电机学直流电机完美解析
- 格式:ppt
- 大小:3.53 MB
- 文档页数:85
直流电机工作原理图解一.直流电机的物理模型图解释。
这是分析直流电机的物理模型图。
其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。
定子与转子之间有一气隙。
在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。
换向片之间互相绝缘,由换向片构成的整体称为换向器。
换向器固定在转轴上,换向片与转轴之间亦互相绝缘。
在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。
二.直流发电机的工作原理直流发电机是机械能转换为直流电能的电气设备。
如何转换?分以下步骤说明:设原动机拖动转子以每分转n转转动;电机内部的固定部分要有磁场。
这个磁场可以是如图示的磁铁也可以是磁极铁心上绕套线圈,再通过直流电产生磁场。
其中 If 称之为励磁电流。
这种线圈每个磁极上有一个,也就是,电机有几个磁极就有几个励磁线圈,这几个线圈串联(或并联)起来就构成了励磁绕组。
这里要注意各线圈通过电流的方向不可出错。
在以上条件下环外导体将感应电势,其大小与磁通密度 B 、导体的有效长度 l 和导体切割磁场速度 v 三者的乘积成正比,其方向用右手定则判断。
但是要注意某一根转子导体的电势性质是交流电。
而经电刷输出的电动势确是直流电了。
这便是直流发电机的工作原理。
如下动画演示:三.直流电动机的工作原理直流电动机的原理图对上一页所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。
直流电机的工作原理及特性剖析直流电机是利用直流电流产生的磁场进行能量转换的一种电动机。
它的工作原理基于洛伦兹力和电磁感应的相互作用。
直流电机主要由定子和转子组成。
定子是不动的部分,由绕组和磁体构成。
绕组通电后产生的磁场称为励磁磁场,它的作用是提供一个永久的磁场。
转子是可转动的部分,通常由铁心和线圈组成。
转子的线圈通电后产生的磁场称为电励磁磁场。
当励磁磁场和电励磁磁场相互作用时,就会产生一个扭矩,使转子开始旋转。
1.高起动转矩:由于直流电机的励磁磁场是恒定的,它可以提供一个较高的起动转矩,使得直流电机可以很容易地启动和加速。
2.调速范围广:由于直流电机可以通过调节绕组的电流来控制电磁力的大小,所以它具有广泛的调速范围。
通过改变绕组中的电流方向和大小,可以实现正向和反向旋转,以及不同的转速。
3.良好的速度稳定性:直流电机在负载变化时具有很好的速度稳定性,可以在较大负载下保持稳定的转速。
这是因为直流电机可以通过反馈系统来调整电流,以实现稳定的转速。
4.高效率:直流电机具有较高的效率,能够将输入的电能有效地转换为机械能。
这是因为直流电机的机械损耗比较小,同时也可以通过控制电流来减小铜损和铁损。
5.容易控制:直流电机具有良好的可控性,可以通过控制电流来改变转速和输出转矩。
通过调节绕组的电流,可以实现无级调速和闭环控制,从而满足不同的应用需求。
总之,直流电机的工作原理是利用洛伦兹力和电磁感应的相互作用,在绕组通电产生的磁场作用下,转子开始旋转,从而将电能转换为机械能。
直流电机具有高起动转矩、调速范围广、速度稳定性好、高效率和易于控制等特点,因此被广泛应用于工业、交通和家用电器等领域。
最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)直流电动机是连续的执行器,可将电能转换为(机械)能。
直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。
与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。
基本上有三种类型的常规电动机可用:AC 型电动机,(DC)型电动机和步进电动机。
典型的小型直流电动机交流电动机通常用于高功率的单相或多相(工业)应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。
在本(教程)中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的(电子),位置控制,微处理器,(PI)C和(机器人)类型的电路中。
