清华大学概率论与数理统计1996真题
- 格式:pdf
- 大小:184.97 KB
- 文档页数:2
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C 【解析】由于B A ,所以A B I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略.6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-.7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,222AC aBO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以23112232212D ABC a V a a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)πB .3(3,),(3,)22ππC .5(2,),(2,)33ππD .(2arctg π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或3e =0a b <<,所以e ==>e =14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于A .π322 B .π332 C .π2 D .π362 【答案】Dα=而(0,)2πα∈,∴tan α=,而它是唯一的极值点.∴ 当tan α=时,V 取得最大值,此时cos α=22cos 3r l ππα==⋅=,应选D . 【点评】上述几个选择题是当年高考中难度最大,得分率最低的选择题,但用导数求解,可以大大降低试题的难度.15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于 A .0.5 B .0.5- C .1.5 D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.60的二面19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成角,则异面直线AD 与BF 所成角的余弦值是 . 【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,222,,BF a BC a FC FD CD ===+=2222cos602AD FA AD FA CD a +-⋅︒+=,2222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分11分)解不等式1)11(log >-xa . 【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知60,120B AC =+=. ——2分∵2cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos 2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos -=+==+C A C A代入上式得cos)22A C A C -=--.将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos 3)022A C A C --+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos22A C -=. ——12分 解法二:由题设条件知60,120B AC =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos =-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG . ③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB === ∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+-])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =. 由①得2a =.所以 2()21f x x =-. ——12分。
期末考试《概率论与数理统计》B 卷适用专业:经济管理各专业 层 次:本科 年 级:一、判断题(每小题2分,共10分)(你认为正确的请在括号内打√,错误的打×)【 × 】1.设C B A ,,为随机事件,则A 与C B A ++是互不相容的. 【 √ 】2.设B A ,是随机事件,0)(=A P ,则A 与B 相互独立. 【 √ 】3.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. 【 √ 】4.)()()(Y E X E XY E =是X 与Y 相互独立的必要而非充分的条件. 【 × 】5.设随机变量序列 ,,,,21n X X X 相互独立,且服从参数为λ的指数分布,则∑=ni X X 1依概率收敛于λ.二、填空题(每空2分,共20分)6.已知B A ,两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P 1-p. 7.设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为1/3.8.X 服从参数3=λ的泊松分布,令25-=X Y ,则=)(Y E 13,=)(Y D 75. 9.已知5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(A B P 0.2.10.掷一颗骰子1620次,则“6”点出现的次数X 的数学期望=)(X E 270.11.设连续型随机变量)2,1(~2N X ,则~21-X N (0,1),若X Y 31-=,则=)(Y D 36.12.已知25.0)(,4)(==X D X E ,利用切贝谢夫不等式估计≥<<)5.55.2(X P 0.8889 .13.三人独立的破译一个密码,他们能独立译出的概率分别为r q p ,,,则密码能同时被三人译出的概率为 pqr .三、单选题(每小题3分,共15分)14.设B A ,相互独立,且0)(,0)(>>B P A P ,则下列等式成立的是(B )(A ) φ=AB (B ) )()()(B P A P B A P =- (C ) )(1)(A P B P -= (D ) 0)|(=A B P15.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为(D )(A ) 0.5 (B ) 0.125 (C ) 0.25 (D ) 0.37516.袋中有5个黑球,3个白球,大小相同,一次随机摸出4个球,其中恰好有3个白球的概率为(C )(A ) 83(B )⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛81835(C )485C (D )⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛8183317.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤<=.,021,2,10,)(其它x x x x x f ,则)2.12.0(<<X P 的值是(B )(A ) 0.7 (B ) 0.66 (C ) 0.6(D ) 0.518.设8413.0)1(),2,1(~02=ΦN X ,则事件{}31≤≤X 的概率为(A ) (A )0.3413 (B )0.2934 (C )0.2413 (D )0.1385四、计算题(共35分)19.一口袋中有三个球,它们依次标有数字1,2,2.从这袋中任取一球后,不放回袋中,再从袋中任取一球,设每次取球时,袋中各个球被取到可能性相同,以Y X ,分别记第一次、第二次取得的球上标有的数字,求X (、)Y 分布律。
