高二数学导数的几何意义
- 格式:pdf
- 大小:1.78 MB
- 文档页数:15
导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。
导数的几何意义是什么导数作为微积分中的重要概念,不仅在数学理论研究中有着重要地位,还在实际问题的求解中起到了至关重要的作用。
导数的几何意义是指在几何上,导数代表了函数曲线在某一点处的切线斜率。
它使我们能够通过函数图像来理解函数的变化规律及其在特定点的切线性质。
本文将重点论述导数的几何意义以及相应的应用。
一、导数的定义及计算在开始讨论导数的几何意义之前,我们首先来回顾一下导数的定义及计算方法。
对于函数y=f(x),在点x处的导数可以通过下式计算得出:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]根据这一定义,我们可以求得函数在任意一点处的导数值。
导数的计算可以采用一些常用的方法,如基本函数求导法则、链式法则、乘积法则和商法则等。
二、导数的几何意义1. 切线斜率导数的最直观的几何意义就是切线斜率。
当我们计算出函数在某一点的导数后,这个导数值便代表了函数曲线在该点处的切线斜率。
对于一个凸函数而言,导数可以告诉我们曲线在该点是上升还是下降,以及上升或下降的速度有多快。
2. 极值点导数在几何中还有一个重要的意义是寻找函数的极值点。
当函数在某一点的导数为0时,这一点可能是函数的极大值点或极小值点。
通过求导,我们可以找到函数在哪些点处可能存在极值,并进一步帮助我们寻找函数图像上的极值点,从而得出函数的极值。
3. 凹凸性函数图像的凹凸性也可以通过导数来判断。
当函数的导数在某一区间内始终大于0时,函数图像在该区间内是上凸的;而当导数在某一区间内始终小于0时,函数图像在该区间内是下凸的。
这种通过导数判断凹凸性的方法在优化问题中具有重要应用。
三、导数的应用导数的几何意义不仅在数学理论研究中起到关键作用,也在实际问题的求解中发挥了巨大的作用。
1. 最优化问题在经济学、物理学等领域中,最优化问题是非常常见的。
通过求解函数的导数,我们可以确定函数的最大值和最小值,从而帮助解决各种最优化问题。
导数的几何意义导数是微积分中的一个重要概念,它表示了函数的变化率。
导数的几何意义可以从两个方面来理解:一是导数代表的是函数曲线在其中一点的切线斜率,二是导数代表的是函数曲线在其中一点的局部线性逼近。
首先,我们来看导数代表的是函数曲线在其中一点的切线斜率。
对于一条曲线上的任意一点P(x,y),求该点处的导数,即可得到曲线在该点的切线斜率。
具体来说,如果一个函数f(x)在特定点x0处可导,那么它在该点的导数f'(x0)就是该点处曲线的切线斜率。
换言之,导数给出了函数在任意一点的变化速率。
对于单调递增的函数而言,导数始终为正;而对于单调递减的函数而言,导数始终为负。
当导数为零时,函数在该点处可能存在极值。
其次,导数代表的是函数曲线在其中一点的局部线性逼近。
这可以通过导数定义中的极限来理解。
如果在其中一点x0处,函数f(x)的导数存在,那么可以用一个线性函数y=kx+b来近似描述原函数在该点的附近情况。
其中k为导数f'(x0),b为函数曲线在该点处的切线与y轴的交点(截距)。
这个线性函数就称为原函数在x0附近的局部线性逼近。
这种线性逼近的好处是使得函数在其中一点的局部性质更加直观可见。
通过这两个几何意义的理解,我们可以得出导数在几何上的重要性。
首先,导数可以帮助我们了解函数在特定点的斜率,从而判断函数局部的增减变化规律,甚至找到函数的极值点,这对于解决很多实际问题具有重要意义。
其次,导数能够提供函数在其中一点附近的线性逼近,使得我们能够直观地了解函数的局部情况,进而推断函数在整个定义域上的特性。
这对于研究函数的全局性质也是至关重要的。
除了以上的几何意义,导数还有一些重要的应用。
例如,在物理学中,速度的导数就是加速度,加速度的导数就是速度的变化率。
在经济学中,导数可以表示商品的边际效用,即单位商品消费增加所带来的满足感的变化。
