙子算经》中就记载着“鸡兔同笼”的问题,我们一起来看题。
媒体出示:鸡兔同笼,一共有8只,数一数腿有22条,你知道鸡和兔各有多少只吗?(读一读)师:看懂了吗?题中给出了什么条件?生:已知鸡兔共8只,共有22条腿。
师:对,要同时满足这两个条件,那么腿为什么会比头多呢?生:因为每只鸡有两条腿,每只兔有4条腿。
师:哦,这个问题好像有点幼稚,却是题目背后所隐藏的重要条件。
原来22条腿是由两种不同动物的腿组成,好像很难直接算出鸡兔的数量(份数),你准备怎样解决这个问题?生:用假设的策略师:下面我们就来继续研究用假设的策略解决问题的方法。
2、鸡和兔一共有8只,你可以怎样假设?生:假设8只全是鸡,或假设8只全是兔师:同学们的想法真棒,你们都是把两个未知量假设成了一个未知量。
课前,老师请了一个二年级的小朋友做这道题,提示他通过假设,她居然做出来了,你知道他是借助什么方法做的吗?生:画图师:你猜对了,她借助画图的策略把这道题做出来了,我们也来试试吧,完成作业纸上第1题。
媒体出示:按步骤画图解决问题用一个圆表示一个小动物,用“/”表示小动物的腿假设8只都是鸡,给每只鸡各画上2条腿,通过比较发现画的腿的总数比实际22条腿少6条,我们把这种差距叫做总量差。
经典鸡兔同笼问题(word版)鸡兔同笼问题1.1只鸡有1个头2条腿,1只兔子有1个头4条腿.6只鸡和8只兔子一共有多少个头?多少条腿?2.鸡、兔共5只,共有14条腿.问鸡、兔各几只?3.1只鸡有1个头和2条腿,1只兔子有1个头,4条腿.如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗?4.停车场里的自行车和三轮车一共有24辆,其中每辆自行车有2个轮子,每辆三轮车有3个轮子,所有自行车和三轮车一共有56个轮子.请问:有多少辆自行车?有多少辆三轮车?5.晨星小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人.如果这些宿舍一共可以住168人,那么有几间大宿舍?6.理想小学150名教师参加新年联欢会,其中有一个趣味游戏,要求男教师2人一组,女教师3人一组.结果共分了62组,恰好分完.请问:女教师有多少人,男教师有多少人?7.墨莫的存钱罐里有5角和1元的硬币共25枚,总钱数为19元.这两种硬币各有多少枚?8.张老师给幼儿园两个班的孩子分水果.大班每人分得2个苹果和5个橘子,小班每人分得2个苹果和3个橘子,张老师一共分掉了80个苹果和158个橘子.请问:大班有多少个孩子?小班有多少个孩子?9.鸡兔同笼,鸡和兔的数量一样多,共有48条腿,求鸡和兔各有几只.10.动物园里,鸵鸟和斑马生活在同一片草地上,斑马的数量是鸵鸟的3倍,斑马和鸵鸟一共有140条腿,求斑马有多少匹?鸵鸟有多少只?11.中国古代数学著作《孙子算经》中记载了这样一道题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思就是:有一些小鸡和兔子在同一个笼子里,从上面看有35个头,从下面看有94条腿,请求出笼中的小鸡和兔子各有几只.12.同学们去游乐园玩,老师用500元钱买了套票和普通票两种门票,普通票10元一张,套票20元一张,共买了35张.请问:两种门票各买了多少张?13.班主任黄老师和班上的50名同学在中秋晚会上一起吃月饼,黄老师吃了5块月饼,男14.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个.它一连几天一共采了112个松籽,平均每天采14个.请问:这些天里有几天是雨天?15.猪八戒曾卖过一段时间的牛肉和羊肉,牛肉3文钱一斤,羊肉5文钱一斤.有一天,一个人来他的肉铺买肉,牛肉和羊肉一共买了28斤,结账时,猪八戒错误的把牛肉算成了5文钱一斤,把羊肉算成了3文钱一斤,结果那人一共付了100文钱.请问:与实际价格相比,猪八戒是亏了还是赚了?如果赚了,赚多少?如果亏了,亏多少?16.甲、乙两个班去不同的地方春游,甲班每个人需交10元车钱和15元门票钱,乙班每个人需交10元车钱和20元门票钱,结果两个班共收了520元车钱和940元门票钱.问:甲、乙两个班分别有多少人?17.墨莫去参加奥运知识竞赛抢答,按规定答对一题得5分,答错一题倒扣1分,墨莫答了10道题后,共得到26分.请问:墨莫答对了几道题?18.一张试卷共有20道题,每人都有20分得初始分,答对一题得4分,每答错一题倒扣1分.小高回答了全部的题,却还是20分.请问:他一共答对了几道题?19.货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元.货运公司最后只得到了760元,请问:损坏了多少箱?20.在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分.第一小组每天生产电视机100台,四天内共得了1850分.请问:这四天一共生产了多少合格电视机?21.鸡兔同笼,鸡比兔子多4只,兔子和鸡的腿数总和为32条.鸡和兔子各有几只?22.鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100条.鸡和兔子各有几只?23.鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和为110条.鸡和兔子各有几只?24.河边有一群狗追一群鸭子,鸭子的数量是狗的4倍,鸭子的总腿数比狗的总腿数多20.狗和鸭子各有多少只?。
