模拟退火算法算法的简介及程序
- 格式:doc
- 大小:33.00 KB
- 文档页数:9
模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。
它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。
本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。
一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。
在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。
类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。
二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。
2. 选择邻域解:根据当前解生成邻域解。
3. 接受准则:根据一定概率接受邻域解,更新当前解。
4. 降温策略:根据降温策略逐渐降低温度。
5. 终止条件:达到终止条件时停止搜索,输出最优解。
三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。
下面以组合优化问题为例,介绍模拟退火算法的具体应用。
1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。
模拟退火算法可以通过不断调整路径来寻找最优解。
2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。
模拟退火算法可以优化排课方案,使得课程安排更加合理。
3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。
模拟退火算法可以帮助优化装箱方案,减少空间浪费。
四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。
通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。
在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。
模拟退火算法应用实例一、什么是模拟退火算法模拟退火算法是一种优化算法,用于在搜索空间中寻找全局最优解。
它的基本思想是通过随机游走的方式,从一个初始解开始,在搜索过程中逐渐降低温度,使得概率性的接受更优解的能力逐渐减弱,最终达到全局最优解。
二、应用实例1. 旅行商问题旅行商问题是指给定一组城市和每对城市之间的距离,求解访问每个城市恰好一次并回到起始城市的最短路径。
这个问题是NP-hard问题,因此需要使用启发式算法来求解。
模拟退火算法可以用来求解旅行商问题。
首先随机生成一个初始路径,然后不断地进行交换两个节点位置,并计算新路径长度。
如果新路径比原路径短,则接受新路径;否则以一定概率接受新路径。
随着时间推移,温度逐渐降低,接受新路径的概率也逐渐降低。
最终得到全局最优解。
2. 图像处理模拟退火算法可以用于图像处理中的图像分割和图像匹配等问题。
例如,在图像分割中,我们可以将图像分成多个区域,使得同一区域内的像素具有相似的特征,不同区域之间的像素特征差异较大。
首先随机生成一个初始分割方案,然后不断地进行移动像素点到其他区域,并计算新分割方案的代价函数。
如果新方案比原方案更优,则接受新方案;否则以一定概率接受新方案。
随着时间推移,温度逐渐降低,接受新方案的概率也逐渐降低。
最终得到全局最优解。
3. 机器学习模拟退火算法可以用于机器学习中的参数优化问题。
例如,在神经网络中,我们需要找到最优的权重和偏置值来最小化损失函数。
首先随机生成一个初始权重和偏置值,然后不断地进行微小调整,并计算新损失函数值。
如果新损失函数比原损失函数更小,则接受新权重和偏置值;否则以一定概率接受新权重和偏置值。
随着时间推移,温度逐渐降低,接受新权重和偏置值的概率也逐渐降低。
最终得到全局最优解。
三、模拟退火算法的优点和缺点1. 优点(1)全局最优解:模拟退火算法可以找到全局最优解,而不是局部最优解。
(2)适用性广:模拟退火算法可以应用于各种问题,并且具有较好的鲁棒性。
模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。
下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。
开始时,所有元素都处于最高能量状态。
我们的目标是找到最低能量的状态,即最优解。
模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。
在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。
2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。
3. 随着温度的降低,算法开始更多地考虑能量的减少。
如果一个状态比前一个状态的能量更低,那么它一定会被接受。
