《一次函数的性质》基础练习
- 格式:doc
- 大小:89.00 KB
- 文档页数:3
一次函数——基本性质◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?1-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.一次函数——基本性质(解析)◆一次函数的基本性质1-1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.1-2.已知一次函数y=mx+2m﹣10(m≠0).(1)当m为何值时,这个函数为正比例函数?(2)当m为何值时,这个函数y的值随着x值的增大而减小?(3)当m为何值时,这个函数的图象与直线y=x﹣4的交点在y轴上?【解答】解:(1)y=mx+2m﹣10(m≠0).∵函数为正比例函数,∴2m﹣10=0,解得:m=5,(2)一次函数y=mx+2m﹣10(m≠0).∵函数y的值随着x值的增大而减小,∴m<0且m≠0,(3)∵函数的图象与直线y=x﹣4的交点在y轴上,∴x=0,y=﹣4,把x=0,y=﹣4代入y=mx+2m﹣10得,m=31-3.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;(2)若点P(a,﹣3)在这个函数的图象上,求a的值;(3)若y的取值范围为﹣1≤y≤1,求x的取值范围.【解答】解:(1)设y﹣2=k(3x﹣4),将x=2、y=3代入,得:2k=1,解得k=,∴y﹣2=(3x﹣4),即y=x;(2)将点P(a,﹣3)代入y=x,得:a=﹣3,解得:a=﹣2;(3)当y=﹣1时,x=﹣1,解得:x=﹣,当y=1时,x=1,解得:x=,故﹣≤x≤.1-4.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.【解答】解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=﹣1时,y=2×(﹣1)=﹣2;(3)∵0≤y≤5,∴0≤2x≤5,解得:0≤x≤.1-5.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.【解答】解:(1)函数图象如右图所示;(2)∵y=﹣2x﹣2,∴当x=0时,y=﹣2,当y=0时,x=﹣1,∴图象与x轴、y轴的交点A、B的坐标分别为(﹣1,0),(0,﹣2);(3)∵点A(﹣1,0),点B(0,﹣2),∴OA=1,OB=2,∴AB==,即A、B两点间的距离是;(4)由(3)知,AB=,∵点C在坐标轴上,AB=AC,∴当C在x轴上时,点C的坐标为(﹣1﹣,0)或(﹣1+,0),当点C在y轴上时,点C的坐标为(0,2),由上可得,点C的坐标为:(﹣1﹣,0)、(﹣1+,0)或(0,2).◆一次函数与待定系数法2-1.一次函数y=kx+b,当﹣1≤x≤1时,相应的函数值是0≤y≤3.试求k、b的值.【解答】解:分两种情况:①当k>0时,把x=﹣1,y=0;x=1,y=3代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=x+;②当k<0时,把x=﹣1,y=3;x=1,y=0代入一次函数的解析式y=kx+b(k≠0),得,解得,则这个函数的解析式是y=﹣x+;综上可得,k=,b=或k=﹣,b=.2-2.一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式.(2)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.【解答】解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4).∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.2-3.已知y与2x﹣1成正比例,当x=3时,y=10.(1)求y与x之间的函数关系式;(2)当y=﹣2时,求x的值.【解答】解:(1)设y=k(2x﹣1).∵当x=3时,y=10.∴10=k(6﹣1).∴k=2.∴y=2(2x﹣1)=4x﹣2.∴y与x之间的函数关系式为:y=4x﹣2.(2)由题意得:4x﹣2=﹣2.∴x=0.◆一次函数与面积3-1.如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y =kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线L2与x轴的交点,点Q是x轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【解答】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).3-2.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【解答】解:(1)∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3-3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S:S△BOP=1:2,求k的值.△AOP【解答】解:当x=0时,y=2x+2=2,则B(0,2),当y=0时,2x+2=0,解得x=﹣1,则A(﹣1,0),设P(t,kt),∵S△AOP:S△BOP=1:2,即S△BOP=2S△AOP,∴•|t|•2=2••1•|kt|,∴|k|=1,而k>0,∴k=1.3-4.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积【解答】解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.3-5.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.3-6.已知一次函数y=kx+3与x轴交于点A(2,0),与y轴交于点B.