1 真空中的静电场习题详解
- 格式:doc
- 大小:580.50 KB
- 文档页数:5
真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。
当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。
设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。
12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。
你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。
错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。
习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。
空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Qi R L R πεπε-∆-; (B)2200,84Q L Qi R L R πεπε-∆-; (C)200,44Q L Qi R L Rπεπε∆; (D)200,44Q L Q Li R L RLπεπε-∆-∆。
答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。
由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R L πε∆,所以圆弧产生的场强为204OQ LE i R Lπε-∆=;又根据电势叠加原理可得04O Q U Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。
答案:D解:由高斯定理知0Φ=S q ε。
由于面积S 1和S 2相等且很小,场强可视为均匀。
根据场强叠加原理,120,0E E =<,所以12Φ0,Φ0=>。
3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B2∝2∝rRrR解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。
20XX年复习资料大学复习资料专业:班级:科目老师:一、日期:真空中的静电场一、 选择题:1.下列几个说法哪一个是正确的?(A ) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B ) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C ) 场强方向可由/F E =q 定出,其中q 为试验电荷的电量,q 可正可负,F 为试验电荷所受的电场力。
(D ) 以上说法都不正确。
[ ]2.关于静电场中某点电势值的正负,下列说法中正确的是:(A ) 电势值的正负取决于置于该点的试验电荷的正负。
(B ) 电势值的正负取决于电场力对试验电荷作功的正负。
(C ) 电势值的正负取决于电势零点的选取。
(D ) 电势值的正负取决于产生电场的电荷的正负。
[ ]3、某电场的电力线分布情况如图所示。
一负电荷从M 点移到N 点。
有人根据这个图作出下列几点结论,其中哪点是正确的?(A ) 电场强度N M E E <。
(B )电势N M U U <。
(C )电势能N M W W <。
(D )电场力的功A>0。
[ ]4、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A)F /q 0 比P 点处原先的场强数值大.(B)F /q 0 比P 点处原先的场强数值小.(C)F /q 0 等于原先P 点处场强的数值.(D)F /q 0 P 点处场强数值关系无法确定,[ ]5、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M 为:(A) F =0,M =0, (B) F =0,M ≠0,(C) F ≠0,M =0, (D) F ≠0,M ≠0, [ ]6、已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A ) 高斯面上各点场强均为零。
(B ) 穿过高斯面上每一面元的电通量均为零。
《大学物理A Ⅰ》真空中的静电场习题、答案与解法一、选择题1、一"无限大"均匀带电平面A 的附近放一与它平行的"无限大"均匀带电平面B,如图1所示。
已知A 上的电荷面密度为σ,B 上的电荷面密度为2σ,如果设向右为正方向,则两平面之间和平面B 外的电场强度分别为 (A )002εσεσ, 〔B 〕00εσεσ, 〔C 〕00232εσεσ,-〔D 〕002εσεσ,-[ C ]参考答案:()0002222εσεσεσ-=-=AB E ()00023222εσεσεσ=+=BE 2、在边长为b 的正方形中心处放置一电荷为Q 的点电荷,则正方形顶角处的电场强度大小为 (A )204b Q πε 〔B 〕202b Q πε 〔C 〕203b Q πε 〔D 〕20b Qπε [ C ]参考答案:()202220312241bQ bb QE πεπε=⎥⎥⎦⎤⎢⎢⎣⎡+=3、下面为真空中静电场的场强公式,正确的是[ D ] 〔A〕点电荷q 的电场0204r r q Ε πε=〔r 为点电荷到场点的距离,0r为电荷到场点的单位矢量〕〔B〕"无限长"均匀带电直线〔电荷线密度为λ〕的电场302r Επελ=〔r为带电直线到场点的垂直于直线的矢量〕〔C〕一"无限大"均匀带电平面〔电荷面密度σ〕的电场0εσ=Ε 〔D〕半径为R的均匀带电球面〔电荷面密度σ〕外的电场0202r rR Ε εσ=〔0r为球心到场点的单位矢量〕 解:由电场强度的定义计算知:A 错,应为0204r r q Επε=,B 不对应为002r rEπελ=,C 应为02εσ=E σ σ2A B 图D 对,完整表达应为⎪⎩⎪⎨⎧〉≤=R r r r R Rr E 02020εσ0202022002044141r rR r r R r r q Eεσσππεπε=== 4、如图2所示,曲线表示球对称或轴对称静电场的场强大小随径向距离r 变化的关系,请指出该曲线可描述下列哪种关系〔E 为电场强度的大小〕 (A )半径为R 的无限长均匀带电圆柱体电场的r E ~关系 (B )半径为R 的无限长均匀带电圆柱面电场的r E ~关系(C )半径为R 的均匀带电球面电场的r E ~关系 (D )半径为R 的均匀带正电球体电场的r E ~关系 [ C ]参考答案:柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r r R R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r r Q Rr r R r Q E 02003041041πεπε5、如图3所示,曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面容〔E 为电场强度的大小,U 为电势〕。