1. 熟悉雞兔同籠的“砍足法”和“假設法”.2. 利用雞兔同籠的方法解決一些實際問題,需要把多個對象進行恰當組合以轉化成兩個對象.一、雞兔同籠 這個問題,是我國古代著名趣題之一.大約在1500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子裏,從上面數,有35個頭;從下麵數,有94只腳.求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?二、解雞兔同籠的基本步驟解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”.這樣,雞和兔的腳的總數就由94只變成了47只;如果籠子裏有一只兔子,則腳的總數就比頭的總數多1.因此,腳的總只數47與總頭數35的差,就是兔子的只數,即473512-=(只).顯然,雞的只數就是351223-=(只)了.這一思路新穎而奇特,其“砍足法”也令古今中外數學家讚歎不已.除此之外,“雞兔同籠”問題的經典思路“假設法”.假設法順口溜:雞兔同籠很奧妙,用假設法能做到,假設裏面全是雞,算出共有幾只腳,和腳總數做比較,做差除二兔找到.解雞兔同籠問題的基本關係式是:如果假設全是兔,那麼則有:數=(每只兔子腳數×雞兔總數-實際腳數)÷(每只兔子腳數-每只雞的腳數)兔數=雞兔總數-雞數如果假設全是雞,那麼就有:兔數=(實際腳數-每只雞腳數×雞兔總數)÷(每只兔子腳數-每只雞的腳數)雞數=雞兔總數-兔數知識精講教學目標6-1-9.雞兔同籠問題(二)當頭數一樣時,腳的關係:兔子是雞的2倍當腳數一樣時,頭的關係:雞是兔子的2倍在學習的過程中,注重假設法的運用,滲透假設法的重要性,在以後的專題中,如工程,行程,方程等專題中也都會接觸到假設法例題精講兩個量的“雞兔同籠”問題——變例【例 1】某次數學競賽,共有20道題,每道題做對得5分,沒做或做錯都要扣2分,小聰得了79分,他做對了多少道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】做錯(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做對的20317【答案】17道【巩固】數學競賽共有20道題,規定做對一道得5分,做錯或不做倒扣3分,趙天在這次數學競賽中得了60分,他做對了幾道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】假設他將所有題全部做對了,則可得100分,實際上只得了60分,比假設少了40分,做錯一題要少得8分,少得的40分中,有多少個8分,就是他做錯的題的數量,則知他做對了15道.【答案】15道【巩固】東湖路小學三年級舉行數學競賽,共20道試題.做對一題得5分,沒有做一題或做錯一題都要倒扣2分.劉鋼得了86分,問他做對了幾道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】這道題也類似於“雞兔同籠”問題.假設劉鋼20道題全對,可得分520100⨯=(分),但他實際上只得86分,少了1008614-=(分),因此他沒做或做錯了一些題.由於做對一道題得5分,沒做或做錯一道題倒扣2分,所以沒做或做錯一道題比做對一道題要少527+=(分).14分中含有多少個7,就是劉鋼沒做或做錯多少道題.所以,劉鋼沒做或做錯題為1472÷=(道),做對題為20218-=(道).【答案】18道【巩固】某次數學競賽,試題共有10道,每做對一題得6分,每做錯一題倒扣2分。
第11讲鸡兔同笼问题一兴趣篇1.一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗?【答案】鸡7只,兔3只【分析】假设法假设全是鸡:10×2=20〔条〕差: 26—20=6〔条〕兔: 6 ÷2=3(只)鸡:10—3=7〔只〕2 停车场上的自行车和三轮车一共有24辆,其中每辆自行车有2个轮子,每辆三轮车有3条轮子,所有自行车和三轮车一共有56个轮子。