(1)求一次函数的表达式及点B的坐标;(2)画出函数y=kx+3的图象;(3)过点B作直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.【解答】解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得k=﹣,∴y=﹣x+3.当x=0时,y=3.∴B(0,3);(2)一次函数的图象如图所示:(3)∵A(2,0),∴OA=2,∵点P在x轴上,且OP=2OA,∴OP=2OA=4,∴P(4,0)或(﹣4,0),∴AP=2或6,∵S△ABP=,∴S△ABP==3或S△ABP==9,∴△ABP的面积为3或9.3-7.如图,直线l交x轴于A(﹣4,0),交y轴于B(0,6),C(m,3)是直线l上的一点.(1)求直线AB,OC的表达式;(2)在直线AB上找一点P,使S△OCP=S△OAB,求出点P的坐标.【解答】解:(1)设直线AB的表达式为y=kx+b(k≠0),∵点A(﹣4,0),B(0,6)在直线AB上,∴,∴,∴直线AB的表达式为y=x+6,∵C(m,3)是直线l上的一点,∴m+6=3,解得:m=﹣2,∴C(﹣2,3),设直线OC的表达式为:y=nx(n≠0),把C(﹣2,3)代入得:﹣2n=3,∴n=﹣,∴直线OC的表达式为:y=﹣x;(2)∵S△OCP=S△OAB,∴S△OCP=×=8,设P(x,x+6),分两种情况:①当点P在第一象限时,过P作PD⊥x轴于D,过C作CE⊥x轴于E,∵C(﹣2,3),∴OE=2,CE=3,∴S△OCP=(3+x+6)•(x+2)﹣=8,解得:x=,∴P(,7);②当点P在第三象限时,同理得:P(﹣,﹣1);综上,点P的坐标为P(,7)或(﹣,﹣1)练习1.在如图所示的平面直角坐标系中.画出函数y=2x+4的图象.(1)若该函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积;(2)利用该函数图象直接写出:当y<0时,x的取值范围.【解答】解:∵函数y=2x+4,∴当x=0,y=4,当y=0时,x=﹣2,即该函数图象过点(0,4),(﹣2,0),所画的函数图象如右图所示;(1)由图象可得,点A(﹣2,0),点B(0,4),则OA=2,OB=4,故△AOB的面积是=4;(2)由图象可得,当y<0时,x的取值范围是x<﹣2.2.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.【解答】解:∵x+2y=4,∴y=(4﹣x),∴S=×4×(4﹣x)=4﹣x,即S=4﹣x.∵点P(x,y)在第一象限内,且x+2y=4,∴,解得0<x<4;(2)当S=3时,4﹣x=3,解得x=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).3.已知一次函数:y1=﹣|k|x+b(k,b为常数且k≠0).(1)若函数图象经过(2,4),(4,0)两点,求k与b的值;(2)若﹣1≤x≤3时,3≤y≤5,求此一次函数的解析式.【解答】解:(1)∵函数图象经过(2,4),(4,0)两点,∴,解得|k|=2,b=8,∴k=2,b=8或k=﹣2,b=8;(2)由题意可知点(﹣1,3)、(3,5)或(﹣1,5)、(3,3)都在一次函数:y1=﹣|k|x+b(k,b为常数且k≠0)图象上,则有:或,解得或(舍去),∴此一次函数的解析式为y=﹣x+.4.已知函数y=(2n﹣8)x﹣n﹣3.(1)若函数图象经过原点,求n的值;(2)若这个函数是一次函数,且图象经过二、三、四象限,求n的正整数值.【解答】解:(1)∵函数y=(2n﹣8)x﹣n﹣3的图象经过原点,∴﹣n﹣3=0,解得:n=﹣3.(2)∵这个函数是一次函数,且图象经过二、三、四象限,∴,解得:﹣3<n<4.∴n的正整数值为1、2、3.5.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.6.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于E、F两点,点E的坐标为(﹣6,0),OF=3.(1)求k与b的值;(2)若P是直线EF上的一个动点且满足△POE的面积为6,求点P的坐标.【解答】解:(1)∵OF=3,∴F(0,3),∴b=3,把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,(2)如图,∴设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2或y=﹣2,∵P是直线EF上的一个动点,∴当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2),当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2),综上,点P的坐标为(﹣2,2)或(﹣10,﹣2).7.如图,Rt△ABO的顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,点C在该直线上,且点C的纵坐标是﹣1.(1)点A的坐标;(2)求直线AC的解析式;(3)求△AOC的面积.【解答】解;(1)∵顶点A在直线y=﹣x﹣k上,AB⊥x轴于B,且S△ABO=,AB:BO=3:1,∴S△ABO=OB•AB==,∴OB=1,AB=3,∴A(﹣1,3);(2)∵顶点A在直线y=﹣x﹣k上,∴3=1﹣k,∴k=﹣2,∴直线AC的解析式为y=﹣x+2;(3)直线y=﹣x+2中,令y=0,则x=2,∴直线AC与y轴的交点D的坐标为(2,0),∵点C的纵坐标是﹣1.∴S△AOC=S△AOD+S△COD=+=4.。