基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最常用的致动器,和/或需要定位。
直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。
结果是基本上可以使用三种类型的直流电动机。
有刷(电机)–这种类型的电机通过使(电流)流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。
定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。
通常,有刷直流电动机便宜,体积小且易于控制。
无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。
它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。
伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。
它们连接到PWM型控制器并由其控制,主要用于位置(控制系统)和无线电控制模型。
普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩则取决于流经电动机绕组的电流。
直流电机的工作原理及特性直流电机是一种电动机,以其结构简单、控制精度高、效率高、输出功率大等优点而受到广泛应用。
本文将从工作原理、特性两个方面对直流电机进行详细介绍。
一、工作原理直流电机的工作原理是靠用直流电产生的磁场作用在转子上,使转子旋转。
直流电机实际上是一个能把电动机和发电机互相转换的机器,因为直流电是双向运动的,所以他可以既做发电机又可以做电动机。
(一)机械结构直流电机机械结构分为定子和转子两部分。
定子包括机座、磁极、绕组等。
转子是电动机旋转的部分,包括转子铁心、绕组和电刷等。
当电机接入电源并加上磁通,就会在转子上产生一个磁场。
由于转子上产生的磁队是与磁通方向相反的,因此磁力会推动旋转电机,从而使转子开始转动。
(二)电磁学原理直流电机的转速与线圈导体上通过电流的方向、大小,磁极和线圈位置等因素有关。
当直流电通过定子绕组时,就会产生磁极磁通,因此在转子上的绕组中就会感应出电磁力和转矩。
电机转子的移动速度主要取决于该转矩。
转矩越大,电机就能承受更多的外力,提供更高的机械输出;反之,转矩越小,电机就需要承受更小的外力。
二、特性(一)功率和效率直流电机的输出功率和效率都很高。
在电机运行时,电梯将能量输出到外部驱动机器,其能量转化效率约为88%~96%,具有一定的经济性和高性价比的特点。
(二)输出特性直流电机存在强大的输出特性,这意味着它可以在不同的工作负载下产生不同的扭矩和速度。
直流电机的特性也非常稳定,当负载发生变化时,电机的输出也能及时发生相应地变化,从而实现更高的精度。
(三)寿命和维护直流电机的寿命较长,使用寿命通常可达到15000小时。
它还具备一定的可靠性和稳定性,使用稳态电源能有效促进电机使用寿命。
通常情况下,直流电机不需要经常维护,只需要清洗和润滑,更换磨损和损坏的部件即可。
(四)控制精度直流电机的速度控制精度非常高,控制范围广,在高低转速下都能实现同样高的控制精度。
这也让它在工业控制领域中得到了广泛应用,如分步马达、电动升降平台、电动梯等等。
直流电机工作原理直流电机是一种能够将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
下面将详细介绍直流电机的结构和工作原理。
一、直流电机的结构直流电机主要由以下几个部分组成:1. 电枢:电枢是直流电机的旋转部分,通常由导体绕成的线圈组成。
当电流通过电枢时,电枢会在磁场中旋转。
2. 磁极:磁极是直流电机的静止部分,通常由永磁体或者电磁铁组成。
磁极的作用是产生磁场,使得电枢在其中旋转。
3. 制动器:制动器可以控制电机的转速和停止。
当制动器接通时,它会对电枢产生阻力,减慢电机的转速或者停止电机运转。
4. 机壳:机壳是直流电机的外壳,通常由金属材料制成。
它的作用是保护电机内部的零件,同时也可以散热。
二、直流电机的工作原理直流电机的工作原理可以分为两个部分:电枢和磁极之间的相互作用和直流电源对电枢产生的作用力。
