2020年整理螺旋桨推力计算.doc
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
螺旋桨的推力公式:推力F=通道面积*空气密度*流
速^2螺旋桨的翼型剖面和展长在很大程度上决定了
螺旋桨的推力,产生推力对应所需的扭转力矩(来自发动机)。
对于螺旋桨背风面被排出的流动结构(下洗气流-直升机,滑流-螺旋桨推进器),可以看作是每一小段螺旋桨翼型前飞所产生下洗气流的综合效果。
螺旋桨叶的拉力随转速的变化过程如下:由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
螺旋桨推力计算模型根据船舶原理知: T K T n2 D 4( K T为螺旋桨的淌水特性)通过资料查得: K T为进速系数J的二次多项式,但无具体的公式表示,只能通过图谱查得,同时 K T K T0( K T0为淌水桨在相同的转速情况下以速度为V A运动时的推力、进速系数1 tJ p V A U(1 W P))nD nD估算推力减额分数的近似公式:1.汉克歇尔公式:对于单螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.12对于单螺旋桨渔船:t=0.77Cp-0.30对于双螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.182.商赫公式对于单桨船t=KW式中: K 为系数K=0.50~0.70适用于装有流线型舵或反映舵者K=0.70~0.90适用于装有方形舵柱之双板舵者K=0.90~1.5适用于装单板舵者对于双螺旋桨船采用轴包架者:t=0.25w+0.14对于双螺旋桨船采用轴支架者:t=0.7w+0.063.哥铁保公式对于单螺旋桨标准型商船(C B=0.6~0.85 )对于双螺旋桨标准型商船(C B=0.6~0.85 )4.霍尔特洛泼公式对于单螺旋桨船C Bt 1.57 2.3 1.5C B C PCWPC Bt 1.67 2.3 1.5C BCWPt 0.001979L /( B BC P1 ) 1.0585C100.000524 0.1418D 2 /( BT )0.0015C stern 式中: C10的定义如下:当 L/B>5.2C10 B / L当 L/B<5.2C100.250.003328402/(B / L 0.134615385)对于双螺旋桨船:t C D/BT0.325B0.1885估算伴流分数的近似公式1.泰洛公式(适用于海上运输船舶)对于单螺旋桨船0.5C B0.05对于双螺旋桨船0.550.20C B式中 C B为船舶的方形系数。
螺旋桨设计计算公式桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
船模推力计算
船模推力的计算涉及到许多因素,如船体形状、螺旋桨尺寸和转速、电机功率等,以下是一些常用的计算公式:
1. 螺旋桨滑套比(slip ratio)计算公式
滑套比指的是螺旋桨进口速度与推进速度之间的比值,通常认为其值应该在0.05-0.1之间。
滑套比 = (pitch x RPM - speed)/(pitch x RPM)
其中,pitch指的是螺旋桨的推进距离,RPM指的是电机转速,speed指的是船模的推进速度。
2. 推进功率(propelling power)计算公式
推进功率是指将船模推进所需的功率,通常它由电机提供。
其计算公式为:
推进功率 = 推进力 x 推进速度
其中,推进力指的是螺旋桨产生的推进力,通常由舵机控制;推进速度指的是船模在水中推进的速度。
3. 推进力(propelling force)计算公式
推进力指的是螺旋桨产生的推进力。
其计算公式为:
推进力 = 螺旋桨直径² x 比功率 x 空气密度
其中,比功率指的是电机的输出功率与电机重量的比值;空气密度指的是水的密度。
以上仅为船模推力的一些基本计算公式,实际计算中可能还需要考虑到其他因素。
螺旋桨推力计算模型根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性)通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时tK K T T -=10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nDW U nD V J P A p )1(-==) 估算推力减额分数的近似公式:1. 汉克歇尔公式:对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式对于单桨船 t=KW 式中:K 为系数K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式对于单螺旋桨标准型商船(C B =0.6~0.85) P B WPBC C C C t ⎪⎪⎭⎫ ⎝⎛+-=5.13.257.1对于双螺旋桨标准型商船(C B =0.6~0.85) B WPBC C C t 5.13.267.1+-= 4. 霍尔特洛泼公式对于单螺旋桨船sternP C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10=当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-=估算伴流分数的近似公式1. 泰洛公式(适用于海上运输船舶)对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。
螺旋桨设计计算公式桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。
螺旋桨拉力计算式————————————————————————————————作者:————————————————————————————————日期:螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:100×50×10×50平方×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100平方×1×0.00025=125公斤机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算)机翼升力计算公式升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。
在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。
对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力滑翔比与升阻比升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。
滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。
水平螺旋推进功率计算公式水平螺旋推进器是船舶的主要推进装置之一,它通过旋转螺旋桨产生推力,推动船舶前进。
在设计和运行水平螺旋推进器时,计算功率是非常重要的。
功率的准确计算可以帮助船舶设计师选择合适的动力系统,同时也有助于船舶操作员合理控制船舶的运行。
