2.2 提公因式法(含答案)-
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
因式分解综合复习知识点一(提公因式法)【知识梳理】提取公因式法:如果一个多项式的各项含有公因式,那么可以把该公因式提取出来,作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式,这种分解因式的方法叫做提取公因式法. 注意事项(1)如果多项式的首项是负数时,一般先提出“—”号,使括号内的第一项系数是正数.(2)利用提取公因式法分解因式是,一定要“提干净”.(3)注意避免出现分解因式的漏项问题,一般提取公因式后,括号里的多项式项数应与原多项式的项数一致.(4)多项式的公因式可以是数字、字母,也可以是单项式,还可以是多项式. 【例题精讲】例1、(1)y x x 34488-- (2) ab b a b a 264223-+-点拨:提取公因式后剩余的多项式的项数与原多项式的项数相同,由此可以检验是否漏项.【课堂练习】1、将下列各式因式分解(1)32269a b a b c - (2)322812m m m -+- (3)2()3()m a b n b a ---2、多项式15m 3n 2+5m 2n-20m 2n 3的公因式是____.3、分解因式(1)x (x ﹣2)﹣3(2﹣x ) (2)2x (a ﹣b )﹣3(b ﹣a )知识点二(运用公式法) 【知识梳理】将乘法公式反过来写就得到因式分解中所用的公式,常见公式如下: 1. 平方差公式: ))((22b a b a b a -+=- 2. 完全平方公式:222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 三项和完全平方公式:2222)(222c b a bc ac ab c b a ++=+++++4. 完全立方公式:33223)(33b a b ab b a a +=+++33223)(33b a b ab b a a -=-+-5. 立方和公式:))((2233b ab a b a b a +-+=+6. 立方差公式:))((2233b ab a b a b a ++-=-【例题精讲】例1、(1)22169mn m n -+ (2)2221x xy y -+-【课堂练习】1、161)(21)(2+---y x y x =____________.222,248a b a b a b A B C +--+、已知为任何实数,则的值总是()、负数、正数、 0D 、非负数3、把下列多项式分解因式:(1) x 2+10x +25 (2) 4a 2+36ab +81b 2 (3)-4xy -4x 2-y24、因式分解(1)﹣3a 3b +6a 2b 2﹣3ab 3 (2)﹣3ma 2+12ma ﹣9m(3)x 3﹣4x (4)2x 2y ﹣8y知识点三(分组分解法) 【知识梳理】分组分解法:通过对多项式的项分组,将多项式分解因式的方法叫做分组分解法。
课题 4.2.2 提公因式法学习目标1.进一步探索寻找多项式各项公因式的过程,能通过转化确定带括号多项式各项的公因式;2. 会用提取公因式法较复杂的多项式进行因式分解;3. 领会确定多项式各项的公因式的一般方法,培养观察、转化与计算能力;重点难点重点:会用提取公因式法进行因式分解难点:会确定较复杂的多项式各项的公因式教法选择合作探究、练习指导课型新授课课前准备多媒体课件是否采用多媒体是教学时数2课时教学时数第2 课时备课总数第课时教学设计思路及其意图本节课的设计以上节课的知识为基础,在训练学生代数感觉的基础上,开展更深层次的练习。
教案设计了许多的关于解决多项式符号问题的题目,加强练习强化和归纳细化,让学生获得知识的同时,提升能力。
课堂教学过程设计教学内容教师活动学生活动一、回顾思考:(把下列各式因式分解)(1)am+an (2)a2b-5ab (3)m2n+mn2-mn (4)-2x2y+4xy2-2xy 二、引入新课,探索新知(一)知识链接1、计算① m(a+b+c)=② x(3x-6y+1)=2、请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=_____(a-2);(2)y-x=_____(x-y);(3)b+a=_____(a+b),(4)-m-n=____-(m+n);提问提取公因式的基本方法与步骤,然后让学生进行因式分解出示例2,引导学生通过观察、类比将提取单项式公因式的方法与步骤推广应用于提取例2的公因式出示2中问题,学生观察思考,为解决符号问题准备回顾提取公因式的方法与步骤,回答并进行练习用类比的方法找到式子中相同的因式,说出公因式的特征(多项式),并尝试说出分解的结果观察式子特征,进行恒等变形,并寻找规律,总结探究注意的事项主备人:备课组长签字:教学内容教师活动 学生活动 (二)自主学习,合作探究 1、议一议;多项式ma+mb+mc 各项都含有的相同因式是 ,多项式3x2-6xy+x 各项都含有的相同因式是 。