一次函数的图像和性质一、选择题2、已知一次函数y=mx-(m-2)过原点,则m 的值为( )A .m>2B .m<2C .m=2D .不能确定3、一次函数y=kx+b 满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •)A .y=2x+1B .y=-2x+1C .y=2x-1D .y=-2x-14、下列说法正确的是( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数5、一次函数的图象经过点A (-2,-1),且与直线y=2x-3平行,•则此函数的解析式为( )A .y=x+1B .y=2x+3C .y=2x-1D .y=-2x-56、已知一次函数y=kx+b ,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为( )A .y=-x-3B .y=x+3C .y=-x+3D .y=x-37、已知自变量为x 的一次函数y=a (x-b )的图象经过第二、三、四象限,则( • )A .a>0,b<0B .a<0,b>0C .a<0,b<0D .a>0,b>0二、填空题1、在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)2、已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.3、 函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=_______.4、 直线42+-=x y 经过点( )与点( )(填两点的坐标)5、在同一坐标系中,直线x y 2-=与直线32+-=x y 的位置关系是________.6、将直线132y x =-+向下平移3个单位,得到直线________________=y 。
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。
一次函数性质练习题及答案一次函数是数学中非常基础且重要的概念,它在许多实际问题中都有应用。
下面我们将通过一些练习题来加深对一次函数性质的理解,并给出相应的答案。
# 练习题1题目:已知直线y=kx+b经过点(2,3)和(-1,-2),求k和b的值。
解答:首先,我们可以将两个点的坐标代入一次函数的一般形式y=kx+b中,得到两个方程:\[ 3 = 2k + b \]\[ -2 = -k + b \]接下来,我们可以解这个方程组来求得k和b的值。
将第二个方程中的b用第一个方程表示,得到:\[ b = 3 - 2k \]将这个表达式代入第二个方程,得到:\[ -2 = -k + (3 - 2k) \]\[ -2 = -3k + 3 \]\[ 3k = 5 \]\[ k = \frac{5}{3} \]再将k的值代入b的表达式中,得到:\[ b = 3 - 2 \times \frac{5}{3} \]\[ b = 3 - \frac{10}{3} \]\[ b = \frac{9}{3} - \frac{10}{3} \]\[ b = -\frac{1}{3} \]所以,k=5/3,b=-1/3。
# 练习题2题目:若一次函数y=2x+4的图象与x轴交于点A,求点A的坐标。
解答:一次函数与x轴相交意味着y=0。
将y=0代入函数y=2x+4中,得到:\[ 0 = 2x + 4 \]\[ -4 = 2x \]\[ x = -2 \]因此,点A的坐标为(-2, 0)。
# 练习题3题目:一次函数y=-3x+5的斜率是多少?解答:一次函数的斜率就是函数表达式中x的系数。
在这个例子中,斜率k=-3。
# 练习题4题目:已知一次函数y=kx+b的图象经过第一、二、三象限,求k和b 的取值范围。
解答:一次函数的图象经过第一、二、三象限,说明函数是向上倾斜的,并且y轴截距是正的。
因此,k>0,b>0。
# 结语通过这些练习题,我们可以看到一次函数的性质和应用。
6.3一次函数图象和性质练习题一次函数的定义1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( )(3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为( ) ①y=2x ;②y=3+4x ;③y= ;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0; A .3个 B 4个 C 5个 D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1 +3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y= +1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=()()m x m x m +-+-1122是一次函数。
(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是(5)设圆的面积为s ,半径为R,那么下列说法正确的是( )A S 是R 的一次函数B S 是R 的正比例函数C S 是2R 的正比例函数 D 以上说法都不正确6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中最基本的函数之一,它的图像呈现出直线的特点。
通过学习一次函数的图像和性质,我们可以更好地理解和应用数学知识。
下面是一些关于一次函数图像和性质的练习题,帮助我们巩固所学的知识。
练习题一:给定一次函数y = 2x + 3,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = 2(0) + 3 = 3,所以当x为0时,y的值为3。
2. 当y为0时,代入函数表达式得到0 = 2x + 3,解方程得到x = -1.5,所以当y为0时,x的值为-1.5。
3. 函数的斜率即为函数中x的系数,所以斜率为2。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为3。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,3)和(1,5)。
连接这两个点,得到一条斜率为2,截距为3的直线。