但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。
这个概率随着温度的降低而减小。
4. 重复上述过程,直到达到终止温度。
这时,算法已经找到了最低能量的状态。
模拟退火算法可以找到全局最优解,而不是局部最优解。
这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。
以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。
模拟退火算法python一、简介模拟退火算法(Simulated Annealing,SA)是一种全局优化算法,可以用于求解各种优化问题。
模拟退火算法最初由Kirkpatrick等人于1983年提出,其灵感来源于固体物理中的“退火”过程。
模拟退火算法通过随机搜索的方式,在搜索空间中寻找全局最优解。
二、算法流程1.初始化参数模拟退火算法需要设置初始温度T0,终止温度Tend,降温速率a以及每个温度下的迭代次数L。
其中初始温度T0应该足够高,以便跳出局部最优解;终止温度Tend应该足够低,以便保证找到全局最优解;降温速率a应该足够慢,以便保证能够在合理的时间内找到最优解;每个温度下的迭代次数L应该足够大,以便在当前温度下充分搜索。
2.生成初始解随机生成一个初始解x0。
3.进行迭代搜索对于当前温度T和当前解x,在邻域内随机生成一个新解y,并计算新旧两个解之间的能量差ΔE=E(y)-E(x)。
如果ΔE<0,则接受新解y;如果ΔE>0,则以概率exp(-ΔE/T)接受新解y。
通过这种方式,可以在搜索空间中跳出局部最优解,并逐渐趋向全局最优解。
4.降温每个温度下的迭代次数L结束后,降低温度T=a*T,直到T<Tend为止。
5.终止条件当达到终止温度Tend时,停止迭代搜索,并输出最优解。
三、Python实现以下是一个简单的Python实现:```pythonimport randomimport math# 目标函数def f(x):return x**2# 初始温度T0 = 1000# 终止温度Tend = 1e-8# 降温速率a = 0.99# 每个温度下的迭代次数L = 100# 随机生成初始解x = random.uniform(-10, 10)best_x = xwhile T0 > Tend:for i in range(L):# 在邻域内随机生成新解y = x + random.uniform(-1, 1)# 计算能量差delta_E = f(y) - f(x)if delta_E < 0:# 接受新解x = yif f(x) < f(best_x):best_x = xelse:# 以概率接受新解p = math.exp(-delta_E / T0)if random.uniform(0, 1) < p:x = y# 降温T0 *= aprint("最优解:", best_x)print("最优值:", f(best_x))```四、总结模拟退火算法是一种全局优化算法,在求解各种优化问题时具有广泛的应用。
模拟退火算法流程模拟退火算法是一种用于求解优化问题的随机搜索算法。
其灵感来源于固体退火过程,通过模拟金属在高温下冷却过程中的晶体结构调整,从而找到全局最优解。
模拟退火算法的基本思想是通过接受一定概率的劣解,以克服局部最优解陷阱,从而达到全局最优解。
它的流程主要包括初始化、状态更新和判断终止条件三个步骤。
首先,算法需要初始化一组解,即随机生成初始解。
这些解可看作在问题解空间中的一个点,表示问题的一个可行解。
通过这些初始解,算法可以开始搜索过程。
其次,算法根据一定的策略对当前解进行变换,即状态更新。
变换的方式可以是随机选择邻近解,也可以是按照一定规则变换解的组成部分。
这样,算法可以在解空间中进行搜索,逐步接近全局最优解。
状态更新后,算法需要判断是否接受新解。
这一步是模拟退火算法中的核心步骤。
决定是否接受新解的概率与新解的质量差异以及当前的温度有关。
一开始时,算法接受概率较高,随着搜索的进行,温度逐渐下降,接受概率逐渐降低。
这样可以在搜索过程中同时进行广度和深度的搜索。
最后,算法设置终止条件。
终止条件可以是达到一定迭代次数、温度降至某个阈值或找到满足问题约束条件的最优解等。
当满足终止条件时,算法停止搜索,将当前的最优解作为输出结果。
总的来说,模拟退火算法通过不断更新解的状态和接受概率来搜索全局最优解。
它克服了传统优化算法容易陷入局部最优解的缺点,对于复杂、非线性的问题有较好的效果。
然而,模拟退火算法在实际应用中也存在一定的局限性,比如收敛速度较慢、参数设置较为困难等。
总之,模拟退火算法是一种有效的求解优化问题的算法。
通过合理的状态更新和接受策略,它可以找到全局最优解,为解决现实生活中的复杂问题提供了一种有效的思路和工具。
模拟退火算法模拟退火算法(Simulated Annealing)是一种经典的优化算法,常用于解决复杂的优化问题。
它的灵感来自于金属退火的过程,通过降温使金属内部的不稳定原子重新排列,从而获得更优的结构。
在算法中,通过接受一定概率的差解,模拟退火算法能够逃离局部最优,并最终找到全局最优解。
在MATLAB中,我们可以使用以下步骤来实现模拟退火算法:1.初始化参数:设定初始温度T0、终止温度Tf、温度下降速率α、算法运行的迭代次数等参数,并设定当前温度为T0。