请问:有多少辆自行车?有多少辆三轮车?【答案】自行车16辆,三轮车8辆【分析】假设法假设全是自行车:24×2=48〔个〕差: 56—48=8〔个〕三轮车: 8÷(3—2)=8(辆)自行车:24—8=16〔辆〕3、晨星小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。
如果这些宿舍一共可以住168人,那么有几间大宿舍?【答案】大宿舍24间【分析】假设法假设全住大宿舍:6×30=180〔人〕差: 180—168=12〔人〕小宿舍: 12÷2=6(间)大宿舍:30—6=24〔间〕4、理想小学150名教师参加新年联欢会,其中有一个趣味游戏,要求男老师2人一组,女教师3人一组,结果共分了62组,恰好分完。
请问:女教师有多少人,男教师有多少人?【答案】女教师78个,男教师72个【分析】假设法假设全是女老师:62×3=186〔人〕差:186—150=36〔人〕男老师: 36÷(3—2)=36(组)女老师:62—36=26〔组〕即男老师36×2=72〔人〕女老师:26×3=78〔人〕5、阿奇的存钱罐里有5角和1元的硬币共25枚,总钱数为19元。
这两种硬币各有多少枚?【答案】一元13枚,五角12枚【分析】假设法假设全是一元:25×1=25〔元〕差: 25—19=6〔元〕五角: 6×2=12 (枚)一元:25—12=13〔枚〕6、张老师给幼儿园两个班的孩子分水果,大班每人分2个苹果和5个桔子,小班每人分得2个苹果和3个桔子,张老师一共分出了80个苹果和158个桔子。
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(二)了多少道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做对的20317【答案】17道【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
小红最终得44分,做对的题比做错的题多______道。
【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】学而思杯,3年级,第8题,假设思想方法【解析】()-÷=,做错2道题,做对8道题,对的比错的多6道。
604482【答案】多6道【巩固】次数学竞赛有10道试题,若小宇得70分,根据图5中两人的对话可知小宇答对_________题。
【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】希望杯,五年级,一试,第12题【解析】设答对了x道题,那么105(10)70x x,所以8=x,也就是小宇答对了8道题。
-⨯-=【答案】8题【巩固】一次口算比赛,规定:答对一题得8分,答错一题扣5分。
小华答了18道题,得92分,小华在此次比赛中答错了________ 道题。
【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】希望杯,四年级,二试,第12题【解析】假设他全答对了,应该的18×8=144分,实际上少了144-92=52分,每答错一道题少8+5=13分,答错了52÷13=4道题。
【答案】4题【例 2】某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元。
该工人合同到期后并没有拿到报酬,则他最多工作了_________天。
【考点】和倍问题【难度】3星【题型】填空【关键词】希望杯,四年级,二试,第5题【解析】方法一:假设他没有休息他会得3048=1440+(元),所以他休息⨯(元),休息一天会少4812=60了144060=24-天÷(天),他工作了3024=6方法二:工作一天休息4天刚好抵消,那么最后没拿到钱,他只工作了30÷(4+1)=6天。
【答案】6天【例 3】春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_____道题.【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】假设思想方法【解析】三人共得87749170-=(分)⨯⨯=(分)少300170130++=(分),比满分10103300因此三个人共做错:130(103)10-=(道)题÷+=(道)题,共答对了301020【答案】20【例 4】张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中___________发。
【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】张明得分(208+64)÷2=136分,根据鸡兔同笼,张明脱靶(20×10-136)÷(20+12)=2,射中8发。
【答案】8发【巩固】小明和小刚进行数学解题能力对抗赛,两人商定,对一题得20分,不答或答错一题扣12分。