2.2提取公因式法(1课时)授课教师:张娟【教材分析】因式分解是进行代数恒等变形的重要手段之一,它是在学习有理数和整式四则运算的基础上进行的,因式分解不仅在多项式的除法、简便运算中有直接作用,也为以后学习分式运算、解方程、方程组及代数式的恒等变形提供了必要的基础。
进行因式分解的途径很多,技巧性强,逆向思维能力要求较高。
所以因式分解是发展学生智力、培养能力、深化学生的逆向思维能力的良好载体。
【教材背景】“提取公因式法”是北师大版初中八年级数学下册“因式分解”一章的重点内容之一,是学生学习因式分解的第一种分解因式的方法。
是最基本也是最重要的因式分解方法。
应该培养学生的观察、分析、判断能力和预见能力。
【教学方法】(一)教法分析1.为了调动学生的学习的积极性,充分肯定学生的主体地位,使学生变被动学习为主动的学习,应采用师生问答,启发诱导法和练习法,,及组织学生活动法。
2.教具准备:课件,多媒体(二)、学法分析为了培养学生的数学思维能力、自学能力,这节课主要采用指导学生通过讨论完成相应的学习过程:预习—听课(问答)—反馈巩固—系统小结—完成作业。
以达到巩固、熟练知识的目的,同时指导学生注意运用观察分析的学习方法。
【教学目标】知识技能目标:理解公因式的概念,会找出多项式的公因式,并能用提取公因式法因式分解过程方法目标:初步形成观察、分析、概括的能力和逆向思维方式情感态度目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重难点】教学重点:掌握公因式的概念,会使用提取公因式法进行因式分解教学难点:准确找出公因式。
【教学过程】一.回顾旧知1. 多项式的分解因式的概念:把一个多项式__________________的形式,叫做把这个多项式分解因式.2. 分解因式与整式乘法是_____过程.3. 分解因式要注意以下几点:①分解的对象必须是_______.②分解的结果一定是几个整式的_____的形式.二.探究新知1.公因式的定义及确定方法下列各多项式的各项有没有共同的因式?(1)ma+mb+mc (2)8 a 3 b2 –12ab 3 + ab从上面的代数式中,大家注意观察每一个代数式有什么特点?各项之间有什么联系?由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.①首先找各项系数的最大公约数,如8和12的最大公约数是4.②其次找各项中含有的相同的字母,如(2)中相同的字母有ab,相同字母的指数取次数最低的.【注意】多项式各项的公因式可以是单项式,也可以是多项式。
⑴提公因式法各项都含有得公共得因式叫做这个多项式各项得公因式。
如果一个多项式得各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积得形式,这种分解因式得方法叫做提公因式法.具体方法:当各项系数都就是整数时,公因式得系数应取各项系数得最大公约数;字母取各项得相同得字母,而且各字母得指数取次数最低得;取相同得多项式,多项式得次数取最低得。
如果多项式得第一项就是负得,一般要提出“-”号,使括号内得第一项得系数成为正数。
提出“-”号时,多项式得各项都要变号.口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。
例如:-am+bm+cm=-m(a—b-c);a(x-y)+b(y-x)=a(x-y)—b(x—y)=(x-y)(a—b)。
注意:把2a+1/2变成2(a+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式得多项式必须就是三项式,其中有两项能写成两个数(或式)得平方与得形式,另一项就是这两个数(或式)得积得2倍。
立方与公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a—b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)例如:a^2+4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧1、分解因式与整式乘法就是互为逆变形.2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式得结果必须就是以乘积得形式表示;③每个因式必须就是整式,且每个因式得次数都必须低于原来多项式得次数;④分解因式必须分解到每个多项式因式都不能再分解为止。
提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1—4拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×25加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)拆分法和乘法分配律结这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21利用公式法(1) 加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc,(a-b)*c=ac-bc.(4) 除法运算性质(与减法类似):a÷(b*c)=a÷b÷c,a÷(b÷c)=a÷bxc,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
