第7常用数字接口电路
- 格式:ppt
- 大小:1.97 MB
- 文档页数:57
接口电路工作原理
接口电路是一种用于连接和协调不同电子设备之间的电路。
其工作原理是通过输入和输出信号的转换、参考电位的匹配以及电气特性的调整来实现不同设备之间的有效通信。
接口电路通常包括输入端、输出端、控制电路和信号转换电路。
输入端接收来自外部设备的信号,将其转换为适合处理的电信号,然后传递给信号转换电路;信号转换电路将输入信号转换为输出信号,并适应输出设备的信号要求和电气特性;最后,输出端将转换后的信号发送到目标设备。
在接口电路中,控制电路起到协调和控制的作用,通过读取输入信号的特性并根据控制策略进行处理,控制信号转换电路的工作,确保信号转换的正确进行。
控制电路可以通过开关电路、数码电路、逻辑电路等来实现。
接口电路的工作原理还包括参考电位的匹配。
不同设备可能具有不同的工作电压和电灵敏度,因此,接口电路应该能够匹配不同设备之间的电位差来实现信号的有效传输和交流。
为此,接口电路通常会引入参考电源或参考电位,以确保输入输出之间的电位差在一定范围内。
总之,接口电路通过信号转换、参考电位匹配和电气特性调整等方式,实现了不同电子设备之间的有效连接和通信。
它是各种电子设备协同工作和互联的关键技术之一。
常见的组合逻辑电路一、引言组合逻辑电路是由多个逻辑门组成的电路,它们根据输入信号的不同组合,产生不同的输出信号。
在现代电子技术中,组合逻辑电路被广泛应用于数字电路、计算机系统、通信系统等领域。
本文将介绍几种常见的组合逻辑电路及其工作原理。
二、多路选择器(MUX)多路选择器是一种常见的组合逻辑电路,它具有多个输入端和一个输出端。
根据控制信号的不同,选择器将其中一个输入信号传递到输出端。
例如,一个4选1多路选择器有4个输入端和1个输出端,根据2个控制信号可以选择其中一个输入信号输出。
多路选择器常用于数据选择、多输入运算等场合。
三、译码器(Decoder)译码器是一种将输入信号转换为对应输出信号的组合逻辑电路。
常见的译码器有2-4译码器、3-8译码器等。
以2-4译码器为例,它有2个输入信号和4个输出信号。
根据输入信号的不同组合,译码器将其中一个输出信号置为高电平,其他输出信号置为低电平。
译码器常用于地址译码、显示控制等应用。
四、加法器(Adder)加法器是一种用于实现数字加法运算的组合逻辑电路。
常见的加法器有半加器、全加器等。
半加器用于两个1位二进制数的相加,而全加器用于多位二进制数的相加。
加法器通过多个逻辑门的组合,将两个二进制数进行相加,并输出相应的和与进位。
加法器广泛应用于数字电路、计算机算术单元等领域。
五、比较器(Comparator)比较器是一种用于比较两个数字大小关系的组合逻辑电路。
常见的比较器有2位比较器、4位比较器等。
以2位比较器为例,它有两组输入信号和一个输出信号。
当两组输入信号相等时,输出信号为高电平;当第一组输入信号大于第二组输入信号时,输出信号为低电平。
比较器常用于数字大小判断、优先级编码等应用。
六、编码器(Encoder)编码器是一种将多个输入信号转换为对应输出信号的组合逻辑电路。
常见的编码器有2-4编码器、8-3编码器等。
以2-4编码器为例,它有2个输入信号和4个输出信号。
电路设计中必须掌握的7个常用接口知识我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。
下面就电路设计中7个常用的接口类型的关键点进行说明一下:(1)TTL电平接口:这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。
它的驱动能力一般最大为几十个毫安。
正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。
(2)CMOS电平接口:我们对它也不陌生,也是经常和它打交道了,一些关于CMOS的半导体特性在这里就不必啰嗦了。
许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。
但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。
由于CMOS的工作电压目前已经可以很小了,有的FPGA 内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。
众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。
由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。
此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。
(3)ECL电平接口:这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。
电路设计中7个常用的接口类型这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。
它的驱动能力一般最大为几十个毫安。
正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。
我们对它也不陌生,也是经常和它打交道了,一些关于CMOS 的半导体特性在这里就不必啰嗦了。
许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。
但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。
由于CMOS 的工作电压目前已经可以很小了,有的FPGA内核工作电压甚至接近 1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。
众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。
由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。
此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。
这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。
But,这是要付出代价的!它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪去了,要是谁能够折中好这两点因素的话,那么他(她)就该发大财了。
还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。