万向传动轴简介
- 格式:ppt
- 大小:576.50 KB
- 文档页数:26
传动轴基本知识一、传动轴总成简介(结合具体总成图)传动轴,英文PROPELLER(DRIVING) SHAFT。
在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
传动轴按其重要部件——万向节的不同,可有不同的分类。
如果按万向节在扭转的方向是否有明显的弹性可分为刚性万向节传动轴和挠性万向节传动轴。
前者是靠零件的铰链式联接传递动力的,后者则靠弹性零件传递动力,并具有缓冲减振作用。
刚性万向节又可分为不等速万向节(如十字轴式万向节)、准等速万向节(如双联式万向节、三销轴式万向节)和等速万向节(如球笼式万向节、球叉式万向节)。
等速与不等速,是指从动轴在随着主动轴转动时,两者的转动角速率是否相等而言的,当然,主动轴和从动轴的平均转速是相等的。
主、从动轴的角速度在两轴之间的夹角变动时仍然相等的万向节,称为等速万向节或等角速万向节。
它们主要用于转向驱动桥、断开式驱动桥等的车轮传动装置中,主要用于轿车中的动力传递。
当轿车为后轮驱动时,常采用十字轴式万向节传动轴,对部分高档轿车,也有采用等速球头的;当轿车为前轮驱动时,则常采用等速万向节——等速万向节也是一种传动轴,只是称谓不同而已。
在发动机前置后轮驱动(或全轮驱动)的汽车上,由于汽车在运动过程中悬架变形,驱动轴主减速器输入轴与变速器(或分动箱)输出轴间经常有相对运动,此外,为有效避开某些机构或装置(无法实现直线传递),必须有一种装置来实现动力的正常传递,于是就出现了万向节传动。
万向节传动必须具备以下特点:a 、保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力;b 、保证所连接两轴能均匀运转。
由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内;c 、传动效率要高,使用寿命长,结构简单,制造方便,维修容易。
对汽车而言,由于一个十字轴万向节的输出轴相对于输入轴(有一定的夹角)是不等速旋转的,为此必须采用双万向节(或多万向节)传动,并把同传动轴相连的两个万向节叉布置在同一平面,且使两万向节的夹角相等。
万向传动轴设计范文万向传动轴(Universal Joint Shaft)是一种能够实现两个轴线的不同角度传动的机械传动装置,广泛应用于汽车、机械设备和工业生产线等领域。
本文将详细介绍万向传动轴的设计原理、结构特点以及设计优化方法。
一、设计原理当传动输入轴转动时,中心轴通过两个交叉连接轴的连杆传递旋转力矩,并使输出轴也产生旋转。
由于交叉连接轴的特殊结构,万向传动轴能够使传动输入轴和输出轴存在不同的旋转角度,从而解决了轴线不同角度对传动的限制。
二、结构特点在设计过程中,需要考虑以下几个关键参数:1.轴间角度:指传动输入轴与输出轴之间的夹角。
该角度越大,传动轴工作时的额定转速越低,并且还会增加传动过程中的振动和噪音。
2.传动扭矩:表示输入轴传递给输出轴的力矩大小。
在设计中需要根据传动系统的需求确定传动轴的最大扭矩。
3.长度和直径:传动轴的长度和直径需要根据具体应用条件和承载要求进行确定。
三、设计优化方法在进行万向传动轴的设计时,可以采用以下几种优化方法:1.结构材料选择:传动轴的结构材料对其承载能力和耐久性具有重要影响。
可以通过优化材料选择,如选用高强度合金钢,来提高传动轴的耐久性能。
2.回转角度优化:通过合理设计传动轴的长度和交叉板角度,使得传动轴的回转角度在设计范围之内,从而提高传动效率并减少振动和噪音。
3.杆件直径优化:传动轴的杆件直径直接影响其承载能力。
可以采用有限元分析方法来优化杆件的直径,以满足传动系统的扭矩和振动要求。
4.轴承选择与布局:传动轴的轴承选择与布局对其旋转平衡性和耐久性有重要影响。
可以通过优化轴承的类型和布局,如选用角接触球轴承和双排球轴承,来提高传动轴的工作稳定性和寿命。
总之,万向传动轴作为一种重要的机械传动装置,在众多领域都有广泛应用。
其设计涉及到结构原理、材料选择、回转角度优化、杆件直径优化以及轴承选择与布局等多个方面,需要综合考虑承载能力、回转角度和振动噪音等设计要求,以实现传动系统的高效、稳定和可靠工作。
万向传动轴1. 引言万向传动轴(Universal Joint),是一种重要的机械传动零件,通常用来连接两个不处于同一轴线上的转动部件,在实现轴向传动的同时允许一定角度的偏转。
它的结构简单但功能强大,常被用于汽车、工业机械和船舶等领域,为机械系统的传动效率和运动灵活性提供了重要保证。
本文将介绍万向传动轴的结构、工作原理、优缺点以及应用领域,以增进对这一机械传动零件的理解。
2. 结构与工作原理万向传动轴万向传动轴2.1 结构万向传动轴由两个相互垂直的轴组成,分别称为输入轴和输出轴。
它们通过一个十字形的连接件连接在一起。
连接件的其中两条臂连接输入轴,另外两条臂连接输出轴。
在连接件的四个角上,分别配备了一个单向的万向节,用于补偿输入轴和输出轴之间的偏移和角度变化。
2.2 工作原理当输入轴旋转时,万向节会根据其结构特点使输出轴产生相应的偏转。
这是通过旋转输入轴和驱动轴连接件的角度传递到输出轴实现的。
万向传动轴通过使输出轴的转动方向与输入轴垂直来实现角度偏转。
万向节的结构使得输出轴能够在一定程度上自由运动,从而使得机械系统能够适应不同的工作条件和角度要求。