2.生成初始解:根据问题的要求,生成一个初始解x。
3. 迭代优化:在每个温度下,进行多次迭代。
每次迭代,随机生成一个新的解x_new,计算新解的目标函数值f_new。
4. 判断是否接受新解:根据Metropolis准则,判断是否接受新解。
如果新解比当前解更优,则直接接受;否则,以概率exp((f_current - f_new) / T)接受新解。
5.更新解和温度:根据前一步的判断结果,更新当前解和温度。
如果接受了新解,则将新解作为当前解;否则,保持当前解不变。
同时,根据设定的温度下降速率,更新当前温度为T=α*T。
6.重复步骤3-5,直到当前温度小于终止温度Tf。
7.返回最优解:记录整个迭代过程中的最优解,并返回最优解作为结果。
以下是一个简单的示例,演示如何使用MATLAB实现模拟退火算法解决旅行商问题(TSP)。
```matlabfunction [bestPath, bestDistance] =simulatedAnnealingTSP(cityCoordinates, T0, Tf, alpha, numIterations)numCities = size(cityCoordinates, 1);currentPath = randperm(numCities);bestPath = currentPath;currentDistance = calculateDistance(cityCoordinates, currentPath);bestDistance = currentDistance;T=T0;for iter = 1:numIterationsfor i = 1:numCitiesnextPath = getNextPath(currentPath);nextDistance = calculateDistance(cityCoordinates, nextPath);if nextDistance < currentDistancecurrentPath = nextPath;currentDistance = nextDistance;if nextDistance < bestDistancebestPath = nextPath;bestDistance = nextDistance;endelseacceptanceProb = exp((currentDistance - nextDistance) / T); if rand( < acceptanceProbcurrentPath = nextPath;currentDistance = nextDistance;endendendT = alpha * T;endendfunction nextPath = getNextPath(currentPath)numCities = length(currentPath);i = randi(numCities);j = randi(numCities);while i == jj = randi(numCities);endnextPath = currentPath;nextPath([i j]) = nextPath([j i]);endfunction distance = calculateDistance(cityCoordinates, path) numCities = length(path);distance = 0;for i = 1:numCities-1distance = distance + norm(cityCoordinates(path(i),:) - cityCoordinates(path(i+1),:));enddistance = distance + norm(cityCoordinates(path(numCities),:) - cityCoordinates(path(1),:)); % 加上回到起点的距离end```以上示例代码实现了使用模拟退火算法解决旅行商问题(TSP)。
模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。
它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。
在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。
模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。
模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。
2. 在每个温度下,通过随机扰动当前解,产生一个新解。
3. 计算新解的函数值和当前解的函数值之差△E。
4. 如果△E ≤ 0,则接受新解作为当前解。
5. 如果△E > 0,则以一定概率接受新解。
该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。
6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。
值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。