2.2 提公因式法A卷:基础题一、选择题1.下列各组代数式中,没有公因式的是()A.5m(a-b)和b-a B.(a+b)2和-a-bC.mx+y和x+y D.-a2+ab和a2b-ab22.下列多项式中,能用提公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y23.下列用提公因式法分解因式不正确的是()A.12abc-9a2b2c=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy+y=y(x2+5x+1)4.(-2)2007+(-2)2008等于()A.2 B.22007 C.-22007 D.-220085.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9)二、填空题6.9x2y-3xy2的公因式是______.7.分解因式:-4a3+16a2b-26ab2=_______.8.多项式18x n+1-24x n的公因式是______,提取公因式后,另一个因式是______.9.a,b互为相反数,则a(x-2y)-b(2y-x)的值为________.10.分解因式:a3-a=______.三、解答题11.某中学有三块草坪,第一块草坪的面积为(a+b)2m2,第二块草坪的面积为a(•a+b)m2,第三块草坪的面积为(a+b)bm2,求这三块草坪的总面积.12.观察下列等式,你得出了什么结论?并说明你所得的结论是正确的.1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;…B卷:提高题一、七彩题1.(巧题妙解题)计算:1233695101571421 13539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.2.(多题一思路路)(1)将m2(a-2)+m(2-a)分解因式,正确的是() A.(a-2)(m2-m) B.m(a-2)(m+1)C.m(a-2)(m-1) D.m(2-a)(m-1)(2)若x+y=5,xy=10,则x2y+xy2=_______;(3)mn2(x-y)3+m2n(x-y)4分解因式后等于_______.二、知识交叉题3.(科内交叉题)你对分解因式的了解是不是多了一些?请你猜一猜:32005-4×32004+ 10×32003能被7整除吗?4.(科内交叉题)已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9Ω,R2=18.5Ω,R3=18.6Ω,I=2.3A时,求U的值.三、实际应用题5.在美丽的海滨步行道上,整齐地排着十个花坛,栽种了蝴蝶兰等各种花奔,•每个花坛的形状都相同,中间是矩形,两头是两个半圆形,半圆的直径是中间矩形的宽,若每个花坛的宽都是6m,每个花坛中间矩形长分别为36m,25m,30m,28m,•25m,•32m,24m,24m,22m和32m,你能求出这些花坛的总面积吗?你用的方法简单吗?四、经典中考题6.(2008,重庆,3分)分解因式:ax-ay=______.7.(2007,上海,3分)分解因式:2a 2-2ab=_______.C 卷1.(规律探究题)观察下列等式:12+2×1=1×(1+2);22+2×2=2×(2+2);32+2×3=3×(3+2);…则第n 个等式可以表示为_______.2.(结论开放题)如图2-2-1,由一个边长为a 的小正方形与两个长,宽分别为a ,•b的小矩形组成图形ABCD ,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.3.(阅读理解题)先阅读下面的例子,再解答问题.求满足4x (2x -1)-3(1-2x )=0的x 的值.解:原方程可变形为(2x -1)(4x+3)=0.所以2x -1=0或4x+3=0,所以x 1=12,x 2=-34. 注:我们知道两个因式相乘等于0,那么这两个因式中至少有一个因式等于0;•反过来,如果两个因式中有一个因式为0,它们的积一定为0,请仿照上面的例子,求满足5x (x -2)-4(2-x )=0的x 的值.3.先阅读下面的材料,再分解因式:要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;•把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)•又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+•an+•bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.•如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面材料中提供的方法分解因式:(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.