两人各解答了10道题,一共得208分,又知道小明比小刚多得64分。
那么小刚做对了道题。
【考点】鸡兔同笼问题【难度】3星【题型】填空【关键词】迎春杯,高年级,初试,10题【解析】小刚得了()÷(分),如果小刚10道题都做对了,应得200分,实际得72分,所以错-=20864272了()()÷(道),做对了1046-+=2007220124-=(道)。
【答案】6道【巩固】有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】 法一:如果小明第一次测验24题全对,得524120⨯=(分).那么第二次只做对30246-=(题)得分是862(156)30⨯-⨯-=(分).两次相差1203090-=(分).比题目中条件相差10分,多了80分.说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得516+=(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8210+=分.两者两差数就可减少61016+=(分).(9010)(610)5-÷+=(题).因此,第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对301911-=(题).第一次得分5191(249)90⨯-⨯-=.第二次得分8112(1511)80⨯-⨯-=.法二:答对30题,也就是两次共答错2415309+-=(题).第一次答错一题,要从满分中扣去516+=(分),第二次答错一题,要从满分中扣去8210+=(分).答错题互换一下,两次得分要相差61016+= (分).如果答错9题都是第一次,要从满分中扣去69⨯.但两次满分都是120分.比题目中条件“第一次得分多10分”,要少了6910⨯+.因此,第二次答错题数是(6910)(610)4⨯+÷+=(题).第一次答错945-=(题).第一次得分5(245)1590⨯--⨯=(分).第二次得分8(154)2480⨯--⨯= (分).【答案】第一次得分90分.第二次得分80分.【例 5】 某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120元,问这个旅游团一共有多少人?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 每个三口之家可以少花30404032314++-⨯=(元),每个二口之家可以少花40406416+-=(元),如果这8个家庭都是三口之家,那么一共少花148112⨯=(元),所以这8个家庭中有12011216144()()-÷-=(个)家庭是二口之家,所以这个旅游团一共有4284320()⨯+-⨯=(人). 【答案】20人【例 6】 一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若小明得了78分,那么他做对 题,做错 题,没做 题.【考点】鸡兔同笼问题 【难度】4星 【题型】填空【关键词】假设思想方法,祖冲之杯【解析】 这道题不是普通的鸡兔同笼问题,需要寻找一些特殊的线索.小明得了78分,而且只有做对了题目才能得分.78419÷>,所以可以知道小明至少做对20道题目,否则一定低于41976⨯=(分);再假设他做对21题,发现即使另外四题都错,小明仍然有4211480⨯-⨯=(分),超过了78分,所以小明至多做对20道题目;综上,可以断定小明做对了20道题.至此本题转化为简单鸡兔同笼问题.假设剩下5题全部没做,那么小明应得42080⨯=(分).但是只得了78分,说明又倒扣了2分,说明错了2道题,3道题没做.所以小明做对了20道题,做错了2道题,没做3道题.【答案】对了20道题,做错了2道题,没做3道题【例 7】 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨.利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下436144⨯= (吨).根据条件,要装完这144吨钢材还需要45369-=(辆)小卡车.这样每辆小卡车能装144916÷=(吨).由此可求出这批钢材有720吨.【答案】720吨【例 8】 下面是小波和售货员阿姨的一段对话:小波:“阿姨,您好!” 售货员:“同学,你好.想买点什么?”小波:“我只有100元,请帮我安排买10支钢笔和15本笔记本.”售货员:“好,每支钢笔比每本笔记本贵2元,退你5元,请拿好.再见.”根据这段对话,则钢笔每支是 元,笔记本每本是 元.【考点】鸡兔同笼问题 【难度】3星 【题型】填空【关键词】学而思杯,4年级,第14题【解析】 一共花了100595-=元。