强度理论
- 格式:ppt
- 大小:103.00 KB
- 文档页数:7
第一强度理论(最大拉应力准则)(maximum tensile stree criterion):无论材料处于什么应力状态,只要发生脆性断裂,其共同原因都是由于微元内的最大拉应力δmax达到了某个共同的极限值。
根据这一理论,“无论什么应力状态”,当然包括单向应力状态。
脆性材料单向拉伸试验结果表明,当横截面上的正应力δ=δb时发生脆性断裂;对于单向拉伸,横截面上的正应力,就是微元所有方向面中的最大正应力,即δmax=δ;所以δb就是所有应力状态发生脆性断裂的极限值,同时,无论什么应力状态,只要存在大于零的正应力,δ1(第一主应力)就是最大拉应力,因此应力状态发生脆性断裂的失效判据为δ1=δb。
相应的强度条件δ1≤[δ]=δb/nb第二强度理论(最大拉应变准则)(maximum tensile strain criterion):无论材料处于什么应力状态,只要发生脆性断裂,其共同原因都是由于微元内的最大拉应变ε1达到了某个共同的极限值。
根据这一理论以及胡克定律,单向应力状态的最大拉应变εmax=δmax/E=δ/E,δ为横截面上的正应力;脆性材料单向拉伸实验结果表明,当δ=δb时发生脆性断裂,这时的最大应变值为εmax0=δmax/E=δb/E;所以δb/E就是所有应力状态发生脆性断裂的极限值。
同时,对于主应力为δ1、δ2、δ3的任意应力状态,根据广义胡克定律,最大拉应变为εmax=δ1/E-νδ2/E-νδ3/E=(δ1-νδ2-νδ3)/E,因此所有应力状态发生脆性断裂的失效判据为δ1-ν(δ2+δ3)=δb(这一理论只与少数脆性材料的实验结果吻合)相应的强度条件δ1-ν(δ2+δ3)≤[δ]=δb/nb第三强度理论(最大剪应力准则)(maximum shearing stress criterion):无论材料处于什么应力状态,只要发生屈服(或剪断),其共同原因都是由于微元内的最大剪应力τmax达到了某个共同的极限值。
第五节 强度理论一、强度理论概述各种材料因强度不足而引起的失效现象是不同的。
根据第五章的讨论,我们知道象普通碳钢这样的塑性材料,是以发生屈服现象、出现塑性变形为失效的标志;而象铸铁这样的脆性材料,失效现象是突然断裂。
第五~八章的强度条件可以概括为最大工作应力不超过许用应力,即[]σ≤σmax 或[]τ≤τmax 。
这里的许用应力是从试验测得的极限应力除以安全系数得到的,这种直接根据试验结果来建立强度条件的方法,对于危险点处于复杂应力状态的情况不再适用。
这是因为复杂应力状态下三个主应力的组合是各种各样的,1σ、2σ和3σ之间的比值有无限多种情形,不可能对所以的组合都一一试验确定其相应的极限应力。
事实上,尽管失效现象比较复杂,但可以归纳为如下二点:1.材料在外力作用下的破坏形式不外乎有几种类型;2.同一类型材料的破坏是由某一个共同因素引起的。
人们在长期的实践中,综合多种材料的失效现象和资料,对强度失效提出各种假说。
这些假说认为,材料按断裂或屈服失效,是应力、应变或变形能等其中某一因素引起的。
按照这些假说,无论是简单还是复杂应力状态,引起失效的因素是相同的,造成失效的原因与应力状态无关。
这些假说称为强度理论。
利用强度理论,就可以利用简单应力状态下的试验(例如拉伸试验)结果,来推断材料在复杂应力状态下的强度,建立复杂应力状态的强度条件。
强度理论是推测材料强度失效原因的一些假说,它的正确与否以及适用范围,必须在工程实践中加以检验。
经常是适用于某类材料的强度理论,并不适用于另一类材料。
下面介绍的四种强度理论,都是在常温静载荷下,适用于均匀、连续、各向同性材料的强度理论。
二、四种强度理论1) 最大拉应力理论(第一强度理论)这一理论认为引起材料脆性断裂破坏的因素是最大拉压力,它是人们根据早期使用的脆性材料(象天然石、砖和铸铁等)易于拉断而提出的。
该理论认为无论什么应力状态下,只要构件内一点处的最大拉压力1σ达到单向应力状态下的极限应力b σ,材料就要发生脆性断裂。