在工程学中,导数可以用来优化控制系统设计,通过最小化出错率来提高系统的性能。
导数的几何意义解析与归纳导数是微积分中的重要概念,它描述了函数在某一点的变化率。
导数不仅在数学领域有着广泛的应用,而且在几何学中也有着重要的几何意义。
本文将对导数的几何意义进行解析与归纳,以帮助读者更好地理解这一概念。
1. 导数的定义与几何意义首先,我们来回顾一下导数的定义。
对于函数f(x),在点x处的导数可以通过以下极限来定义:f'(x) = lim(h->0) [f(x+h)-f(x)]/h直观上,这个定义可以理解为函数f(x)在点x处的切线的斜率。
这意味着导数可以描述函数在某一点的变化趋势。
2. 导数与函数的递增与递减性根据导数的定义,我们可以得出以下结论:如果函数f(x)在某个区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,那么函数是递减的。
这是因为导数描述了函数的变化率,正值表示函数在该点上升,负值表示函数在该点下降。
3. 导数与函数的极值点导数还可以帮助我们找到函数的极值点。
如果函数f(x)在某一点x处的导数为零,那么这个点可能是一个极值点。
具体而言,如果导数由正变负,那么这个点是极大值点;如果导数由负变正,那么这个点是极小值点。
这是因为导数为零表示函数的变化率为零,也就是函数在该点存在水平切线,可能对应着极值点。
4. 导数与函数的拐点除了极值点,导数还能帮助我们找到函数的拐点。
拐点是函数曲线由凸变凹或由凹变凸的点。
我们可以通过导数的变化来判断函数的拐点。
如果函数f(x)在某一点x处的导数由正变负或由负变正,那么这个点可能是一个拐点。
5. 导数与函数的图像在坐标平面上,函数的导数可以帮助我们画出函数的图像。
我们可以通过导数的正负性来确定函数曲线的大致形状。
例如,如果导数在某一区间内始终为正,则函数在该区间上是递增的,曲线会向上凸起;如果导数在某一区间内始终为负,则函数在该区间上是递减的,曲线会向下凸起。
同样地,我们还可以根据导数为零或无定义的点来确定函数图像的特殊点,如极值点、拐点等。
高二数学《导数与微分》知识点概述导数与微分是高二数学学科中的重要内容,对于学生来说,掌握这些知识点不仅能够帮助他们理解数学的基本概念,还能够为后续学习奠定坚实的基础。
第一部分:导数的概念及性质导数作为微积分的重要概念之一,其本质是函数在某点处的变化率。
导数的定义是通过极限的方法得到的,即函数在一点处的导数等于函数在该点附近变化最快的直线的斜率。
导数的性质主要有如下几个方面:1. 导数的存在性和唯一性:对于任意一个函数,只要它在某一点上可导,那么它在该点上的导数就是唯一确定的。
2. 导数的几何意义:导数可以理解为函数曲线在某一点处的切线斜率,因此导数的大小与斜率的大小成正比。
3. 导数与函数的关系:如果一个函数在某点处可导,则该函数在该点的导数可以作为函数的局部性质的判断标准,如函数的增减性、极值点等。
第二部分:导数的计算方法为了更好地应用导数的概念解决实际问题,在计算导数时,我们可以根据导数的定义以及一些基本的导数性质来进行计算。
下面是一些常见的导数计算方法:1. 常数函数的导数:常数函数的导数为0,即导数与自变量无关。
2. 幂函数的导数:对于幂函数$x^n$,它的导数为$nx^{n-1}$。
3. 反比例函数的导数:反比例函数$y=\frac{1}{x}$的导数为$y'=-\frac{1}{x^2}$。
4. 指数函数的导数:自然对数函数$y=e^x$的导数为$y'=e^x$。
5. 对数函数的导数:自然对数函数的逆函数$y=\ln x$的导数为$y'=\frac{1}{x}$。
第三部分:微分的概念及应用微分是导数的一个重要应用,它包含了更多的几何和物理背景。
微分的概念是函数在某点局部的线性近似,同时也可以理解为函数值的微小变化量。
微分的性质和计算方法与导数类似。
微分的应用广泛,尤其在物理学和工程学中有着重要的地位。
