真空中的静电场习题课
- 格式:ppt
- 大小:1.52 MB
- 文档页数:49
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
第9章 真空中的静电场(习题选解)9-补充 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图22221004330cos 42r q r q f πεπε=︒⨯=中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为2233200434r Qqr Qq f πεπε==⎪⎪⎭⎫ ⎝⎛由12f f =,得3Q q =。
6-补充 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 1912 3.210Q e C -==⨯Th 离子带90个单位正电荷,即1929014410Q e C -==⨯它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:191991221520 3.21014410(9.010)5124(9.010)Q Q F N r πε---⨯⨯⨯==⨯⨯=⨯(2) 粒子的质量为:2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=⨯⨯+⨯=⨯由牛顿第二定律得:282275127.66106.6810F a m s m α--===⨯⋅⨯ 9-1 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。
(真空中的静电场(习题课后作业)(22)1、真空中半径为R 的球体均匀带电,总电量为q ,则球面上一点的电势U=R q 04/πε;球心处的电势U 0=R q 08/3πε 。
(将均匀带电球体微分成球面,利用电势叠加求得结果)2、无限大的均匀带电平面,电荷面密度为σ,P 点与平面的垂直距离为d ,若取平面的电势为零,则P 点的电势Up==-Ed 02/εσd -,若在P 点由静止释放一个电子(其质量为m,电量绝对值为e)则电子到达平面的速率V=0/εσm ed 。
(221mv Ue p=)3.如图,在真空中A 点与B 点间距离为2R,OCD 是以B 点为中心,以R 为半径的半圆路径。
AB两处各放有一点电荷,带电量分别为:+q (A 点)和-q (B 点),则把另一带电量为Q(Q <0)的点电荷从D 点沿路径DCO 移到O 点的过程中,电场力所做的功为=-=)(o D U U Q A R Qq 06/πε-。
4、点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示。
则引入q 前后:( B )(A)曲面S 的电通量不变,曲面上各点场强不变;(B)曲面S 的电通量不变,曲面上各点场强变化;(C)曲面S 的电通量变化,曲面上各点场强不变;(D)曲面S 的电通量变化,曲面上各点场强变化。
5、选择正确答案:( B )(A)高斯定理只在电荷对称分布时才成立。
(B)高斯定理是普遍适用的,但用来计算场强时,要求电荷分布有一定的对称性。
(C)用高斯定理计算高斯面上各点场强时,该场强是高斯面内电荷激发的。
(D)高斯面内电荷为零,则高斯面上的场强必为零。
6、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:利用圆环在其轴线上任一点场强结果2/3220)(4/x R Qx E +=πε任取一细环ρ~ρ+d ρ,ρπρσd dq 2= 2/3220)(4ρπε+=r rdqdE⎰=∞R dE E 222Rr r+=εσ217、真空中一长为L 的均匀带电细直杆,总电量为q ,(1)试求在直杆延长线上距杆的一端距离为a 的p 点的电场强度和电势。
第9章 真空中的静电场9.1 两个电量都是q +的点电荷分别固定在真空中两点A 、B ,相距2a 。
在它们连线的中垂线上放一个电量为q '的点电荷,q '到A 、B 连线的中点的距离为r 。
求q '所受的静电力,并讨论q '到A 、B 连线的中垂线上哪一点受力最大?若q '在A 、B 的中垂线上某一位置由静止释放,它将如何运动?分别就q '与q 同号和异号两种情况进行讨论。