模拟退火算法在全局优化问题中有着广泛的应用。
例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。
在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。
在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。
然而,模拟退火算法也存在着一定的局限性。
首先,算法的运行时间较长,需要大量的迭代次数和计算资源。
其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。
因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。
综上所述,模拟退火算法是一种具有指导意义的全局优化算法。
通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
模拟退火算法优化问题求解随着信息技术的不断发展,各行各业的数据量都在不断增长,而伴随这种增长,问题的规模也在不断放大。
在大规模问题的求解过程中,传统的搜索算法往往无法胜任,这时候我们必须寻找更为高效的算法来进行优化问题求解。
模拟退火算法(Simulated Annealing Algorithm)就是这样一种被广泛应用于求解优化问题的算法,它的核心思想是利用物理上的模拟来求解问题,被誉为是计算科学领域中的一种高效全局优化算法。
一、模拟退火算法的原理和流程模拟退火算法是一种全局搜索算法,其基本思想是以一定概率接受比当前更差的解,以跳出局部最优解,从而在解空间中找到更优的解。
该算法的流程通常分为三个步骤:1.初始化:随机生成一个初解。
2.外循环:不断降温,直到达到停止条件。
3.内循环:在当前温度下,不断随机产生当前解的邻域解,若邻域解比当前解更优,则接受邻域解;若邻域解比当前解更差,则一定概率接受邻域解,以跳出局部最优解。
二、模拟退火算法优化问题求解的应用1. TSP问题TSP问题(Traveling Salesman Problem)是指在给定若干个城市和每对城市之间的距离情况下,求解访问所有城市一次且仅一次后回到起点的最短路径。
TSP问题是一个NP难问题,因此传统的优化算法无法在较短的时间内求解。
模拟退火算法在TSP问题的求解中被广泛应用,利用模拟退火算法可以在短时间内求得较优解。
2. 最小生成树问题最小生成树问题(Minimum Spanning Tree Problem)是指在一个连通无向图中,找出一棵边权值之和最小的生成树。
最小生成树问题的求解也是一个NP难问题,而模拟退火算法在此领域的应用同样取得了很好的效果。
利用模拟退火算法可以既保障求解质量,又节约了求解时间。
3. 机器学习在机器学习领域中,优化问题的求解同样非常重要。
例如在神经网络训练过程中,需要对网络的参数进行优化来提高训练效果。
模拟退火算法程序全文共四篇示例,供读者参考第一篇示例:模拟退火算法(Simulated Annealing)是一种基于蒙特卡洛方法的优化算法,常用来解决组合优化问题。
它通过模拟固体退火的过程,在搜索空间中寻找全局最优解。
模拟退火算法的思想来源于固体退火的过程,即通过在高温下加热固体,然后慢慢冷却直至达到平衡状态,从而达到最低能量状态。
在这个过程中,固体的分子不断变化,最终找到最稳定的状态。
模拟退火算法可以看作是启发式的局部搜索算法,能够避免陷入局部最优解。
它以一定的概率接受劣解,从而跳出局部最优解,继续搜索全局最优解。
模拟退火算法的核心思想是通过接受受限制的劣解来避免搜索陷入局部最优解,以较小的概率接受较大的能量差,随着搜索的进行逐渐降低概率。
在搜索空间内随机选择一个新解,并计算它与当前解之间的差异,如果新解的目标函数值更优,则接受该解作为当前解;否则以一定的概率接受该解。
模拟退火算法的基本步骤如下:1. 初始化温度T、初始解X、目标函数值f(X);2. 在当前温度下,生成一个候选解Y;3. 计算候选解Y的目标函数值f(Y)与当前解X的目标函数值f(X)之间的差异ΔE;4. 如果ΔE < 0,则接受候选解Y作为当前解X;5. 如果ΔE > 0,则以一定的概率接受候选解Y:- 如果概率P > 随机数r,则接受候选解Y;- 如果概率P ≤ 随机数r,则拒绝候选解Y,保持当前解X不变;6. 降低温度T,重复步骤2~5直至达到停止条件。
在实际应用中,模拟退火算法常常用于解决组合优化问题,如旅行商问题(TSP)、车间调度问题、布尔函数优化等。
通过适当的参数设置和调整,模拟退火算法可以在较短的时间内找到较优解,从而提高问题求解的效率和精度。
下面我们通过一个简单的例子来演示模拟退火算法的实现过程。
假设我们有一个一维数组,要求找到使得数组元素之和最接近给定目标值的一组解。
我们可以用模拟退火算法来解决这个问题。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退⽕算法⼀、模拟退⽕ 模拟物理的⾦属退⽕,使某⼀个状态慢慢趋于稳定,与爬⼭算法相类似的⼀类求解近似解的问题。
⼆、算法⾥的公式 若迭代出的解⼀定优于当前解,则当前解被覆盖。
⽽当迭代的解不优于当前解得时候,我们⽤⼀个概率去接受它。