然而,由于万向传动轴的结构限制,当角度过大或转速过高时,可能会引起振动和噪声等问题。
3. 优缺点3.1 优点•能够将两个不处于同一轴线上的转动部件连接在一起,实现轴向传动。
•允许一定角度的偏转,提供了机械系统的运动灵活性。
•结构简单,制造成本相对较低。
3.2 缺点•角度偏转过大或转速过高时可能引起振动和噪声。
•传动效率相对较低,存在能量损耗。
4. 应用领域万向传动轴广泛应用于各个领域中,下面是几个常见的应用领域:•汽车:用于传输引擎动力至驱动轴,使车辆能够转弯并适应地形变化。
•机械工业:用于连接旋转部件,如电机和传动装置,实现不同角度的传动。
•航空航天:用于飞机起落架、旋翼等部件的传动,提供灵活性和适应性。
5. 总结万向传动轴作为一种重要的机械传动零件,在各个领域中都有着广泛的应用。
摘要万向传动装置是汽车传动系统中的重要组成部分,万向传动装置位于变速箱和驱动桥之间,一般由万向节、传动轴和中间支承组成。
万向节能实现变角度动力传递;传动轴把变速器的转矩传递到驱动桥上;中间支承能补偿传动轴轴向和角度方向的安装误差和车辆行驶过程中由于发动机窜动或车架等变形所引起的位移。
万向传动装置的功用是在汽车行驶过程中,在轴间夹角及相互位置经常发生变化的两个转轴之间传递动力。
本文主要是对汽车的十字轴式万向传动装置进行设计。
根据车辆使用条件和车辆参数,按照传动系统的设计步骤和要求,主要进行了以下工作:选择相关设计参数主要为:十字轴、万向节、传动轴、中间支承的参数确定,并进行了总成设计主要为:十字轴的设计,万向节的设计、传动轴的设计以及中间支承的设计等。
并通过Pro/E 建模和有限元ANSYS软件对设计万向传动装置进行结构分析,根据分析结果对万向传动装置进行改进设计得出合理的设计方案。
关键词:万向传动装置;十字轴;万向节;传动轴;有限元分析ABSTRACTThe automobile universal transmission device is in the automobile transmission system important constituent,is located between the gear box and the driving axle . Generally by the universal joint, the drive shaft and the middle supporting is composed. The universal joint energy conservation realization changes the angle power transmission;Transmit the torque of the gear box to the transaxle with drive shaft;The middle supporting can compensate the drive shaft axial and the angle direction in the wiring error and the vehicles travel process because the engine flees moves the displacement which or distortions and so on frame causes. The rotary transmission device function is in the automobile travel process, the included angle and the mutual position changes between the revolution axis in the axis between to transmit the power frequently.This article mainly is carries on the design to the automobile cross shaft type rotary transmission device. According to vehicles exploitation conditions and vehicles parameter, according to transmission system design procedure and request, Mainly has carried on following work:Mainly has carried on following work choice correlation design variable mainly is: Cross axle, universal joint, drive shaft, middle supporting parameter determination, and has carried on the unit design mainly is: Cross axle design, universal joint design, drive shaft design as well as middle supporting design and so on. And to designs the rotary transmission device through the finite element Pro/E and ANSYS software to carry