概统作业2、3参考答案(2012.9.12)P16.7【解】设A=“被6整除”、B=“被8整除” P (A∪B)=P(A)+P(B)-P(AB) =16/100+12/100-4/100=0.24 P16.8【解】样本空间:连取5次,方法总数59,即样本点总数59;(1)“第5次取出的是奇数”,方法数495× ⇒ 所求概率P=45955=99× .(2)“5个数字全不相同”:用乘法原理分析P=54987651680=99××××. (3)“2恰好出现两次”:5个位置中2占两个的方法25C =10 ,其余3个位置用2以外的数字去填;故有P =255C 8889×××. (4)“2至少出现两次”:这个事件的对立事件是“2出现0次或1次”的事件.用1减去这两个事件的概率即可:P=1-5589 -1555C 89⋅P16.9【解】样本空间中的点数:1352C(1)“有4张A ”:取定4张A 之后,再从剩下的48张牌中取出9张牌即可,故所求P=494481352C CC(2)“有3♠、2♡、3♢、3♧”:由乘法原理可得分子,故所求P=3253131313131352C C C C C P16.10【解】交货人从20件外形相同的货物中随意抽取11件发给顾客,其方法总数(就是基本事件总数)为1120C ;其中能符合顾客要求的方法数(符合要求的基本事件数),应为5421064C C C ⋅⋅ ;故按概率古典定义,所求概率=54210641120C C C C ⋅⋅(答). P16.11【解】分母:样本空间中点数=8!.“分子”:第一步,3本数学书看成一个元素,与其余5本书(看成5个元素)合在一起作全排列;第二步,3本数学书作全排列.所求P=638⋅!!! =328.P17.13【解】P B A B ∪()=P B A B P A ∪∪(())(=-P A P B P AB +分母()()()=0.6+0.6-0.5=0.7 又,--B A B BA BB AB AB A B A AB ∪=∪====() ⇒()-()0.60.50.1P AB P A P AB ===−=分子()故,0.11==0.77P B A B ∪() P17.14【解】设1324A A A A 、、、 分为第一、三次取到红球,第二、四次取到白球的事件.由乘法公式可得12341213124123P A A A A =P A P A A P A A A P A A A A ()()()()()=23s r s k r ks r s r k s r k s r k++⋅⋅⋅+++++++ . P17.15【解】A=“甲有效”, B=“乙有效”,P (A )=0.92,P (B )=0.93,(0.85P B A =(1)-()PA B P A P B P AB ∪=+()()() ,其中AB B S A B BA =−=−() ⇒-()()(P A B P A P B P B P A P B A ∪=++⋅()()()=0.92+0.08×0.85=0.988(答)(2)所求为()()()P AB P A B P B =, 其中AB B A B BA =−=−⇒ -0.07-0.081-0.850.058P AB P B P A P B A =⋅=×=()()()()() ⇒()0.05829()==()0.07035P AB P A B P B =. P17.17【解】设甲、乙两市下雨的事件分为A 、B ,P (A )=0.2,P (B )=0.14,P (AB )=0.12(1) 所求0.1230.205P AB P B A P A ===()()()(2) 所求0.20.14-0.120.22P A B ∪=+=() P17.19【解】(1)123123123“”P P A A A A A A A A A =∪∪(恰有一次击中)() =0.5×0.4×0.2+0.5×0.6×0.2+0.5×0.4×0.8=0.26 (2)123P A A A ××()=0.50.40.2=0.04 , 所求=1-0.04=0.96 P17.2020【解】设123,,A A A 分别表示Ⅰ、Ⅱ、Ⅲ正常.则1231213123()={()}()()()P P A A A P A A P A A P A A A =+−∩∪“通路”=0.7×0.8+0.7×0.8-0.7×0.8×0.8=0.672“”10.6720.328P =−=所以,(断路) .P17.21【解】设A=“该盘A 胜”.易见,后三盘A 胜一盘即可取胜.而“后三盘A 胜一盘”的对立事件是“后三盘A 全负”=“AAA ”,而30.4P AAA =() ,故 P (A 胜)=1-0.064=0.936 P17.22设P (A )>0, P (B )>0.证明:A 、B 相互独立等价于()=().P A B P A B证P AB P A P B P A B P B PA A PB B ⋅===()()()()()(当、相互独立))时( 又已知,A 、B 相互独立时,A B 与也相互独立⇒()=;P A B P A () 综上, P A B P A B =()(). 反之,当()=()P A B P A B 时,有()()--()()1-1-P AB P AB P A AB P A PAB P B P P B P B ===()()()()()由此式可求得PAB P A P B =⋅()()() ⇒ A 、B 相互独立. P17.23【解】设A=“色盲”,B=“男”,B=“女”A AB B AB AB =∪=∪() , ()()()(P A P AB P AB P B P A B P B P A B =+=⋅+⋅()()()()()()()0.40.05200.40.050.60.002543P B P A B PBA P B A P A P A ⋅===×==×+×()()所求(答)P17.24【解】1234“”A A A A B =设、、、分为坐火车、轮船、汽车和飞机;迟到 .所求为33P A B P A B P B =()()(),其中 123B BA BA BA =∪∪ ⇒()112323P B P A P B A P A P B A P A P B A =⋅+⋅+⋅()()()()()()()1117=0.5+0.2+0.2=312430P B ××× ;又,33311420P A B P A P B A =×=()()()=0.2 .