e^df/kT k为常数,编程中常常设置为1 T为温度 e为指数函数 df为负数,因为如果概率要保证0<e^df/kT < 1,那么df必定要为负数 T下降的系数为0.993-0.998三、代码模板1 #include "bits/stdc++.h"2using namespace std;3double n;4const double eps = 1e-14;5double T = 20000;6double dT = 0.985;7double k = 1;8double dx,dy;9double x,y;10double func(double z)11 {12return fabs(z * z - n);13 }14void SA()15 {16 srand(time(NULL));17 x = 0;18 y = func(x);19while(T > eps){20//随机偏移量21 dx = x + (rand() * 2 - RAND_MAX) * T;22while(dx < 0)23 dx = x + (rand() * 2 - RAND_MAX) * T;24 dy = func(dx);25if(dy < y)26 x = dx,y = dy;27//⼀定概率去接收⽬前较⼩的答案28else if(exp((y - dy) / (k * T)) * RAND_MAX > rand())29 x = dx,y = dy;30 T *= dT;31 }32 }33int main()34 {35 cin >> n;36 SA();37 cout << fixed << setprecision(14) << x;38return0;39 }。
模拟退⽕算法超详细教程,请收好!预计读完 5 分钟今天,⼩编将带⼤家学习⼀个经典算法——模拟退⽕算法。
前排提醒,本⽂全程⼲货,建议收藏。
以下为本⽂框架:⼀、什么是模拟退⽕算法?模拟退⽕算法(simulated annealing,SA)来源于固体退⽕原理,是⼀种基于概率的算法。
算法思想为:先从⼀个较⾼的初始温度出发,逐渐降低温度,直到温度降低到满⾜热平衡条件为⽌。
在每个温度下,进⾏n轮搜索,每轮搜索时对旧解添加随机扰动⽣成新解,并按⼀定规则接受新解。
打个⽐⽅:有⼀只兔⼦在⼭上,要去⼭脚下,但它喝醉了。
于是它就胡乱瞎蹦跶,有可能直接蹦跶到⼭脚下,有可能蹦跶到更⾼的另⼀座⼭,也可能跳到某个⼭⾕⾥。
等它醒酒后,它就慢慢地往低处⾛。
这就是模拟退⽕。
为更好理解模拟退⽕算法的具体步骤,我们来举个栗⼦。
假设初始温度为1000℃,温度衰减系数α = 0.98,热平衡条件为温度⼩于T℃。
模拟退⽕算法本质是双层循环,外层循环(上图左侧彩⾊模块)控制温度由⾼向低变化,温度计算公式,为取值在[0, 1]上的温度衰减系数,如0.95;内层循环(上图右侧⿊⾊模块)中,温度固定,对旧解添加随机扰动得到新解,并按⼀定规则接受新解。
内层循环的迭代次数称为马尔科夫链长度,如上图中的马尔科夫链的长度为1000.⼆、模拟退⽕算法有什么优点?模拟退⽕算法的优点在于:不管函数形式多复杂,模拟退⽕算法更有可能找到全局最优解。
举个栗⼦:寻找⽬标函数f = x + 10 sin(3x) + cos(x) 在[0, 9]范围内的最⼩值。
从函数图像可以看到,该函数在[0, 9]范围内有多个“坑”,也就是局部最⼩值,全局最⼩值位于[1, 2]范围上的“坑”内。
如果⽤梯度下降法来求解全局最⼩值,若学习率设置得不合理很容易掉进某个坑内出不来,⽐如这样↓⽽模拟退⽕算法相对来说不会那么容易陷⼊局部最优解。
我们把模拟退⽕算法求出的解看成是⼀个红⾊的⼩球,可以看到,随着温度的下降,这个⼩球⼀直反复横跳;直到温度较低时,这个⼩球才在最⼩值附近稳定下来。
模拟退火算法原理
1模拟退火算法
模拟退火算法(Simulated Annealing Algorithm)是一种随机搜索算法,它可以用来求解各种最优化问题。
模拟退火算法可以在给定要求下,以较小的步骤寻找局部最优值,从而实现全局搜索。
2基本原理
模拟退火算法是一种基于物理模型的搜索算法,它借鉴了金属固态材料的固熔变换原理。
一个金属在加热的过程中,先熔化再固化。
在它熔化的时候,可以使处于混乱的状态,然后在冷却的过程中,金属就会自动的变为一个更熔化状态的结构。
同样的,模拟退火算法也是在每次搜索过程中,建立一个限制使它位于搜索空间一个固定且局部最佳的点。
来达到现实生活中金属固化状态找到最优结构的目的。
3工作原理
模拟退火算法通常是从初始解出发搜索最优解。
每次搜索的时候,它会根据“退火温度”进行邻域搜索,并接受低于当前温度的任何节点,而拒绝更高温度的节点。
当温度逐渐降低时,节点被搜索概率就会减少,使得搜索更加局部化,从而提高搜索效率,因此可以找到更优的解决方案。
4应用
模拟退火算法可以应用于求解优化问题中,比如最小路径规划问题,解决非线性规划问题,投资运筹学中组合优化等。
此外,模拟退火算法还可以用于信息检索,图像处理,自然语言处理,建模,网络结构研究,机器学习研究,控制研究等。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火遗传算法模拟退火遗传算法是一种结合了模拟退火算法和遗传算法的优化算法。
它通过模拟物理退火过程和基因遗传进化过程,来寻找最优解。
