E ( X ) xf ( x)dx
注意:随机变量的数学期望的本质就是加权 平均数,它是一个数,不再是随机变量。
13
常见连续型分布的数学期望 (5) 区间(a,b)上的均匀分布
随机变量X的概率密度为
于是
14
(6)正态分布N(μ,σ2 ) 随机变量X的概率密度为
( y )
则
E ( Z ) E ( g ( X 1 , , X n ))
j1 jn
g( x
j1
, , x jn ) p j1 jn
23
随机向量函数的数学期望(续)
设X=(X1 ,…, Xn)为连续型随机向量,联合 密度函数为 f ( x1 , , xn ) Z = g(X1 ,…, Xn), 若积分
20
一种方法是,因为g(X)也是随机 变量,故应有概率分布,它的分布 可以由已知的X的分布求出. 一旦我
们知道了g(X)的分布,就可以按照 数学期望的定义把E[g(X)]计算出来.
21
使用上述方法必须先求出随机变量 函数g(X)的分布,有时是比较复杂的 .
那么是否可以不先求出g(X)的分布而 只根据X的分布直接求得E[g(X)]呢? 下面的基本公式指出,答案是肯定的.
np C p (1 p)
k 0 k n 1 k
n 1
( n 1)k
np
6
(3)泊松分布 X的所有可能取值为0,1,2,…,且
7
(4)几何分布 X的可能取值为1,2,…, 且 P(X=k)= (1-p)k-1 p, k= 1,2,….
由于
这可以由等式 两边同时对x求导数得到。
| x| 发散 但 | x | f ( x)dx dx 2 (1 x )