比如在速度和加速度的分析中,微分可以帮助我们计算物体在某一瞬间的速度和加速度。
高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。
那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。
高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
导数的几何意义与应用导数是微积分中的重要概念,它有着广泛的几何意义和应用。
在本文中,我们将探讨导数的几何意义,并介绍一些导数在几何中和实际应用中的具体应用。
导数的几何意义可以通过对函数图像的观察得到。
对于一个函数f(x),它的导数可以表示为f'(x),代表了函数曲线在某一点处的斜率。
具体来说,导数可以解释为函数图像在某一点上的瞬时变化率。
这意味着我们可以通过导数来描述函数图像的“陡峭程度”。
如果导数的值比较大,表示函数图像在该点的变化比较快,曲线比较陡峭;相反,如果导数的值比较小,表示函数图像在该点的变化比较慢,曲线比较平缓。
举个例子来说明导数的几何意义。
考虑一个简单的函数f(x) = x^2,它的导数可以表示为f'(x) = 2x。
我们可以观察到,在函数图像上,导数f'(x)的值代表了曲线在不同点上的斜率。
当x的值较小时,导数f'(x)的值也较小,表示函数图像变化较慢,曲线较平缓;而当x的值较大时,导数f'(x)的值也较大,表示函数图像变化较快,曲线较陡峭。
导数不仅在几何中有着重要意义,而且在实际生活中也有广泛的应用。
其中一个常见的应用是在物理学中的位置-时间关系中。
根据经典物理学的定义,速度可以看作是位置关于时间的导数。
具体来说,如果我们有一个物体在某一时刻的位置函数x(t),那么它的导数dx/dt就表示了该物体在该时刻的瞬时速度。
同样地,加速度可以看作是速度关于时间的导数,即dv/dt。
这种通过导数来描述位置、速度和加速度之间的关系,能够帮助我们更好地理解物体在空间中的运动规律。
在经济学和金融学领域中,导数也有着广泛的应用。
例如,利润函数关于产量的导数可以告诉我们,当产量变化时,利润的瞬时变化率是多少。
这有助于公司和企业在制定生产策略和销售计划时进行决策。
此外,在金融学中,导数可以帮助我们理解和分析股票和债券价格的波动趋势,以及利率和汇率的变化对经济的影响。
导数的几何意义及导数公式导数是微积分中的一个重要概念,它描述了函数在特定点的变化率。
导数的几何意义是描述函数曲线在其中一点的切线的斜率。
本文将详细介绍导数的几何意义以及导数的计算公式。
一、导数的几何意义在几何中,我们知道曲线上每一点的切线可以用斜率来描述。
而导数就是函数在其中一点的切线的斜率,它告诉我们函数在该点的变化情况。
导数的几何意义可以通过以下两个方面来理解:1.切线的斜率导数是切线的斜率,它表示函数在特定点上的变化速率。
如果导数是正数,那么函数在该点上是递增的;如果导数是负数,那么函数在该点上是递减的。
导数的绝对值越大,曲线在该点附近的变化速率越大;导数的绝对值越小,曲线在该点附近的变化速率越小。
2.切线的方向导数不仅告诉我们切线的斜率,还告诉我们切线的方向。
如果导数是正数,那么切线是向上倾斜的;如果导数是负数,那么切线是向下倾斜的。
导数等于零表示切线是水平的,也就是曲线上的极值点。
通过以上两个方面,我们可以通过导数来近似描述函数在任意点的行为,从而更好地理解函数的性质。
二、导数的计算公式导数的计算公式是一系列可以计算导数的规则。
下面是一些常见的导数计算公式:1.常数规则如果f(x)=c,其中c是常数,那么f'(x)=0。
这是因为常数的导数为零,表示该常数没有变化。
2.幂规则如果f(x) = x^n,其中n是整数,那么f'(x) = nx^(n-1)。
这是指数函数的导数公式。
3.常见函数的导数公式- 如果f(x) = sin(x),那么f'(x) = cos(x)。
- 如果f(x) = cos(x),那么f'(x) = -sin(x)。