1. 电枢和磁极之间的相互作用当直流电源接通时,电流会通过电枢,使得电枢在磁场中旋转。
在旋转的过程中,电枢会不断地与磁极相互作用,产生一个力矩。
这个力矩会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
2. 直流电源对电枢产生的作用力当直流电源接通时,它会对电枢产生一个作用力。
这个作用力可以通过洛仑兹力定律来计算。
洛仑兹力定律表明,当导体在磁场中运动时,会受到一个垂直于导体和磁场方向的力。
这个力就是洛仑兹力。
洛仑兹力的大小和方向取决于导体和磁场之间的夹角以及导体所携带的电荷量。
当导体与磁场平行时,洛仑兹力为零;当导体与磁场垂直时,洛仑兹力最大。
在直流电机中,当电枢旋转时,它会不断地与磁场相互作用,产生一个垂直于导体和磁场方向的力。
这个力会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
三、总结直流电机是一种将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
直流电机主要由电枢、磁极、制动器和机壳等部分组成。
初三物理直流电机结构与原理解析直流电机是一种将电能转化为机械能的电动机。
它的结构和原理相对简单,但是却广泛应用于各个领域,包括工业、交通以及家用电器等。
本文将对初三物理直流电机的结构和原理进行解析。
一、结构解析直流电机的结构主要包括电源、定子、转子、磁极和电刷等几个关键部分。
1. 电源:直流电机的电源通常为直流电源,可以是电池或者直流稳压电源。
这个电源提供了所需的直流电流。
2. 定子:定子是直流电机的固定部分,通常由绕组和铁芯组成。
绕组是由导线绕在铁芯上形成,定子的绕组通常为可与电源相连的电线。
3. 转子:转子是直流电机的旋转部分,通常由铁芯和线圈组成。
铁芯负责提供磁导路径,线圈通常为绕组,它连接在电刷上。
4. 磁极:直流电机中的磁极通常由永磁体或电磁铁组成。
磁极产生一个稳定的磁场,与转子上的线圈产生相互作用。
5. 电刷:电刷通常由碳和金属制成,与电机的转子相连。
它的作用是使电流能够流经转子上的线圈,从而产生旋转力矩。
二、原理解析直流电机的工作原理可以归结为三个基本原理,即劳伦兹力、电磁感应和电磁力。
1. 劳伦兹力:当直流电流通过转子上的线圈时,线圈内会产生一个磁场。
根据劳伦兹力定律,磁场与电流之间会相互作用,产生一个力矩。
这个力矩会使转子开始旋转。
2. 电磁感应:当直流电机运转时,转子的旋转会导致磁场的变化。
根据电磁感应定律,线圈会产生感应电动势。
这个感应电动势会与外加电源提供的电压相抵消,从而使电流维持在一个稳定的值。
3. 电磁力:在直流电机中,电流通过转子的线圈时,会产生一种力矩。
这个力矩会使转子不断旋转,并带动机械装置的运动。
三、应用解析直流电机由于结构简单、使用方便等特点,被广泛应用于各种领域。
1. 工业应用:直流电机可以用于驱动各种工业设备,如机械制造、自动化生产线等。
其结构紧凑,运行可靠,适合于高速运动和精确定位。
2. 交通应用:直流电机被用于交通工具,例如电动汽车、电动自行车等。
直流电机的基础知识/第一部分——直流电机的结构和控制原理4.1 直流电机的结构和控制原理1、直流电机的工作原理概述:在电力拖动领域,随着变频器的出现形成交流调速技术的日渐成熟和低成本化,在不断侵蚀着直流调速的“地盘”,但直到今天,直流调速仍固守着日渐缩小的“阵地”。
直流电机具有调速性能好、调速方便平滑,调速装置简单、调范围广等特点,能承受频繁冲击负载、过载能力强(由变频器和交流电机构成的交流调速系统,还有一定差距),能实现频繁速启、制动及逆向旋转,能满足各种机械负载的特性要求。
直流电机的最大缺点,是因碳刷换向器的滑动电接触方式和整体结构交流电动机更为复杂等原因造成的维护工作量较大,需定期更换碳刷等。
图4-1 直流电动机的实物图直流电机的结构比交流电动机复杂得多,主要由:1)主磁极。
由主磁极铁芯及套装在铁芯上的励磁线圈构成,作用是建立主磁场;2)机座。
为主磁路的一部分,同时构成电机的结构框架,由厚钢板或铸钢件构成;3)电枢铁芯。
为电枢绕组的支撑部件,也为主磁路的一部分,由硅钢片叠压而成;4)电枢绕组。
直流电机的电路部分,由绝缘的圆形或矩形截面的导线绕成;5)换向器。
由许多鸽形尾的换向片排列成一个圆筒、片间用V形云母绝缘,两端再用两个形环夹紧而构成。