故有33P A B P A B P B =()()()=1/2037/3014= (答) P17.25【解】设A=“抽到合格产品”,B=“被认为是合格产品”0.9()0.01,(0.05P A P B A P B A ===(),(1)B B A A BA BA =∪=∪() ,()()()()(P B P A P B A P A P B A =⋅+⋅=0.90.990.10.050.896×+×= .(2)所求()()()0.10.055().()()0.896896P A P B A P AB P A B P B P B ⋅×====P17.26【解】以1,1,1A B C 分别表示事件“输入AAAA ”、 “输入BBBB ”和“输入CCCC ”,D=“输出ABCA ”.因为事件1,1,1A B C 两两互斥,且123()()()0.30.40.31P A P A P A ++=++= ⇒1,1,1A B C 是样本空间的一个“划分” ⇒全概公式、贝叶斯公式可用:其中221/0.025=0.0005640625P D A ×()=0.95()31/0.950.0250.00001484375P D B =×= , ()31/0.950.0250.00001484375P D C =×=⇒11111111111()()()()()()()()()()()P A P D A P A D P D P A P D A P A P D A P B P D B P C P D C ⋅⋅=⋅+⋅+⋅()==0.942(答) P17.27【解】A=“最后取得白球”,B=“最后取得甲袋中球” (1)A AS AB B AB AB A P A P AB P AB P B P A B P B P A B ==∪=∪⇒=+=⋅+⋅(),关于的全概公式:()()()()()()()111N MP B P B N M N M +==++++其中(),() (最后从乙袋取球,此时乙袋中有N+M+1个球,其中只有一个甲袋球)又,n N PA B P A B n m N M ==++(),() ,综上1(1)n N mNP A m n M N ++=+++()()() .(2)思路类似(1).P17.28【解】如图设B=“第2次取得红球”,这个事件仅仅发生在从1号盒中“取得‘2’字球”(设为A )或“取得‘3’字球”(设为A )两种情况下:B BS BA BA ==∪ ⇒P B P A P B A P A P B A =⋅+⋅()()()()() =513619+=828832××(答)。
考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(16年)设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则A.p随着μ的增加而增加.B.p随着σ的增加而增加.C.p随着μ的增加而减少.D.p随着σ的增加而减少.正确答案:B 涉及知识点:概率论与数理统计2.(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是A.8B.16C.28D.44正确答案:D 涉及知识点:概率论与数理统计3.(00年)设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X—Y不相关的充分必要条件为A.E(X)=E(Y)B.E(X2)一[E(X)]2=E(Y2)一[E(Y)]2C.E(X2)=E(Y2)D.E(X2)+[E(X)]2=E(Y2)+[E(Y)]2正确答案:B 涉及知识点:概率论与数理统计4.(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.一1B.0C.D.1正确答案:A 涉及知识点:概率论与数理统计5.(04年)设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=,则A.B.C.D.正确答案:A 涉及知识点:概率论与数理统计6.(07年)设随机变N(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX Y(x|y)为A.fX(x).B.fY(y).C.fX(x)fY(y).D.正确答案:A 涉及知识点:概率论与数理统计7.(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则A.P{Y=一2X—1}=1B.P{Y=2X一1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D 涉及知识点:概率论与数理统计8.(09年)设随机变量X的分布函数为F(x)=0.3φ(x)+其中φ(x)为标准正态分布的分布函数,则EX=A.0.B.0.3.C.0.7.D.1.正确答案:C 涉及知识点:概率论与数理统计9.(11年)设随机变量X与Y相互独立,且EX与EY存在,记U=max{X,Y),V=min{X,Y),则E(UV)=A.EU.EV.B.EX.EY.C.EU.EY.D.EX.EV.正确答案:B 涉及知识点:概率论与数理统计填空题10.(87年)已知连续型随机变量X的概率密度为则EX=______,DX=________.正确答案:1;涉及知识点:概率论与数理统计11.(90年)已知随机变量X服从参数为2的泊松分布,且随机变量Z=3X 一2,则EZ=______.正确答案:4.涉及知识点:概率论与数理统计12.(91年)设随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=_______.正确答案:0.2.涉及知识点:概率论与数理统计13.(92年)设随机变量X服从参数为1的指数分布,则E(X+e-2X)=__________.正确答案:涉及知识点:概率论与数理统计14.(95年)设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则E(X2)=_______正确答案:18.4.涉及知识点:概率论与数理统计15.(96年)设ξ和η是两个相互独立且均服从正态分布N(0,)的随机变量,则E(|ξ-η|)=________正确答案:涉及知识点:概率论与数理统计16.(04年)设随机变量X服从参数为λ的指数分布,则=_______.正确答案:涉及知识点:概率论与数理统计17.(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_____.正确答案:涉及知识点:概率论与数理统计18.(10年)设随机变量X的概率分布为P{X=k}=k=0,1,2,…,则EX2=_________.正确答案:2 涉及知识点:概率论与数理统计19.(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=______.正确答案:μ3+μσ2.涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。