- 如果f(x) = tan(x),那么f'(x) = sec^2(x)。
-如果f(x)=e^x,那么f'(x)=e^x。
- 如果f(x) = ln(x),那么f'(x) = 1/x。
4.和、差的导数规则如果f(x)和g(x)是可导函数,那么(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
导数的几何意义和物理意义导数是微积分中一项重要的概念。
它可以描述函数在某一点上的变化率,以及函数在该点上的切线斜率。
导数不仅在数学领域中有着广泛的应用,同时也在几何学和物理学中具有重要的意义。
本文将探讨导数的几何意义和物理意义,并解释它们在现实世界中的具体应用。
一、导数的几何意义在几何学中,导数可以解释为函数图像在某一点的切线斜率。
当我们研究函数图像的形状和特征时,导数可以帮助我们理解函数在不同点上的变化趋势和曲线的曲率。
1. 切线斜率:对于函数f(x),它在某一点x=a处的导数f'(a)代表了函数图像在该点上的切线斜率。
切线斜率可以告诉我们函数在该点上是递增还是递减,并且可以用来寻找曲线上的最高点或最低点。
通过计算导数,我们可以获得函数在某一点上的局部变化率信息。
2. 切线和曲率:导数还可以描述函数在某一点上的曲线特征,如弯曲和曲率半径。
具体而言,导数的正负性可以告诉我们函数图像在该点上是凸还是凹,以及变化的速度和方向。
这有助于我们更好地理解函数的形状和变化趋势。
二、导数的物理意义导数在物理学中也有着广泛的应用。
它可以描述物理量之间的关系及其变化率,从而帮助我们理解和解释各种物理现象。
1. 速度和加速度:导数可以解释物体在运动过程中的速度和加速度。
对于物体的位移函数,它的导函数就是速度函数,而速度函数的导函数则是加速度函数。
通过计算导数,我们可以获得物体运动的速度和加速度的具体数值。
这在运动学中有着广泛的应用。
2. 斜率和变化率:导数还可以解释函数关系中的斜率和变化率。
在物理学中,我们经常遇到各种变化率的概念,如功率、流量和速率等。
通过计算导数,我们可以获得这些物理量的具体数值,并了解它们的变化规律。
3. 最优化问题:导数在物理学中还可以用来解决最优化问题。
例如,在力学中,我们希望找到一条曲线,使得物体的作用量或路径在满足一定条件下达到最小值或最大值。
通过计算导数,我们可以找到该曲线上的极值点,从而解决这类问题。
导数的几何意义和物理意义导数是微积分学中的重要概念,它具有丰富的几何意义和物理意义。
本文将分别从几何和物理两个角度,详细探讨导数的几何意义和物理意义。
一、导数的几何意义导数在几何中有着重要的意义。
在几何上,导数表示了函数曲线在某一点上的切线斜率。
具体来说,对于函数f(x),如果在点x=a处存在导数,那么导数f'(a)就是函数曲线在该点上的切线的斜率。
切线斜率的意义在于它反映了函数曲线的变化速率。
当函数的导数为正时,表示函数在该点上递增;当函数的导数为负时,表示函数在该点上递减;而导数等于零时,表示函数在该点上取得极值。
利用导数,我们可以精确地描述函数曲线的变化趋势。
此外,导数还可以用来计算函数曲线在某一点的局部变化率。
例如,当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。
这就引出了导数在物理意义方面的应用。
二、导数的物理意义导数在物理学中有着广泛的应用,其中最为常见的是它对位移、速度和加速度的描述。
1. 位移:对于一维运动而言,物体在某一时刻的位移可以表示为位移函数的导数。
例如,当我们求解位移函数的导数时,得到的导数就表示了物体在该时刻的瞬时速度。
2. 速度:速度是指物体在单位时间内所改变的位移,它是位移关于时间的导数。
具体而言,速度函数的导数表示了物体在某一时刻的瞬时加速度。
3. 加速度:加速度是指物体在单位时间内所改变的速度,它是速度关于时间的导数。
当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。