本文将介绍水平螺旋推进功率的计算公式及其相关内容。
水平螺旋推进器功率计算公式如下:P = T × n。
其中,P表示功率,单位为千瓦(kW);T表示推力,单位为牛顿(N);n 表示螺旋桨的转速,单位为每分钟转数(rpm)。
推力的计算公式为:T = ρ× A × V^2。
其中,ρ表示水的密度,单位为千克/立方米(kg/m³);A表示螺旋桨的叶片面积,单位为平方米(m²);V表示船舶的航速,单位为米/秒(m/s)。
螺旋桨的转速n可以根据具体的设计要求和实际运行情况进行选择。
在实际应用中,水平螺旋推进器功率的计算还需要考虑一些修正系数,如螺旋桨效率、流体速度分布等。
这些修正系数可以通过实验或者经验公式进行估算,以提高功率计算的准确性。
水平螺旋推进器功率的计算还需要考虑船舶的航行工况,如船舶的载重、航行深度、航行状态等因素。
这些因素都会对功率的计算产生影响,因此在实际计算中需要综合考虑。
水平螺旋推进器功率的计算对于船舶的设计和运行都具有重要意义。
合理的功率计算可以帮助船舶设计师选择合适的动力系统,提高船舶的经济性和环保性;同时也可以帮助船舶操作员合理控制船舶的运行,保证船舶的安全性和航行效率。
在实际应用中,水平螺旋推进器功率的计算需要综合考虑多个因素,包括船舶的设计要求、航行工况、螺旋桨的性能特点等。
因此,船舶设计师和操作员需要具备一定的专业知识和经验,才能准确地进行功率计算和合理地选择动力系统。
总之,水平螺旋推进器功率的计算是船舶设计和运行中非常重要的一部分。
通过合理的功率计算,可以提高船舶的经济性和环保性,同时也可以保证船舶的安全性和航行效率。
直升机螺旋桨的提升力(升力)是直升机能够垂直起降和飞行的关键。
以下是对直升机螺旋桨提升力的详细计算和分析:一、螺旋桨提升力的基本原理直升机螺旋桨的提升力来源于桨叶在空气中旋转时产生的动力。
当螺旋桨旋转时,桨叶会切割空气,产生向下的推力,根据牛顿第三定律,直升机就会获得向上的提升力。
二、螺旋桨提升力的计算公式直升机螺旋桨的提升力可以通过以下公式进行估算:拉力(或提升力)T = 升力系数CL ×π× (旋翼直径D/2)2其中:升力系数CL:是一个与螺旋桨设计和空气动力学特性有关的系数,通常通过实验或计算流体动力学(CFD)分析获得。
π:圆周率,取值3.14159。
旋翼直径D:螺旋桨桨叶的直径,单位通常为米。
空气密度ρ:空气在标准大气压和温度下的密度,一般取值为1.225 kg/m³(在20摄氏度,海平面处)。
旋翼转速ω:螺旋桨的旋转速度,单位通常为弧度/秒(rad/s),可以通过将转速(转/分,rpm)转换为弧度/秒来计算,即ω = 2πn/60,其中n为转速(转/分)。
三、影响螺旋桨提升力的因素旋翼直径:旋翼直径越大,螺旋桨切割空气的面积就越大,产生的提升力也就越大。
旋翼转速:旋翼转速越高,桨叶切割空气的速度就越快,产生的提升力也就越大。
但需要注意的是,过高的转速可能会导致桨叶失速或产生过大的振动和噪音。
升力系数:升力系数与螺旋桨的设计、材料和空气动力学特性有关。
优化螺旋桨设计可以提高升力系数,从而增加提升力。
空气密度:空气密度越大,螺旋桨切割空气时受到的阻力就越大,产生的提升力也就越大。
但需要注意的是,空气密度随海拔和温度的变化而变化,因此在实际应用中需要考虑这些因素。
四、实际应用中的注意事项安全性:在计算螺旋桨提升力时,需要确保直升机在飞行过程中的安全性。
因此,需要综合考虑螺旋桨的设计、材料、转速和空气动力学特性等因素,以确保直升机在飞行过程中具有足够的稳定性和安全性。
桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0。
45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1〈r2)两处各取极小一段,讨论桨叶上的气流情况.V—轴向速度;n—螺旋桨转速;φ-气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角.显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D-螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D-螺旋桨直径。
桨叶的迎角只会影响升力的大小,不会前进。
直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。
就是对称的两只桨,成一条直线,以这个直线为轴旋转。
迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。
飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。
飞机螺旋桨的每一个桨叶基本上是一个旋转翼。
由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。
旋转螺旋桨叶的动力来自引擎。
引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。
空气中飞机的移动产生和它的运动方向相反的阻力。
所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。
这个力称为推力。
典型螺旋桨叶的横截面如图3-26。
桨叶的横界面可以和机翼的横截面对比。
一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。
弦线是一条划过前缘到后缘的假想线。
类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。
桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。
因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。
螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。
一个角的变大或者减小也让另一个随之增加或者减小。
当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。
然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。
飞行时,飞行员是没这个能力去改变这个组合的。
当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。
这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。
学海无涯
螺旋桨推力计算
螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速²(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。
1000米以下基本可以取1。
例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得:
100×50×10×50²×1×0.00025=31.25公斤。
如果转速达到6000转/分,那么拉力等于:100×50×10×100²×1×0.00025=125公斤。