用作直流发电机时,称整流子,起整流作用;用于直流电动机时,用于(逆变)换向;6)电刷装置。
由电刷、刷盒、刷杆和连线等构成,是电枢电路的引出(或引入)装置。
7)换向极。
由铁芯和绕组构成,起改善换向,气隙磁场匀称等作用。
直流电机是将电源电能转变为轴上输出的机械能的电磁转换装置。
由定子绕组通入直流励磁电流,产生励磁磁场,主电路引入直流电源,经碳刷(电刷)传给换向器,再经换向器将此直流电转化为交流电,引入电枢绕组,产生电枢电流(电枢磁场),电枢磁场与励磁磁场合成气隙磁场,电枢绕组切割合成气隙磁场,产生电磁转矩。
这是直流电机的基本工作原理。
图4-2 直流电机的(物理)结构模型上图为简单的两极直流电机模型,由主磁极(励磁线圈)、电枢(电枢线圈)、电刷和换向片等组成。
容易看懂的电机学电机学是研究电动机的原理、结构和运行特性的学科。
它是电气工程中非常重要的一门课程,也是电力系统和工业自动化领域不可或缺的基础知识。
电机学的学习内容很广泛,包括直流电机、交流电机和特种电机等。
其中,直流电机是最基础的一种电机,它的结构相对简单,容易理解。
直流电机是通过电流在磁场中产生力矩,使得电机转动。
它的转子上有一个可以转动的电枢,电枢上通过电刷和电刷架与外部电源相连。
当电枢通电时,就会在磁场中产生力矩,使得电枢转动。
直流电机可以通过改变电枢电流的方向来改变转动方向,这使得它在实际应用中非常灵活。
交流电机是一种更为复杂的电机,它根据不同的转子结构可以分为异步电机和同步电机。
异步电机是最常见的一种交流电机,它的转子上有一个绕组,通过不断变化的磁场来产生力矩,使得电机转动。
同步电机则是通过与外部电源同步的磁场来产生力矩,从而实现转动。
特种电机是指应用于特定场景的电机,比如步进电机、无刷直流电机等。
步进电机是一种将电信号转化为角位移的电机,它的转子可以按照一定的步长旋转。
无刷直流电机则是一种没有碳刷和电刷架的直流电机,它的转子是通过电子控制器来驱动的。
这两种电机在自动化控制领域得到了广泛应用。
电机学的学习不仅仅是理论知识的学习,更重要的是实践能力的培养。
通过实验,我们可以更加直观地了解电机的工作原理和特性。
同时,电机的故障诊断和维修也是电机学的重要内容之一。
掌握这些技能,可以帮助我们更好地运用电机,并保证电机的正常运行。
电机学是电气工程中的重要学科,它的学习内容广泛而深入。
通过学习电机学,我们可以了解电机的原理和结构,掌握电机的运行特性,并具备电机的故障诊断和维修能力。
电机学的学习不仅仅是为了应付考试,更是为了能够在实际工作中灵活运用电机,提高工作效率。
希望通过这篇文章的阅读,能让读者对电机学有一个初步的了解,并对电机学的重要性有所认识。
直流电机工作原理及特性一、工作原理直流电机是一种将直流电能转化为机械能的电动机。
其工作原理基于洛伦兹力和电磁感应原理。
直流电机由电枢和磁极组成。
电枢由导电线圈绕制而成,磁极则由永磁体或电磁铁构成。
当电流通过电枢时,电枢会产生磁场。
与此同时,磁极的磁场也存在。
根据洛伦兹力原理,当电枢的磁场与磁极的磁场相互作用时,电枢会受到一个力的作用,使其开始旋转。
电枢旋转的方向与电流的方向有关。
为了保持电枢的持续旋转,需要通过电刷和换向器来改变电流的方向。
电刷和换向器的作用是在电枢旋转到一定角度时,改变电流的方向,使电枢继续受到力的作用,保持旋转。
二、特性1. 转速特性:直流电机的转速与电压成正比,转速随着电压的增加而增加。
当负载增加时,转速会下降,这是由于负载对电机的机械阻力增加所致。
2. 转矩特性:直流电机的转矩与电流成正比,转矩随着电流的增加而增加。
当负载增加时,电机需要提供更大的转矩来克服负载的阻力。
3. 效率特性:直流电机的效率是指输出功率与输入功率之比。
在额定负载下,直流电机的效率通常在80%到90%之间。
效率越高,电机的能源利用率就越高。
4. 起动特性:直流电机具有较高的起动转矩,即在启动瞬间能够提供较大的转矩。
这使得直流电机在需要快速启动或对起动转矩要求较高的应用中具有优势。
5. 调速特性:直流电机的转速可以通过调节电压或改变电枢电流来实现调速。
通过改变电压或电流的大小,可以控制电机的转速,使其适应不同的工作要求。
6. 可逆性:直流电机具有可逆性,即可以正转和反转。
通过改变电流的方向,可以改变电机的旋转方向。