通过上述例子可以看出,导数在物理学中的应用十分广泛。
它不仅可以描述物体的运动状态,还可以帮助我们分析运动规律,解决各种与运动相关的问题。
结论综上所述,导数具有重要的几何意义和物理意义。
从几何上看,导数表示了函数曲线在某一点上的切线斜率,反映了函数曲线的变化速率;从物理上看,导数用于描述位移、速度和加速度等与运动相关的概念。
通过对导数的研究和应用,我们可以深入理解函数的特性和物体的运动规律,为实际问题的解决提供了有力的工具和方法。
导数的定义及几何意义1.xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。
注:①函数应在点0x 的附近有定义,否那么导数不存在。
②在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。
③xy ∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点〔0x ,)(0x f 〕及点〔0x +x ∆,)(00x x f ∆+〕的割线斜率。
④导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是曲线)(x f y =上点〔0x ,)(0x f 〕处的切线的斜率。
⑤假设极限xx f x x f x ∆-∆+→∆)()(lim 000不存在,那么称函数)(x f y =在点0x 处不可导。
⑥如果函数)(x f y =在开区间),(b a 内每一点都有导数,那么称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。
[举例1]假设2)(0/=x f ,那么kx f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2⇒kx f k x f k 2)()(lim 000--→=-1。
导数的几何意义导数是微积分中重要的概念之一,它在数学和物理领域中有着广泛的应用。
导数的几何意义是指导数在几何学中的解释和应用。
本文将从几何的角度解释导数的意义,并探讨它在几何领域中的应用。
一、导数的定义在探讨导数的几何意义之前,我们首先来回顾一下导数的定义。
在微积分中,导数代表了函数在某一点上的变化率。
对于函数 f(x),它的导数可以表示为 f'(x)或者 dy/dx。
导数的定义是函数在某一点上的极限值,即:f'(x) = lim(h->0) [f(x+h)-f(x)] / h这个定义告诉我们,导数是函数在某一点上的瞬时变化率。
接下来,我们将从几何的角度来解释导数的几何意义。
二、几何上,导数可以理解为函数曲线在某一点上的切线斜率。
具体来说,如果函数 f(x) 在点 P 上的导数为 f'(x),那么这意味着函数曲线在点 P 上的切线的斜率为 f'(x)。
根据这一几何意义,我们可以得出一些结论。
首先,如果函数在某一点上导数为正,那么函数曲线在该点上是向上的;如果导数为负,曲线则向下。
其次,导数为零的点则代表函数曲线上的极值点,可能是极大值或者极小值。
最后,如果导数不存在,意味着函数曲线在该点上有垂直切线。
三、导数的应用导数的几何意义不仅仅是理论上的解释,它在几何领域中有着广泛的应用。
以下是一些导数的具体应用示例:1. 曲线的切线和法线:通过导数可以得出函数曲线在某点上的切线斜率,从而求得切线方程。
同时,切线的斜率的相反数就是法线的斜率,可以进一步求得法线方程。
2. 极值点与拐点:导数为零的点代表函数曲线上的可能极值点,通过求解导函数为零的方程可以找到极值点。
同时,通过导数的变化情况可以判断函数曲线上的拐点。
3. 函数图形的草图绘制:通过分析导数的正负和零点,可以画出函数图形的大致形态,包括增减性、极值和拐点等信息。
4. 空间曲面的切平面:对于二元函数,通过求偏导数可以得到切平面的方程,从而进一步研究空间曲面的性质。
导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。