参考答案A卷一、1.C 点拨:A中公因式是(a-b),B中公因式是(a+b),D中公因式是(a-b).2.B 点拨:x2+2x=x(x+2).3.B 点拨:3x2y-3xy+6y=3y(x2-x+2).4.B 点拨:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-1)×(-2)2007=22007.5.C 点拨:xy2-9x=x(y2-9)=x(y2-32)=x(y+3)(y-3).二、6.3xy 点拨:9x2y-3xy2=3xy·3x-3xy·y=3xy(3x-y).7.-2a(2a2-8ab+13b2)点拨:-4a3+16a2b-26ab2=-2a(2a2-8ab+13b).8.6x n;3x-4 点拨:18x n+1-24x n=6x n·3x-6x n·4=6x n(3x-4).9.0 点拨:因为a+b=0,所以a(x-2y)-b(2y-x)=a(x-2y)+b(x-2y)=(x-2y)(a+b)=0.10.a(a+1)(a-1)点拨:a3-a=a(a2-1)=a(a+1)(a-1).三、11.解:(a+b)2+a(a+b)+b(a+b)=(a+b)[(a+b)+a+b]=(a+b)(2a+2b)=2(a+b)2(m2)点拨:本题是整式的加法运算,利用提公因式法,很快得到运算结果.12.解:结论是:n(n+1)+(n+1)=(n+1)2.说明:n(n+1)+(n+1)=(n+1)(n+1)=(n+1)2.点拨:本题是规律探究题,把所给等式竖着排列,易于观察它们之间存在的规律.B卷一、1.解:原式=33333333123(1357)1232 135(1357)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯.点拨:本题的巧妙之处是利用提公因式法分解因式可使计算过程简化,且不易出错.2.(1)C (2)50 (3)mn(x-y)3(n+mx-my)点拨:(1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m-1),故选C.(2)x2y+xy2=xy(x+y).因为x+y=5,xy=10,所以原式=10×5=50.(3)mn2(x-y)3+m2n(x-y)4=mn(x-y)3[n+m(x-y)]=mn(x-y)3(n+mx-my).以上三题的思路是一致的,都是利用提公因式法分解因式,其中第(2)•题分解因式后再代入求值.二、3.解:能,理由:32005-4×32004+10×32003=32003×(32-4×3+10)=32003×7,故能被7整除.点拨:对一个算式进行运算,运算的结果若有因数7,说明它能被7整除.4.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115(V).点拨:遇到运算比较复杂的题目,可尝试用分解因工的方法把式子化简.三、5.解:S=(π·32+36×6)+(π·32+25×6)+(π·32+30×6)+…+(π·32+32×6)=10×π·32+6×(36+25+30+…+32)≈1951(m2).四、6.a(x-y) 7.2a(a-b)C卷1.n2+2n=n(n+2)2.解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);a(a+2b)-a2=2ab;a2+2ab=a(a+2b);a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.点拨:答案不唯一,从上述等式中任写三个即可.3.解:5x(x-2)-4(2-x)=0,5x(x-2)+4(x-2)=0,(x-2)(5x+4)=0,所以x-2=0•或5x+4=0,所以x1=2,x2=-45.点拨:观察以上解题特点发现等号左边为0,左边为因式乘积的形式,所以只要把5x(x-2)-4(2-x)=0左边因式分解即可.3.解:(1)a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c).(2)m2+5n-mn-5m=(m2-mn)+(5n-5m)=m(m-n)+5(n-m)=m(m-n)-5(m-n)=(m-n)(m-5).。