§10.5 强度理论一、 强度理论的概念强度理论是研究材料在复杂应力条件下强度失效的原因和失效条件的理论。
在前面的章节中,分别介绍了杆件在基本变形时的强度条件,如杆件在轴向拉、压时处于单向应力状态,其强度条件为[]max max N A σσ=≤式中许用应力[σ]是通过拉伸实验得出材料的极限应力再除以安全系数获得的。
圆轴扭转时,材料处于纯剪应力状态状态,其强度条件为[]max max t T W ττ=≤式中许用应力[τ]也是直接通过实验得出材料的极限应力再除以安全系数获得的。
梁横力弯曲时基于最大正应力作用点和基于最大切应力作用点的强度条件也是直接通过实验建立的。
但是,由于工程构件或元件所处的应力状态是多种多样的。
在复杂应力状态下,判断材料失效仅仅通过实验和这些简单应力状态下建立的强度条件是远远不够的。
人们在长期的生产实践中,综合分析材料强度的失效现象,提出了各种不同的假说。
各种假说尽管各有差异,但它们都认为:材料之所以按某种方式失效(屈服或断裂),是由于应力、应变或应变能密度等诸因素中的某一因素引起的。
按照这种假说,无论单向或复杂应力状态,造成失效的原因是相同的。
所以可将简单应力状态的实验结果,与复杂应力状态的下材料的破坏联系起来,从而建立了强度理论。
二、 材料破坏的两种基本形式综合分析材料破坏现象,可以认为构件由于强度不足将引起两种破坏形式:(1)脆性断裂:材料破坏前无明显的塑性变形,断裂面粗糙,且多发生在最大正应力作用面上,如铸铁受拉和受扭时的破坏,均属于脆性断裂。
(2)塑性屈服(流动):材料破坏前发生较大的塑性变形,破坏面较光滑,且多发生在最大剪应力作用面上,如低碳钢受拉和受扭时的破坏便属于这类破坏。
三、 工程中常用的几个强度理论1.最大拉应力理论(第一强度理论)该理论认为最大拉应力是引起断裂破坏的主要原因。
即认为不论材料处于简单应力状态还是复杂应力状态,引起材料破坏的原因是它的最大拉应力σ1达到某一极限值,材料就发生断裂。
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。
一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
工程力学四个强度理论工程力学是研究物体在受到外力作用时的运动与变形规律的一门学科,它是理论力学在工程实践中的应用。
工程力学中有许多重要理论,其中四个强度理论是应用最为广泛且具有实用性的理论。
这四个强度理论分别是:拉压强度理论、剪切强度理论、弯曲强度理论和变形强度理论。
拉压强度理论拉压强度理论是研究材料受拉力和压力时的强度情况。
在材料受拉或受压时,当受到的外力超过其承受能力时,材料就会发生破坏。
拉压强度理论通过对材料的拉伸和压缩性能进行分析,确定了材料在拉伸和压缩下的强度极限,为工程设计和材料选取提供了依据。
剪切强度理论剪切强度理论是研究材料受到剪切力时的强度情况。
在材料受到剪切力作用时,如果剪切力超过了材料本身的承受能力,就会导致材料剪切破坏。
剪切强度理论通过对材料在剪切力下的变形规律和破坏特点进行研究,确定了材料的剪切强度极限,为结构的承载能力和稳定性提供了理论支撑。
弯曲强度理论弯曲强度理论是研究材料在受到弯曲力矩时的强度情况。
在工程实践中,很多结构在受力时会受到不同方向的弯曲力矩,因此了解材料在弯曲条件下的强度表现是至关重要的。
弯曲强度理论通过对材料在受弯曲力矩下的应力、变形和破坏特性进行研究,为结构的设计和优化提供了基础。
变形强度理论变形强度理论是研究材料在受热膨胀、冷缩等变形情况下的强度特性。
材料在受到温度变化或热机械作用时,会发生尺寸变化和形变,如果超出了材料能够承受的范围,就会导致材料破坏。
变形强度理论通过研究材料在变形过程中的应力、变形和破坏特性,为高温结构、膨胀管道等工程提供了理论依据。
在工程实践中,工程师们常常根据这四个强度理论来评估和设计工程结构,以确保结构的安全性、可靠性和稳定性。
这四个强度理论不仅是工程力学理论体系中重要的组成部分,也是工程设计和材料选择的重要参考依据,为各种工程问题的解决提供了理论支撑。