7. 稳定性:直流电机具有较好的稳定性,即在负载变化较大的情况下,仍能保持较稳定的转速和转矩输出。
总结:直流电机是一种将直流电能转化为机械能的电动机。
其工作原理基于洛伦兹力和电磁感应原理。
直流电机具有转速特性、转矩特性、效率特性、起动特性、调速特性、可逆性和稳定性等特点。
这些特性使得直流电机在许多应用领域中得到广泛应用,如工业生产线、交通运输、家用电器等。
一、概述1、缺点:与异步电动机比较,直流电动机结构复杂,使用维护不方便,而且要用直流电源。
2、优点:(1)调速性能好,调速范围广,易于平滑调节(2)起动制动转矩大,易于快速起动、停车。
(3)易于控制。
3、应用:(1)轧钢机、电气机车等调速范围大的大型设备。
(2)用蓄电池作电源的地方,如汽车拖拉机等。
二、工作原理1、工作原理注意:换向片和电源固定联接,线圈无论怎样转动,总是上半边的电流向里,下半边的电流向外。
电刷压在换向片上。
由左手定则,通电线圈在磁场的作用下,使线圈逆时针旋转。
由右手定则,线圈在磁场中旋转,将在线圈中产生感应电动势,感应电动势的方向与电流的方向相反。
2、直流电机的构成:定子、转子、机座.1)转子(又称电枢)由铁芯、绕组(线圈)、换向器组成。
2)定子:包括永磁式和励磁式。
永磁式由永久磁铁做成;励磁式则是在磁极上绕线圈,然后在线圈中通过直流电,形成电磁铁。
三、电枢电动势及电压平衡关系1、电枢中的感应电动势电枢通入电流后产生电磁转矩,使电机在磁场中转动起来。
通电线圈在磁场中转动,又会在磁场中产生感应电动势(E)。
根据右手定则,E与原通入的电流方向相反,其大小为:E=KEΦn其中:E(伏):反电动势;KE:与电机结构有关的常数;Φ(韦伯):磁通; n(转/分):电动机的转速2、电枢绕组中电压的平衡关系如右图所示,U=E+IaRa (U:外加电压;Ra:绕组电压)从上面两个式子可知:(1)电枢反电动势的大小和磁通、转速成正比,要改变E,只能改变Φ或n。
(2)若忽略绕组中的电阻Ra,则U≈E=KEΦn。
可见,当外加电压一定时,电机转速和磁通成反比,通过改变Φ可调速。
四、电磁转矩1、电磁转矩的概念公式:T=KTΦIa(N/m):KT:与线圈有关的常数;Φ(韦伯):线圈所处位置的磁通;Ia(安培):电枢绕组中的电流由转矩公式可知:(1)产生转矩必须有励磁磁通和电枢电流;(2)改变电枢电流的方向或者改变磁通的方向均可以改变电机的旋转方向。
直流电机原理及其转动特性分析直流电机是一种常见而重要的电动机类型,广泛应用于工业生产、家庭设备以及交通工具等领域。
本文将从直流电机的工作原理和转动特性两个方面进行详细的分析。
一、直流电机的工作原理直流电机是利用电磁感应原理和洛伦兹力原理来实现电能转换为机械能的装置。
它由定子和转子两部分组成。
定子是由一组定子绕组和磁极组成,绕组通电产生磁场。
转子是由永磁体或可电磁激磁体组成,受到磁场力作用而旋转。
在工作时,施加在直流电机的电源上直流电流,经过定子绕组产生一个旋转的磁场。
根据洛伦兹力原理,当转子处于磁场中时,由于磁场和电流方向的交叉作用,转子上会受到一个力矩的作用。
这个力矩使得转子开始旋转。
同时,转子上产生的感应电动势作用于绕组,产生感应电流,这个感应电流也会在磁场中产生一个力矩,使得转子继续旋转。
直流电机通过定子绕组的电流和转子上的磁场之间的相互作用,实现了电能到机械能的有效转换。
这一工作原理为直流电机的转动特性奠定了基础。
二、直流电机的转动特性分析1. 转速特性直流电机的转速与供电电压和负载有关,根据直流电机的特性曲线可以得知,当负载较小时,转速与供电电压成正比。
而当负载增加时,转速则会下降。
这是因为,在负载增大时,电机内部的反电动势增加,抵消了供电电压的作用,导致转速下降。
2. 转矩特性直流电机的转矩与电流成正比,转矩与转速成反比。
当电机负载增大时,为了保持一定的转速,电机需要输出更大的转矩。
因此,调节电机的电流可以实现对转矩的控制。
3. 效率特性直流电机的效率是指电能转换为机械能的比例,即功率输出与功率输入比值。
根据直流电机的特性曲线可以得知,当电机负载较小时,电机的效率较高。
而当电机负载增加时,电机的效率会下降,因为更多的能量被转化为热量。
4. 起动特性直流电机在启动前需要克服静摩擦力和动摩擦力的阻力。
根据电机的起动曲线可以得知,当启动电流较大时,电机能够迅速克服阻力实现起动。
而当启动电流较小时,电机的起动时间会延长。