4.2.1提取公因式法导学案学习目标1.能确定多项式各项的单项式公因式.2.会用提公因式法把多项式分解因式一、自学释疑1.2x²+6x³中有哪些公因式?这些公因式中哪个是最大公因式?2. 用提公因式法分解因式后,括号里的多项式中有没有公因式?3.你是怎样确定提取多项式中的公因式的?4. 用提公因式法分解因式后,括号里的多项式的项数与原多项式的项数相比,有没有什么变化?5. 提公因式法分解因式与单项式乘多项式有什么关系?二、合作探究探究点一:问题1:多项式ac+bc每项含有哪些因式?有相同的因式吗?3x²+x呢?mb²+nb+b呢?归纳结论公因式:问题2:2x²+6x³中的公因式是什么?能将它分解因式吗?归纳结论提取公因式法:探究点二问题1:把下列各式因式分解:(1)3x+x³;(2)7x³-21x²;(3)8a ³b ²-12ab ³c+ab;(4)-24x ³+12x ²-28x.温馨提示:1. 当多项式第一项的系数是负数时,通常提出“-”号,使括号内第一项的系数成为正数.在提出“-”号时,多项式的各项都要变号.2. 当把某项全部提出来后余下的系数是1,不是0(提公因式后括号内多项式的项数与原多项式的项数一致)探究点三问题1:利用分解因式简化计算:57×99+44×99-99问题2:证明:257-512能被120整除强化训练1.分解因式28x4-21x³+7xy;2.利用分解因式计算:(-2)²ºº¹+(-2)²ºº²×1 2随堂检测1.下列各式中,没有公因式的是()A. ab-bcB.y²-yC.x²+2x+1D.mn²-nm+m²2.要使式子-7ab-14abx+49aby=-7ab()成立,括号内应填入的式子是()A.-1+2x+7yB.-1-2x+7yC.1-2x-7yD.1+2x-7y3.已知mn=1,m-n=2,则m²n-mn²的值是()A.-1B.3C.2D.-24.单项式12x³y³z³,-18x³y³z³,24x²y4z3,-6x²y³z4的公因式是.5.已知当x=1时,2ax²+bx=3,则当x=2时,ax²+bx= .我的收获:.参考答案探究点一问题1:解:多项式ac+bc的ac项含因式a、c、ac;bc项含因式b、c、bc .相同因式:c多项式3x²+x含因式3、x、x² 3x、3x ² 相同因式:x多项式mb²+nb+b含因式m、b、b² mx ²、n;相同因式:b问题2:解:2x²+6x³=2x² +2x²·3x=2x(1+3x).归纳结论提取公因式法:如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将这个多项式化成两个因式的乘积形式,这种分解因式的方法叫做提请公因式法.探究点二问题1:解:(1)3•x+x²•x=x(3+x ²);(2)7x ²•x+7x ²•3=7x ² (x-3);(3)ab•8a ²b- ab•12b ²c+ ab=ab(8a² b-12b² c+1);(4)-(24x ³-12x ²+28x)=-(4x•6x²-4x•3x+4x•7)= -4x(6x²-3x+7).强化训练探究点三问题1解:57×99+44×99-99=99(57+44-1)=99×100=9900问题2257-512=(5²)7-512=514-512=512×(5²-1)=24×512=120×511∴257-512能被120整除.强化训练1.原式=7x(4x3-3x2+y).2.(-2)²ºº¹+(-2)²ºº²×1 2=(-2)²ºº¹×[1-(-2) ×12]=(-2)²ºº¹×0=0随堂检测1.C2.D3.C4.6x2y3z35.6.。
2.2提公因式法
一、选择题:
1.多项式-4a2b2+12a2b2-8a3b2c的公因式是()
A.-4a2b2c B.-a2b2 C.-4a2b2D.-4a3b2c
2.若多项式-6mn+18mnx+24mny的一个因式是-6mn,那么另一个因式是()
A.-1-3x-4y B.1-3x-4y C.-1-3x+4y D.1+3x-4y
3.分解-3a2bc2+12a3b2c2+9a2bc3的结果是()
A.-a2bc2(3-12ab-9c) B.a2bc2(-3+12ab+9c)
C.-3(a2bc2-4a3b2c2-3a2bc3) D.-3a2bc2(1-4ab-3c)
4.下列提公因式法分解因式正确的是()
A.12abc-9a2b2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)
C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)
5.下列多项式中的公因式与多项式8x3+24x2+4x的公因式相同的有()
①8y3+24y2+4y;②32x3y+16xy2+28x3;③4x4-12x3+16x2+20x;④-8x3+4x2-24x A.1个B.2个C.3个D.4个
6.下列各组多项式中,提取公因式后的剩余因式相同的是( )
A.3m2n+6mn2与2m2n+4mn2+mn B.a3+a2+a与b3+b2+b
C.6x3+4x2+2x与6x2y+4xy+2y D.a(m-n)3-b(n-m)3与a(m-n)3-b(m-n)3
二、填空题:
1.单项式4a3,8a2b2,-30a2bc的公因式是_________;单项式8x m y n-1与–4x m+1y n的公因式是_________。
2.在下列各式右边的括号前填写“+”号或“-”号,使等式成立:
(1)(b-a)2=_________(a-b)2; (2)(x-y)3=________(y-x)3
(3)-a-b=___________(a+b); (4)(-x-y)2=________(x+y)2
3.-6m3n2+12m2n3-3m2n2的公因式是_________;5a(x-y)-10b(y-x)的公因式是________.
