傅里叶变换的性质及常用函数的傅里叶变换
- 格式:docx
- 大小:2.31 MB
- 文档页数:3
常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17
变换本身就是一个公式。
广义Fourier 变换:函数不严格满足存在条件,但是函数可定义另一函数 所组成的序列的极限,序列中的函数有F.T.;对组成序 列的每一个函数进行变换,就产生一个相应的变换序 列,该新序列的极限即为原函数的广义F.T.g ( x, y ) = lim f N ( x, y ) ℑ{ f N ( x, y )} = FN ( f x , f y )N →∞ N →∞lim FN ( f x , f y ) = ℑ{ g ( x, y )} = G ( f x , f y )ℑ{δ ( x, y )}lim ℑ{ N exp(−N π (x + y ))} = limexp(−2 2 2 2 N→∞π ( f x2 + f y 2 )2N→∞N fy ⎫ ⎧ 1 fx 1 2 lim ℑ{ N rect(Nx)rect(Ny)} = lim ⎨N ⋅ sin c( )N ⋅ sin c( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N fy ⎫ ⎧ 1 fx 1 lim ℑ{ N sin c(Nx)sin c(Ny)} = lim ⎨N ⋅ rect( )N ⋅ rect( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N2) =1δ−function Properties 1. 筛选性(定义性质)∞ −∞∫ g ( x)δ ( x − x ) dx = g ( x )0 0δ ( x − x0 ) = 0, x ≠ x02. 尺度缩放性质δ (ax) =3. 偶函数x 1 1 δ ( x), δ (ax − x0 ) = δ ( x − 0 ) a a aδ ( x ) = δ ( − x ) , δ ( − x + x 0 ) = δ ( x − x0 )3. 乘积性质g ( x)δ ( x − x0 ) = g ( x0 )δ ( x − x0 ); xδ ( x − x0 ) = x0δ ( x − x0 )4. 积分性质∞−∞∫ Aδ ( x − x ) dx = A0∞−∞∫ δ ( x − x ) dx = 105. 卷积性质g ( x) ∗ δ ( x − x0 ) = g ( x − x0 )卷积定义∞f ( x) ∗ h( x) =−∞∫ f (a)h(x − a)da反转,平移,相乘,积分卷积在光学中的应用卷积表示一输出,在光学上就表示成像系统的像分 布 ;对于线性空间不变光学系统,其输出的信息可 表示为输入信息g与系统脉冲响应函数h(系统对点 源的响应)的卷积 的响应x0处点源:I 0 Δξ 对应的像强度分布P( xi − x0 )输出像:I i ( xi ) = I 0 Δξ P ( xi ) + I 0 Δξ P( xi − ξ 1 ) +KΔξ → 0:I i ( xi ) = ∫ I 0 (ξ ) P( xi − ξ )d ξ二维:g(x, y)表示物(输入信息); h(x,y)表示系统对点源的响应(点扩散函数、脉冲响应函数)输出=g( x, y ) ∗ h(x,y)卷积的性质1. 符合交换律g ( x,y ) ∗ h( x, y ) = h( x, y ) ∗ g ( x,y )2.函数平移不变性f ( x, y ) ∗ h ( x, y ) = g ( x, y ) ↔ f ( x − x0 , y − y0 ) ∗ h( x, y ) = g ( x − x0 , y − y0 )3. 线性运算(af + bh) ∗ g = af ∗ g + bh ∗ g4.δ函数的卷积f ( x, y )* δ ( x, y ) = f ( x, y )δ 函数与任何函数卷积仅重新产生该函数严格再生 5. 光滑作用脉冲响应函数h是 对光学系统性能的 定量评价。
傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。
因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。
根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。
一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。
导数与函数的傅里叶级数与变换导数是微积分中的重要概念之一,而函数的傅里叶级数与变换则是数学中处理周期性函数和信号的工具。
本文将探索导数与函数的傅里叶级数与变换之间的关系和应用。
一、导数的定义与性质导数是用来描述函数的变化率的概念。
对于函数f(x),在某个点x 处的导数可以通过以下定义计算得到:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示变化的量。
导数表征了函数在该点的切线斜率,通过导数可以推导出函数的极值、凹凸性以及函数图像的性质。
在计算导数时,可以利用基本导数公式和导数的性质。
例如,对于常数函数f(x) = c,其导数恒为0;对于多项式函数f(x) = ax^n,其导数为f'(x) = anx^(n-1);另外,导数满足导数的和差法则和导数的乘法法则等性质。
二、函数的傅里叶级数傅里叶级数是一种用三角函数的无限级数表示周期性函数的方法。
周期为T的周期性函数f(x)可以表示为如下的傅里叶级数形式:f(x) = a0/2 + Σ(an*cos(nωx) + bn*sin(nωx))其中,an和bn为傅里叶系数,nyω为频率,n为正整数。
傅里叶级数展开将周期函数转化为一系列三角函数的叠加,通过调整n的取值,可以逐渐逼近原函数的形状。
三、函数的傅里叶变换函数的傅里叶变换是将一个非周期函数表示为连续频谱的方法。
对于函数f(x),其傅里叶变换F(w)定义如下:F(w) = ∫[f(x) * e^(-iwx)]dx在傅里叶变换中,w表示频率,-i表示虚数单位。
通过傅里叶变换,可以将一个函数转化为频率域上的复数函数,从而实现对函数的频谱分析。
傅里叶变换具有线性性质和平移性质。
对于函数的线性组合,其傅里叶变换等于各个函数傅里叶变换的线性组合;对于函数的平移和伸缩,其傅里叶变换也会相应地发生平移和伸缩。
四、导数与傅里叶级数的关系在一定条件下,函数的导数与其傅里叶级数存在一定的关系。