练习题二:给定一次函数y = -0.5x + 2,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = -0.5(0) + 2 = 2,所以当x为0时,y的值为2。
2. 当y为0时,代入函数表达式得到0 = -0.5x + 2,解方程得到x = 4,所以当y为0时,x的值为4。
3. 函数的斜率即为函数中x的系数,所以斜率为-0.5。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为2。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,2)和(4,0)。
连接这两个点,得到一条斜率为-0.5,截距为2的直线。
一次函数的图像和性质练习题1.一次函数y=kx+b(k≠0)经过正比例函数y=kx(k≠0)一定经过点(0,0),经过点(1,k+b),经过点(-b/k,0)。
2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。
与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为1.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(0,b+1)。
5.一次函数y=-x+3的图象经过点(-2,5)和(2,1)。
6.已知一次函数y=(1/2)x+2的图象与x轴、y轴分别交于点A(4,0)、B(0,2),求△XXX的面积。
答案为4.7.满足条件的函数为y=-x。
8.函数y=2x与y=2x+6的图象平行且不重合。
9.若直线y=2x+6与直线y=mx+5平行,则m=2.10.函数y=ax+b与y=3x+2平行,则a=3,b为任意实数。
11.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则k的取值范围是k≤2或k≥4.13.已知点A(-4.a),B(-2,b)都在一次函数y=3x+1的图象上,且a<b,则系是a<7/2.14.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0.15.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。
16.直线y=(1/2)x-5与x轴的交点坐标是(10,0),与y轴的交点坐标是(0,-5/2)。
17.直线y=2x-3可以由直线y=2x沿y轴上移3个单位而得到;直线y=-3x+2可以由直线y=-3x沿y轴下移2个单位而得到。
第2讲 一次函数的图像及性质(练习)夯实基础一、单选题1.直线y =2x ﹣1在y 轴上的截距是( )A .1B .﹣1C .2D .﹣22.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <3.一次函数51y x =-的图像经过的象限是( )A .一、二、三B .一、三、四C .二、三、四D .一、二、四 4.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤5.在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .6.点A (﹣1,y 1)、点B (1,y 2)在直线y =﹣3x 上,则( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法比较y 1、y 2大小7.已知点A (﹣1,y 1),点B (2,y 2)在函数y =﹣3x +2的图象上,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 8.一次函数y=kx=k(k=0)的图象大致是( )A .B .C .D .二、填空题9.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.10.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______. 11.一次函数4y x =--的截距是_________.12.如果一次函数()21y k x =+-中,y 随x 的增大而减小,那么k 的取值范围是___________.13.一次函数5y x b =-+的图象不经过第一象限,则b 的取值范围是_________. 14.一次函数y kx b =+的图像经过点(3,0)与(0,3),那么关于x 的不等式0kx b +>的解集是________.三、解答题15.已知:一次函数y kx b =+的图像经过点(1,3)A 且与直线32y x =-+平行. (1)求这个一次函数的解析式;(2)求在这个一次函数的图像上且位于x 轴上方的所有点的横坐标的取值范围.能力提升一、单选题1.如果点()11,P x y 和点()22,Q x y 是直线()0y kx k =≠上两点,当12x x <时,12y y <,那么直线()0y kx k =≠和函数()0k y k x=≠在同一直角坐标系内的大致图像可能是( ) A . B .C .D .2.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 3.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n <C .0k >D .k 0< 4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .5.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a <7.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)二、填空题8.若直线y =kx+b 平行直线y =5x+3,且过点(2,﹣1),则b =_____.9.如图,一次函数y =f (x )的图象经过点(2,0),如果y >0,那么对应的x 的取值范围是_____.10.如果在一次函数y =(k +y 随自变量x 的增大而增大,那么k 的范围为_____.11.