§2-3 LTI系统的单位冲激响应
- 格式:ppt
- 大小:281.00 KB
- 文档页数:20
实验一 阶跃响应与冲激响应一、实验目的1、观察和测量RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2、掌握有关信号时域的测量分析方法。
二、实验仪器1、信号源及频率计模块S2 1块2、模块一S5 1块3、数字万用表 1台4、双踪示波器 1台三、实验原理以单位冲激信号()t δ作为激励,LTI 连续系统产生的零状态响应称为单位冲激响应,简称冲激响应,记为()h t 。
冲激响应示意图如图2-1:图2-1冲激响应示意图以单位阶跃信号()u t 作为激励,LTI 连续系统产生的零状态响应称为单位阶跃响应,简称阶跃响应,记为()g t 。
阶跃响应示意图如图2-2:tt)(t u )(tg图2-2阶跃响应示意图阶跃激励与阶跃响应的关系简单地表示为:t)(t δ)(t h[])()(t u H t g = 或者 )()(t g t u →如图2-3所示为RLC 串联电路的阶跃响应与冲激响应实验电路图,其响应有以下三种状态:1、当电阻R >2 LC时,称过阻尼状态; 2、当电阻R = 2 LC时,称临界状态; 3、当电阻R <2LC时,称欠阻尼状态。
图2-3(a) 阶跃响应电路连接示意图图2-3(b) 冲激响应电路连接示意图冲激信号是阶跃信号的导数,即⎰-=td h t g 0ττ)()(,所以对线性时不变电路冲激响应也是阶跃响应的导数。
为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号。
而用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。
四、实验内容1、阶跃响应实验波形观察与参数测量 设激励信号为方波,频率为500Hz 。
实验电路连接图如图2-3(a )所示。
① 调整激励信号源为方波(即从S2模块中的P2端口引出方波信号);调节频率调节旋钮ROL1,使频率计示数f=500Hz 。
②连接S2模块的方波信号输出端P2至S5模块中的P12。
③示波器CH1接于TP14,调整W1,使电路分别工作于欠阻尼、临界和过阻尼三种状态,观察各种状态下的输出波形,用万用表测量与波形对应的P12和P13两点间的电阻值(测量时应断开电源),并将实验数据填入表格2-1中。
第一章1.8 系统的数学模型如下,试判断其线性、时不变性和因果性。
其中()0X -为系统的初始状态。
(2)()()2f t y t e= (5)()()cos 2y t f t t = (8)()()2y t f t =解:(2)()()2f t y t e =① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()122212,f t f t y t ey t e==那么 ()()()()()()()112211222221122a f t a f t a f t a f t a f t a f t y t eee +⎡⎤⎣⎦+→==,显然,()()()1122y t a y t a y t ≠+,所以系统是非线性的。
② 时不变性设()()11,f t y t →则 ()()()()10122110,f t t f ty t e y t t e-=-=设()()102,f t t y t -→则()()()102210f t t y t e y t t -==-,所以系统是时不变的。
③ 因果性因为对任意时刻 1t ,()()121f ty t e =,即输出由当前时刻的输入决定,所以系统是因果的。
(5)()()cos 2y t f t t = ① 线性: 设 ()()()()1122,f t y t f t y t →→,则 ()()()()1122cos 2,cos 2y t f t t y t f t t ==那么()()()()()()()112211221122cos 2cos 2cos 2a f t a f t y t a f t a f t t a f t t a f t t +→=+=+⎡⎤⎣⎦,显然()()()1122y t a y t a y t =+,所以系统是线性的。
② 时不变性设()()11,f t y t →则 ()()()()()1110100cos 2,cos 2y t f t t y t t f t t t t =-=--设()()102,f t t y t -→则()()()21010cos 2y t f t t t y t t =-≠-,所以系统是时变的。