解: ()12202cos 24qq F F r aαπε'==⨯⨯+()322202qq r r aπε'=+当0dF dr=时,有极值()()()()3222310222222232202302qq r d r a qq r a r r a drr aπεπε⎛⎫'⎪ ⎪ ⎪+'⎡⎤⎝⎭==+-+=⎢⎥⎣⎦+ 即: ()()31222222230r arra+-+=2r ⇒=±受力最大当q 与q '同号沿A B 连线中垂线加速度远离q 直到无穷远。
当q 与q '异号,释放后将以A B 连线的中点为平衡位置,沿A B 连线的中垂线作掁动。
9.7 求半径为R 、带电量为Q 的均匀带电球体内外的场强分布。
解: 高斯定理:0SqE dS ε⋅=∑⎰R r < 33213300413 443rrE r Q Q R Rπππεε⎛⎫⎪⇒==⎪⎪⎝⎭314Rr Q E πε=⇒ 方向沿半径向外R r > 22014E r Q πε⇒⋅=2214rQ E πε=⇒ 方向沿半径向外9.8求半径为R 、面电荷密度为σ的无限长均匀带电圆柱面内外的场强分布。
解: 选取高为h ,同轴封闭圆柱面S,E呈轴对对称分布。
高斯定理:0SqE dS ε⋅=∑⎰214q r R E r πε<=∑=01 0E ⇒= 2122qrh Rh r R Eππσεε==∑>02R rEσε⇒=方向沿半径向外9.9半径分别为1R 和2R (21R R >)的一对无限长共轴圆柱面上均匀带电,沿轴线单位长度的电荷分别为1λ、2λ。
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。
解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。
解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。
《大学物理A Ⅰ》真空中的静电场习题、答案与解法一、选择题1、一"无限大"均匀带电平面A 的附近放一与它平行的"无限大"均匀带电平面B,如图1所示。
已知A 上的电荷面密度为σ,B 上的电荷面密度为2σ,如果设向右为正方向,则两平面之间和平面B 外的电场强度分别为 (A )002εσεσ, 〔B 〕00εσεσ, 〔C 〕00232εσεσ,-〔D 〕002εσεσ,-[ C ]参考答案:()0002222εσεσεσ-=-=AB E ()00023222εσεσεσ=+=BE 2、在边长为b 的正方形中心处放置一电荷为Q 的点电荷,则正方形顶角处的电场强度大小为 (A )204b Q πε 〔B 〕202b Q πε 〔C 〕203b Q πε 〔D 〕20b Qπε [ C ]参考答案:()202220312241bQ bb QE πεπε=⎥⎥⎦⎤⎢⎢⎣⎡+=3、下面为真空中静电场的场强公式,正确的是[ D ] 〔A〕点电荷q 的电场0204r r q Ε πε=〔r 为点电荷到场点的距离,0r为电荷到场点的单位矢量〕〔B〕"无限长"均匀带电直线〔电荷线密度为λ〕的电场302r Επελ=〔r为带电直线到场点的垂直于直线的矢量〕〔C〕一"无限大"均匀带电平面〔电荷面密度σ〕的电场0εσ=Ε 〔D〕半径为R的均匀带电球面〔电荷面密度σ〕外的电场0202r rR Ε εσ=〔0r为球心到场点的单位矢量〕 解:由电场强度的定义计算知:A 错,应为0204r r q Επε=,B 不对应为002r rEπελ=,C 应为02εσ=E σ σ2A B 图D 对,完整表达应为⎪⎩⎪⎨⎧〉≤=R r r r R Rr E 02020εσ0202022002044141r rR r r R r r q Eεσσππεπε=== 4、如图2所示,曲线表示球对称或轴对称静电场的场强大小随径向距离r 变化的关系,请指出该曲线可描述下列哪种关系〔E 为电场强度的大小〕 (A )半径为R 的无限长均匀带电圆柱体电场的r E ~关系 (B )半径为R 的无限长均匀带电圆柱面电场的r E ~关系(C )半径为R 的均匀带电球面电场的r E ~关系 (D )半径为R 的均匀带正电球体电场的r E ~关系 [ C ]参考答案:柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r r R R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r r Q Rr r R r Q E 02003041041πεπε5、如图3所示,曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面容〔E 为电场强度的大小,U 为电势〕。
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。