如图,已知一次函数y kx b =+的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式+kx b ﹤0的解集是_______.12.将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是_______ 13.如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.14.直线123y x =-与两根坐标轴围成的三角形的面积是_______________________. 15.在平面直角坐标系中,已知点(52,4)A m m --在第二象限,且m 为整数,则过点A 的正比例函数的解析式为___________.三、解答题16.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.17.小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y (米)与时间x (分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?18.在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt ABC,如图所示.(1)若ABC S 的值为5平方单位,求m 的值;(2)记BC 交y 轴于点D ,CE ⊥y 轴于点E ,当y 轴平分∠BAC 时,求AD CE 的值 (3)连接OC ,当OC +AC 最小时,求点C 的坐标.19.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且=POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.20.如图,已知直线:l y x =x 轴于点A ,y 轴于点B ,将AOB ∆沿直线l 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=>上.(1)求k 的值;(2)将ABC ∆绕AC 的中点旋转180︒得到PCA ∆,请判断点P 是否在双曲线k y x=上,并说明理由.。
10.3 一次函数的性质
1.下列说法错误的是( )
A .b ax y +=叫做一次函数
B .b ax y +=的图象是一条直线
C .当a >0时,函数b ax y +=在R 上递增
D .一次函数的平均变化率就是其对应直线的斜率 2.已知一次函数过点(
2
1
,0)且在y 轴截距为4则其表达式( ) A .y =-4x +8 B .y =-8x -4 C .y =-4x -8 D .y =-8x +4
3.已知点(3,5)和(a ,7)在直线y=2x +b 上,则a ,b 的值分别为( ) A .-4,1 B -4,-2 C .4,-1 D .-4,-1 4.直线y =x +3与y =-2x 的交点坐标为( )
A .(-1,2)
B .(1,-2)
C .(1,2)
D .(-1,-2) 5.若a >0且b >0则函数y=ax +b 的图象不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 6.已知直线l 过直线y =2x 和y =x -3的交点且平均变化率是3,则其方程为( )
A .y =3x -3
B .y =3x +3
C .y =3
1
x -3 D .y =-3x -3
7.若直线y=kx +k +2与直线y=-2x +4的交点在第一象限内,则实数k的取值范围是( )
A .32->k
B .k <2
C .232<<-k
D .3
2
-<k 或k >2
8.设集合A =()⎭
⎬⎫
⎩⎨⎧∈=--R y x x y y x ,,213|
,,B =(){}R y x y x y x ∈=++-,,014|,,则A ⋂B =( )
A .{1,3}
B .{(1,3)}
C .Φ
D .{(3,10)} 9.若f [g (x )]=6x +3,且g (x )=2x +1,则)(x f 等于( ) A .3 B .3x C .6x +3 D .6x +1
10.设)
(x
f=x+1,那么和f(x+1)关于直线x=2对称的直线方程对应的函数解析式()
A.y=x-6B.y=x+6C.y=-x+6D.y=-x-2
11.函数y=2与y=|x|围成的封闭图形的面积是()
A.2 B.4 C.8 D.1
12.某人从家到单位,由于怕迟到,开始跑步,等跑累了再走余下的路,在下图中y轴表示离单位的距离,x轴表示表示出发后的时间,则下面四个图中符合该人走法的是()
A.B.C.D.13.函数y=
⎪
⎩
⎪
⎨
⎧
>
+
-
≤
<
+
≤
+
)1
(
5
)1
0(
3
)0
(
3
2
x
x
x
x
x
x
的最大值是.
14.设y=)
(x
f是一次函数,且有f[)
(x
f]=9x+8,求)
(x
f.
15.对于每个实数x,设)
(x
f是y=4x+1,y=x+2和y=-2x+4三个函数中的最小值,则)
(x
f的最大值是.
16.某商人购货,进货已按原价a扣去25%,他希望对货物订一新价,以便按新价让利20%,销售后仍可获得售价25%的纯利,求此商人经营这种货物的件数x与按新价让利总额y之间的函数关系式.
参考答案
13. 4
14.设此一次函数是)(x f =ax+b ,则f [f (x )]=a )(x f +b =a (ax +b )+b =
b ab x a ++2
=9x +8,所以⎩⎨⎧=+=8
9
2b ab a ,即
⎩
⎨
⎧==33b a 或者⎩⎨⎧-=-=43b a ,所以,所求函
数的解析式为)(x f =3x +2或)(x f =-3x -4. 15.采用数形结合,画出三条直线即可得到答案.
16.设新价为b ,则售价为b (1-20%),因原价为a ,所以进价为a (1-25%)
根据题意,的b (1-20%)-a (1-25%)=b (1-20%)⨯25%,化简的b =54
a .所以y =b·20%·x 即y =)(4
5
*N x ax ∈.。