on the structure analysis, Carries on the improvement design according to the analysis result to the rotary transmission device to obtain the reasonable design proposal.Keywords:U niversal Transmission Device; Cross Axle; Universal Joint; Transmission shaft; Finite Element Analysis目录摘要 (I)Abstract ..................................................................................I I 第1章绪论 (1)1.1 概述 (1)1.2汽车传动轴的国内外研究现状 (2)1.3研究汽车万向传动轴的目的和意义 (3)1.3.1研究汽车万向传动轴的目的 (3)1.3.2研究汽车传动轴的意义 (3)1.4 万向传动轴的结构特点及基本要求 (4)1.5本课题研究的主要内容 (5)第2章汽车传动轴的结构方案分析与选择 (7)2.1汽车传动轴的结构方案概述 (7)2.1.1万向节与传动轴的结构型式 (7)2.1.2传动轴管、伸缩花键及中间支承结构型式 (7)2.1.3万向节类型 (10)2.2传动轴设计方案 (12)2.3本章小结 (13)第3章万向传动轴的设计 (14)3.1HGC1050汽车的主要技术参数 (14)3.2传动轴总成设计计算及校核 (15)3.2.1传动轴计算载荷的确定 (15)3.2.2传动轴轴管的选择及校核 (16)3.2.3中间支承的结构设计 (21)3.3十字轴总成的设计计算及校核 (24)3.3.1万向节的受力分析 (24)3.3.2十字轴万向节的设计及校核 (26)3.3.3十字轴滚针轴承的校核 (27)3.3.4万向节叉的设计及校核 (28)第4章传动轴总成建模与装配 (30)4.1 Pro/ENGINEER软件简介 (30)4.2利用Pro/ENGINEER软件进行三维实体建模 (31)4.2.1十字轴的创建 (31)4.2.2凸缘叉的创建 (31)4.2.3轴承差的创建 (32)4.2.4传动轴管的创建 (32)4.2.5带花键的传动轴管的创建 (33)第5章万向传动装置的有限元静力学分析 (34)5.1 ANSYS软件简介 (34)5.2Pro/E与ANSYS接口的创建 (34)5.3利用ANSYS对望向传动装置进行有限元受力分析 (36)5.3.1十字轴有限元受力分析 (36)5.3.2凸缘叉有限元受力分析 (40)5.3.3传动轴有限元受力分析 (41)5.4本章小结 (42)结论 (43)参考文献 (44)致谢 (45)附录:传动轴简介第1章绪论1.1 概述万向节传动用于在不同轴心的两轴间甚至在工作过程中相对位置不断变化的两轴间传递动力。
万向传动轴设计说明书商用汽车万向传动轴设计摘要万向传动轴在汽车上应用比较广泛。
发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。
本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。
传动轴是由轴管、万向节、伸缩花键等组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。
在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。
关键字:万向传动轴、伸缩花键、十字轴万向节、临界转速、扭转强度目录一、概述 (04)二、货车原始数据及设计要求 (05)三、万向节结构方案的分析与选择 (06)四、万向传动的运动和受力分析 (08)五、万向节的设计计算 (11)六、传动轴结构分析与设计计算 (17)七、法兰盘的设计 (19)八、参考文献 (20)一、概述汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。
主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。
在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。
当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节用三个。
此时,必须在中间传动轴上加设中间支承。
在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。
万向传动轴设计说明书⽬录(⼀)万向传动轴设计1.1 概述 (02)1.1 结构⽅案选择 (03)1.2 计算传动轴载荷 (04)1.3 ⼗字轴万向节设计 (05)1.4 传动轴强度校核 (07)1.5 传动轴转速校核及安全系数 (07)1.6 参考⽂献 (09)概述万向传动轴⼀般是由万向节、传动轴和中间⽀承组成。
主要⽤于在⼯作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。