《大学物理》练习题及详细解答-—真空中的静电场 1. 1. 电荷为电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以,所以200200)1(π4)1(π42-=+x qq x qq e e 故 223+=x2. 2. 电量都是电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)(1)(1)在这三角形的中心放在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡一个什么样的电荷,就可以使这四个电荷都达到平衡((即每个电荷受其他三个电荷的库仑力之和都为零为零)?(2))?(2))?(2)这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系? ?解:解:(1) (1) (1) 以以A 处点电荷为研究对象,由力平衡知,q ¢为负电荷,所以为负电荷,所以2220)33(π4130cos π412a q q a q ¢=°e e故 qq33-=¢ (2)(2)与三角形边长无关。
与三角形边长无关。
与三角形边长无关。
3. 3. 如图所示,半径为如图所示,半径为R 、电荷线密度为1l 的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2l 的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq1l =,dq 在带电圆环轴线上x 处产生的场强大小为处产生的场强大小为)(4220R x dqdE +=p e根据电荷分布的对称性知,0==z y E E23220)(41cosR x xdqdE dEx+==p e q式中:q 为dq 到场点的连线与x 轴负向的夹角。
第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。
一. 选择题[ B ]1 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a02ελπ.(C)i a 04ελπ. (D)()j i a+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ]2 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面,据Guass定理:SE dS=iiqε∑⎰r R ≤时,有:20r 2rL=LE ρππε,即:0=r 2E ρε r R >时,有:20R 2rL=L E ρππε,即:20R =2rE ρε[ C ]3 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 012εq.(C)024εq . (D) 048εq .【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ]4 在点电荷+q 的电场中,若取图中P 点处为电势零点, 则M 点的电势为 (A)a q 04επ. (B) aq08επ.(C) a q 04επ-. (D) aq 08επ-.【提示】:220048PaM Maq q V E dl dr raπεπε-===⎰⎰[ C ]5 已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的? (A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.【提示】:静电力做负功,电势能增加。
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。
空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ](A)200,44Q L Qi R L Rπεπε-∆- ;(B)2200,84Q L Qi R L Rπεπε-∆- ;(C)200,44Q L Qi R L Rπεπε∆ ; (D)200,44Q L Q Li R L RLπεπε-∆-∆ 。
答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。
由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R Lπε∆,所以圆弧产生的场强为204O Q L E i R L πε-∆= ;又根据电势叠加原理可得04OQU Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。
答案:D解:由高斯定理知0Φ=S q ε。
由于面积S 1和S 2相等且很小,场强可视为均匀。
根据场强叠加原理,120,0E E =<,所以121122Φ0, Φ0S S E dS E dS =⋅==⋅>⎰⎰。
3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。
4.如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ。
在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接。
设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为 [ ]2∝2∝rRrR(A )00,ln 2a E U r λε==π; (B )00, ln 22bE U r r λλεε==ππ; (C )00,ln 2b E U a λε==π; (D )00, ln 2π2bE U r aλλεε==π。
答案:C解:由高斯定理知内圆柱面里面各点E =0,两圆柱面之间02πE rλε=,则P 点的电势为 00d 0d d ln 2π2b a brrabU E r r r r aλλεε==+=π⎰⎰⎰5.在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为(A; (B; (C )06Qaεπ; (D )012Qaεπ。
答案:B解:正方体中心到顶角处的距离r =,由点电荷的电势公式得04πQ U r ε=二、填空题1.真空中两平行的无限长均匀带电直线,电荷线密度分别为λ-和λ,点P 1和P 2与两带电线共面,位置如图,取向右为坐标正方向,则P 1和P 2两点的场强分别为和。
答案:10E i d λπε=;203E i dλπε=- 。
解:无限长均匀带电直线,在空间某点产生的场强02E aλπε=,方向垂直于带电直线沿径向向外(0λ>)。
