单片机并行I O口应用
- 格式:ppt
- 大小:390.00 KB
- 文档页数:43
80C51单片机的并行端口结构80C51共有4个8位的并行I/O口,分别记作P0、P1、P2、P3。
被归入专用寄存器。
I/O端口有串行和并行之分,串行I/O端口一次只能传送一位二进制信息,并行I/O端口一次能传送一组二进制信息。
(1)并行I/O口的功能①PO口:电路中包括一个数据输出锁存器和两个三态数据输入缓存器,另外还有一个数据输出的驱动和控制电路。
这两组端口用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口的总线接口,而不像P1、P3直接用做输出口。
P0.0~P0.7,P0口是8位双向I/O口,P0.i引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。
该8位都是漏极开路(漏极开路即高阻状态,适用于输入/输出,其可独立输入/输出低电平和高阻状态)输出,每个引脚可以驱动8个LS型TTL负载且内部没有上拉电阻,执行输出功能时外部必须接上拉电阻(10K 即可)。
若要执行输入功能,必须先输出高电平方能读取该端口所连接的外部数据;若在访问外部存储器(RAM、ROM)和扩展的I/O口时,P0可作为地址总线(A0~A7)和数据总线(D0~D7),分时进行工作。
在指令的前半周期,P0口作为地址总线的低8位,在指令的后半周期为8位的数据总线。
P1口的各个单元:输入缓冲器:在P0口中,有两个三态的缓冲器,三态门有三个状态,即在其输出端可以是高电平、低电平和高阻状态(或称为禁止状态)。
上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为…读锁存器‟端)有效。
要读取P0.i引脚上的数据,也要使标号为…读引脚‟的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。
D锁存器:存储器中可以存放电荷,加一个小的存储器的单元,并在它的面前加一个开关,要让这一位输出时,就把开关打开,信号就进入存储器的单元,然后马上关闭开关,这一位的状态就被保存下来,直到下一次命令让它把开关再打开为止,这就是锁存器。
单片机并行I/O口的扩展方法摘要:由于在MCS-51单片机开发中P0口经常作为地址/数据复用总线使用,P2口作为高8位地址线使用,P3口用作第二功能(定时计数器、中断等)使用,所以对于51单片机的4个I/O口,其可以作为基本并行输入/输出口使用的只有P1口。
因此在单片机的开发中,对于并行I/O口的扩展十分重要,主要分析3种扩展并行I/O口的方法。
关键词: MCS-51单片机; 并行I/O口; 扩展MCS-51单片机有4个并行的I/O口,分别为P0口、P1口、P2口和P3口,4个并行I/O 口在单片机的使用中非常重要,可以说对单片机的使用就是对这4个口的使用。
这4个并行I/O口除了作为基本的并行I/O口使用,还常作为其他功能使用,如P0口经常作为地址/数据复用总线使用[1], P2口作为高8位地址线使用,P3口用作第二功能(定时计数器、中断等等)使用。
这样,单片机只有P1口作为基本的并行I/O口使用,如果在单片机的使用中对并行I/O口需求较多,对于并行I/O口的扩展就非常重要了。
下面通过具体的实例(8位流水灯设计)来给出几种不同的并行I/O口扩展方法。
为了更好地说明以下几种不同的并行I/O口扩展方法,假设利用单片机实现流水灯的设计。
采用单片机的P1口设计流水灯,电路。
由图1可知,8只LED直接连接在单片机的P1口上,通过对单片机进行编程即可以实现8只发光二极管产生流水灯。
1 使用单片机的串行口扩展并行I/O口单片机有一个全双工的串行口[2],这个口既可以用于网络通信,也可以实现串行异步通信,还可以作为移位寄存器使用。
当单片机的串行口工作在模式0时,若外接一个串入/并出的移位寄存器(74LS164),就可以扩展一个8 bit并行输出口;若外接一个并入/串出的移位寄存器(74LS165),就可以扩展一个8 bit并行输入口。
,单片机外接一个串入/并出的移位寄存器(74LS164),这样就可以扩展8 bit并行输出口。
单片机IO口扩展技术] 0 引言在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术、高可靠性和高性价比,占领了工业测控和自动化工程应用的主要市场,并成为国内单片机应用领域中的主流机型。
MCS-51单片机的并行口有P0、P1、P2和P3,由于P0口是地址/数据总线口,P2口是高8位地址线,P3口具有第二功能,这样,真正可以作为双向I/O口应用的就只有P1口了。
这在大多数应用中是不够的,因此,大部分MCS-51单片机应用系统设计都不可避免的需要对P0口进行扩展。
由于MCS-51单片机的外部RAM和I/O口是统一编址的,因此,可以把单片机外部64K字节RAM空间的一部分作为扩展外围I/O口的地址空间。
这样,单片机就可以像访问外部RAM存储器单元那样访问外部的P0口接口芯片,以对P0口进行读/写操作。
用于P0口扩展的专用芯片很多。
如8255可编程并行P0口扩展芯片、8155可编程并行P0口扩展芯片等。
本文重点介绍采用具有三态缓冲的74HC244芯片和输出带锁存的74HC377芯片对P0口进行的并行扩展的具体方法。
1 输入接口的扩展MCS-51单片机的数据总线是一种公用总线,不能被独占使用,这就要求接在上面的芯片必须具备“三态”功能,因此扩展输入接口实际上就是要找一个能够用于控制且具备三态输出的芯片。
以便在输入设备被选通时,它能使输入设备的数据线和单片机的数据总线直接接通;而当输入设备没有被选通时,它又能隔离数据源和数据总线(即三态缓冲器为高阻抗状态)。
1.1 74HC2244芯片的功能如果输入的数据可以保持比较长的时间(比如键盘),简单输入接口扩展通常使用的典型芯片为74HC244,由该芯片可构成三态数据缓冲器。
74HC244芯片的引脚排列如图1所示。
74HC244芯片内部共有两个四位三态缓冲器,使用时可分别以1C和2G作为它们的选通工作信号。
当1 C和2G都为低电平时,输出端Y和输入端A状态相同;当1G和2G都为高电平时,输出呈高阻态。