万向传动轴设计应满⾜如下基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动⼒。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹⾓⽽产⽣的附加载荷、振动和噪声应在允许范围内。
4.传动效率⾼,使⽤寿命长,结构简单,制造⽅便,维修容易等。
变速器或分动器输出轴与驱动桥输⼊轴之间普遍采⽤⼗字轴万向传动轴。
在转向驱动桥中,多采⽤等速万向传动轴。
当后驱动桥为独⽴的弹性,采⽤万向传动轴。
1.传动轴与⼗字轴万向节设计要求1.1 结构⽅案选择⼗字轴万向节结构简单,强度⾼,耐久性好,传动效率⾼,⽣产成本低,但所连接的两轴夹⾓不宜太⼤。
当夹⾓增加时,万向节中的滚针轴承寿命将下降。
普通的⼗字轴式万向节主要由主动叉,从动叉,⼗字轴,滚针轴承及轴向定位件和橡胶封件等组成。
1. 组成:由主动叉、从动叉、⼗字轴、滚针轴承、轴向定位件和橡胶密封件组成2. 特点:结构简单、强度⾼、耐久性好、传动效率⾼、成本低,但夹⾓不宜过⼤。
3.轴向定位⽅式:盖板式卡环式⽡盖固定式塑料环定位式4. 润滑与密封:双刃⼝复合油封多刃⼝油封1.2 计算传动轴载荷由于发动机前置后驱,根据表4-1,位置采⽤:⽤于转向驱动桥中①按发动机最⼤转矩和⼀档传动⽐来确定T se1=k d T emax ki1i f i0η/nT ss1= G1 m’1υr r/ 2i mηm发动机最⼤转矩T emax=186Nm驱动桥数n=1,发动机到万向传动轴之间的传动效率η=0.89,液⼒变矩器变矩系数k={(k0 -1)/2}+1=1,满载状态下⼀个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下⼀个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N,发动机最⼤加速度的前轴转移系数m’1=0.8发动机最⼤加速度的后轴转移系数m’2=1.3,轮胎与路⾯间的附着系数υ=0.85,车轮滚动半径r r=0.35,i=3.6变速器⼀挡传动⽐1i=1分动器传动⽐f主减速器从动齿轮到车轮之间传动⽐i m=0.55,主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产⽣的动载系数k d=1,主减速⽐i 0=3.763所以:T se2=k d T emax ki 1i f i 0η/n =1*285.0*763.3*1*6.3*1*186*1=1070.875N T ss2= G 1 m ’1υr r / 2i m ηm =94.0*4545.0*235.0*85.0*8.0*9.8530=2376.180N ∵T 1=min{ T se2, T ss2} ∴T 1= T se2=1070.875N1.3 ⼗字轴万向节设计①设作⽤于⼗字轴轴颈中点的⼒为F ,则F= T 1/2rcos α=-4cos *10*50*2875.10703=10734.895N②⼗字轴轴颈根部的弯曲应⼒σw 和切应⼒τ应满⾜σw =32d 1Fs π(d 14-d 42)≤[σw ] τ=4F π(d 21-d 22)≤[τ]式中,取⼗字轴轴颈直径d 1=38.2mm ,⼗字轴油道孔直径d 2=10mm ,合⼒F 作⽤线到轴颈根部的距离s=14mm ,[σw ]为弯曲应⼒的许⽤值,为250-350Mpa ,[τ]为切应⼒的许⽤值,为80-120 Mpa∴σw =32d 1Fs π(d 14-d 42)=]4)^10*10(4)^10*2.38[(10*14*895.10734*10*2.38*23333-----π =1.72 Mpa<[σw ]τ=4F π(d 21-d 22) = ])10*10()10*2.38[(895.10734*42323---π =9.58 Mpa<[τ]故⼗字轴轴颈根部的弯曲应⼒和切应⼒满⾜校核条件③⼗字轴滚针的接触应⼒应满⾜σj =272(1d 1+1d 0)F n L b≤[σj ] 式中,取滚针直径d 0=3mm ,滚针⼯作长度L b =27mm ,在合⼒F 作⽤下⼀个滚针所受的最⼤载荷F n =4.6F iZ=44*1895.10734*6.4=1122.284,当滚针和⼗字轴轴颈表⾯硬度在58HRC 以上时,许⽤接触应⼒[σj ]为3000-3200 Mpa ∴σj =272b n L F d d )11(01+=2723331027284.1122])103(1)102.38(1[---+? =1.051Mpa<[σj ]故⼗字轴滚针轴承的接触应⼒校核满⾜④万向节叉与⼗字轴组成连接⽀承,在⼒F 作⽤下产⽣⽀承反⼒,在与⼗字轴轴孔中⼼线成45°的截⾯处,万向节叉承受弯曲和扭转载荷,其弯曲应⼒σw 和扭应⼒τb 应满⾜σw =Fe/W ≤[σw ]τb =Fa/W t ≤[τb ]式中,取a=40mm,e=80mm,b=35mm,h=70mm,查表4-3,取k=0.246,W=bh 2/6,W t =khb 2, 弯曲应⼒的许⽤值[σw ]为50-80Mpa ,扭应⼒的许⽤值[τb ]为80-160Mpa∴σw =Fe/W=6)1070(10351080895.107342333--- =30.045 Mpa< [σw ]τb =Fa/W t =2333)1035(1070246.01040895.10734--- =20.356Mpa<[τb ]故万向节叉承受弯曲和扭转载荷校核满⾜要求⑤⼗字轴万向节的传动效率与两轴的轴间夹⾓α,⼗字轴的⽀承结构和材料,加⼯和装配精度以及润滑条件等有关。