式中a 为该点到带电直线的距离。
由场强叠加原理,P 1,P 2点的场强为两直线产生的场强的矢量和。
在P 1点,两场强方向相同,均沿x 轴正向;在P 2点,两场强方向相反,所以100022E i i i d d d λλλπεπεπε=+= ; 20002323E i i i d d dλλλπεπεπε=-=-⨯2.一半径为R ,长为L 的均匀带电圆柱面,其单位长度带电λ。
在带电圆柱的中垂面上有一点P ,它到轴线距离为()r r R >,则P 点的电场强度的大小:当r L <<时,E =_____________;当r L >>时,E =_____________。
答案:02rλπε;204Lr λπε。
解:当r L <<时,带电体可视为无限长均匀带电圆柱面;当r L >>时,带电体可视为点电荷。
3.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径。
A 、B 两处各放有一点电荷,电量分别为+q 和-q 。
若把单位正电荷从O 点沿OCD 移到D 点,则电场力所做的功为______________;把单位负电荷从D 点沿AB 延长线移到无穷远,电场力所做的功为_______________。
xλ+答案:lq 06πε;lq 06πε。
解:电场力做功与路径无关。
(1)0004346D q q q U l llπεπεπε--=+=,00044O q q U llπεπε-=+=,00()1066O D q qA Q U U l l πεπε⎛⎫-=-=⨯-= ⎪⎝⎭ (2)00()1066D q qA Q U U l lπεπε∞⎛⎫-''=-=-⨯-=⎪⎝⎭4.如图所示,两同心带电球面,内球面半径为15cm r =,带电荷81310C q -=⨯;外球面半径为220cm r =, 带电荷82610C q -=-⨯。
设无穷远处电势为零,则在两球面间另一电势为零的球面半径r =__________。
答案:10cm解:半径为R 的均匀带电球面的电势分布为()()00 4 4p qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩。
所以,当12r r r <<时,1200244r q q U rr πεπε=+。
令0r U =,得cm 10=r 。
5.已知某静电场的电势分布为2281220U x x y y =+-,则场强分布E =_______________________________________。
答案:()()28241240E xy i x y j =--+-+解:电场强度与电势梯度的关系为k zU j y U i x U E∂∂-∂∂-∂∂-=。
由此可求得 ()()28241240E xy i x y j =--+-+三、计算题1.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端为d 的P 点的电场强度。
答案:()04q d L d επ+ 解:带电直杆的电荷线密度为/q L λ=。
设坐标原点O 在杆的左端,在x 处取一电荷元/dq dx qdx L λ==,它在P 点的场强为l2lQ -()()2200d d d 44q q x E L d x L L d x πεπε==+-+-总场强 ()2000d 4()4Lqx qE L L d x d L d πεπε==++⎰-方向沿x 轴,即杆的延长线方向。
2.如图所示,一半径为R 的半圆环,右半部均匀带电Q +,左半部均匀带电Q -。
问半圆环中心O 点的电场强度大小为多少?方向如何? 答案:220QR πε,方向水平向左。
解:本题运用点电荷公式对电荷连续分布的带电体在空间产生的电场进行计算。
如图所示,取电荷元d d (/2)Qq R Rθπ=,则电荷元在中心O 点产生的场强为022002d 1d 1d 44Qq E R R θππεπε==由对称性可知⎰=0d Oy E 。
所以()2/200222222000d d cos 2cos d sin 2Ox Q QQE E E RRR ππθθθθπεπεπε=====⎰⎰⎰方向沿x -方向,即水平向左。
3.图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2。
设无穷远处为电势零点,求该带电系统的场强分布和空腔内任一点的电势。
答案:(1)110 ()E r R =<,33121220() ()3r R E R r R r ρε-=<<,33213220()()3R R E r R rρε-=>; (2)()222102U R R ρε=-。
解:(1)根据电场分布的球对称性,可以选以O 为球心、半径为r 的球面作高斯面,根据高斯定理即可求出:2int 04/E r q πε⋅=。
在空腔内(1r R <):i n t 0q =,所以10E =在带电球层内(12R r R <<):33int 14()3q r R πρ=-,331220()3r R E r ρε-=在带电球层外(2r R >):33int 214()3q R R πρ=-,332132()3R R E r ρε-= (2)空腔内任一点的电势为 ()12123333221212122000()()d 0d d d 332R R rrR R r R R R U E r r r r R R r r ρρρεεε∞∞--==++=-⎰⎰⎰⎰ 还可用电势叠加法求空腔内任一点的电势。
在球层内取半径为r r dr →+的薄球层,其电量为2d 4d q r rρπ=⋅d q 在球心处产生的电势为 00d d d 4q r rU r ρεε==π 整个带电球层在球心处产生的电势为 ()212200210d d 2R R U U r r R R ρρεε===-⎰⎰因为空腔内为等势区(0E =),所以空腔内任一点的电势U 为()2202102U U R R ρε==- 4.两个带等量异号电荷的均匀带电同心球面,半径分别为10.03 m R =和20.10 m R =。
已知两者的电势差为450 V ,求内球面上所带的电荷。
答案:-92.1410 C ⨯解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ=(12R r R <<)两球的电势差 2211122001211d 44R R R R Q dr Q U E r r R R εε⎛⎫===- ⎪ππ⎝⎭⎰⎰所以 -901212214 2.1410C R R U Q R R επ==⨯-5.一平面圆环,内外半径分别为R 1,R 2,均匀带电且电荷面密度为σ+。
(1)求圆环轴线上离环心O 为x 处的P 点的电势;(2)再应用场强和电势梯度的关系求P 点的场强;(3)若令2R →∞,则P 点的场强又为多少?答案:(1)02P U σε=; (2)02P E σε=;(3)当2R →∞,p E =解:(1)把圆环分成许多小圆环。