4.在下列括号内填写适当的多项式,使等式成立:
(1)14abx-8ab2x=2abx( ); (2)-7ab-14abx+49aby=-7ab( ) 5.分解因式:3a(m+n)-6(m+n)=___________.
6.利用分解因式计算:(-2)2003+(-2)2004-22003=__________。
三、计算题:
1.分解因式:(1)-24x2-12xy+28x (2)9a4x2-18a3x3-36a2x4
2.分解因式:(1)2x(a-b)-5y(a-b) (2)7ab(m+n)+21bc(m+n)
3.分解因式:(1)(a+b)(x+y)-(a+b)(x-y) (2)3(a-b)3+(b-a)2
(3)(3a+b)(a-2b)-2a(2b-a) (4)x(x-y-z)+y(y-x+z)+z(z-x+y)
四、求满足下列等式的x的值:
1.(x-2)(x+3)+(2-x)2-(x-2)(2x-3)=0; 2.5x(x-3)-4(3-x)=0
五、利用因式分解说明:对于任意整数n,n2-n必是偶数。
六、把多项式x(x+1)3+x(x+1)2+x(x+1)+x+1分解因式。
七、任意写出一个多项式,使其满足以下条件:
(1)公因式是-2ab;(2)共有四项;(3)最高次项的次数不大于4;(4)多项式中出现的字母
不超过3个。
答案:
一、1.C 2.B 3.D 4.C 5.C 6.C
二、1.2a2; 4x m y n-12.(1)+ (2)-(3)-(4)+ 3.-3m2n2; 5(x-y) 4.(1)7-4b
(2)1+2x-7y 5.3(m+n)(a-2) 6.0
三、1.(1)解:原式=-(24x2+12xy-28x)=-4x(6x+3y-7)
(2)解:原式=9a2x2(a2-2ax-4x2)
2.(1)解:原式=(a-b)(2x-5y)
(2)解:原式=7b(m+n)(a+3c)
3.(1)解:原式=(a+b)[(x+y)-(x-y)]=(a+b)(x+y-x+y)=2y(a+b)
(2)解:原式=3(a-b)3+(a-b)2=(a-b)2[3(a-b)+1]=(a-b)2(3a-3b+1)
(3)解:原式=(3a+b)(a-2b)+2a(a-2b)=(a-2b)[(3a+b)+2a]=(a-2b)(5a+b)
(4)解:原式=x(x-y-z)-y(x-y-z)-z(x-y-z)=(x-y-z)(x-y-z)=(x-y-z)2
四、1.解:(x-2)(x+3)+(x-2)2-(x-2)(2x-3)=0
(x-2)[(x+3)+(x-2)-(2x-3)]=0
(x-2)(x+3+x-2-2x+3)=0
4(x-2)=0
x-2=0
∴x=2
2.解:5x(x-3)+4(x-3)=0
(5x+4)(x-3)=0
5x+4=0或x-3=0
∴x=-4
5
或x=3
即x的值为-4
5
或3。
五、解:n2-n=n(n-1)
对于任意整数,n和n-1是两个连续整数,因此必有一个为偶数。
所以,对于任意整数,n2-n必是偶数。
六、解:x(x+1)3+x(x+1)2+x(x+1)+x+1
=x(x+1)3+x(x+1)2+x(x+1)+(x+1)
=(x+1)[x(x+1)2+x(x+1)+x+1]
=(x+1)(x+1)[x(x+1)+x+1]
=(x+1)(x+1)(x+1)(x+1)
=(x+1)4
七、答案不惟一,如:-8a3b+6a2b+4ab2-2ab。