在实际应用中,它被广泛应用于组合优化、函数优化、图像处理等领域。
一、模拟退火算法1.1 原理模拟退火算法是一种基于概率的全局寻优方法。
其原理是通过随机选择一个解,并以一定的概率接受该解或者以较小的概率接受劣解,从而达到全局最优解。
1.2 步骤(1)初始化初始温度T0和初始解x0;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的解x';(3)计算新旧两个解之间的差异ΔE,并根据Metropolis准则决定是否接受新解;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
1.3 优缺点优点:可以跳出局部最优,具有全局搜索能力;易于实现;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;需要调节参数。
二、遗传算法2.1 原理遗传算法是一种基于生物进化思想的优化算法。
其原理是通过模拟自然界中的进化过程,将问题转换为一个个个体,通过交叉、变异等操作来产生新的个体,并筛选出适应度高的个体,从而达到全局最优解。
2.2 步骤(1)初始化种群;(2)计算每个个体的适应度;(3)根据适应度选择优秀的个体进行交叉和变异操作;(4)重复步骤(2)到(3),直至达到停止条件。
2.3 优缺点优点:能够跳出局部最优,具有全局搜索能力;易于并行化处理;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;容易陷入早熟现象。
三、模拟退火遗传算法3.1 原理模拟退火遗传算法是将模拟退火和遗传算法结合起来使用。
其原理是在模拟退火过程中引入了交叉和变异操作,从而增加了搜索空间,并提高了搜索效率。
3.2 步骤(1)初始化初始温度T0和初始种群;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的种群;(3)计算新旧两个种群之间的差异,并根据适应度选择优秀的个体进行交叉和变异操作;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
模拟退火算法(Simulated Annealing)主要内容◆算法原理◆算法应用◆作业现代智能优化算法,主要用于求解较为复杂的优化问题。
与确定性算法相比,其特点如下:第一,目标函数与约束函数不需要连续、可微,只需提供计算点处的函数值即可;第二,约束变量可取离散值;第三,通常情况下,这些算法能求得全局最优解。
现代智能优化算法,包括禁忌搜索,模拟退火、遗传算法等,这些算法涉及生物进化、人工智能、数学和物理学、神经系统和统计力学等概念,都是以一定的直观基础构造的算法,统称为启发式算法。
启发式算法的兴起,与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂问题时,现代智能优化算法开始起作用。
现代智能优化算法,自20世纪80年代初兴起,至今发展迅速,其与人工智能、计算机科学和运筹学融合,促进了复杂优化问题的分析和解决。
模拟退火算法(Simulated Annealing, SA)是一种通用的随机搜索算法,是局部搜索算法的扩展。
最早于1953年由Metropolis提出,K irkpatric等在1983年将其成功用于组合优化问题的求解。
算法的目的:解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。
一、算法原理启发:物质总是趋于最低的能态。
如:水往低处流;电子向最低能级的轨道排布。
结论:最低能态是最稳定的状态。
物质会“自动”地趋于最低能态。
猜想:物质趋于最低能态与优化问题求最小值之间有相似性,能否设计一种用于求函数最小值的算法,就像物质“自动”地趋于最低能态?退火,俗称固体降温。
先把固体加热至足够高的温度,使固体中所有的粒子处于无序的状态(随机排列,此时具有最高的熵值);然后将温度缓缓降低,固体冷却,粒子渐渐有序(熵值下降,以低能状态排列)。
原则上,只要温度上升得足够高,冷却过程足够慢,则所有粒子最终会处于最低能态(此时具有最低的熵值)。
模拟退火算法就是将退火过程中系统熵值类比为优化问题的目标函数值来达到优化问题寻优的一种算法。
模拟退火算法模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。
因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。
此时,当前解实现了一次迭代。
可在此基础上开始下一轮试验。
而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
模拟退火算法的简单应用作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。
城市i和城市j之间的距离为d(i,j)i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。
求解TSP的模拟退火算法模型可描述如下:解空间解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。
初始解可选为(1,……,n)目标函数此时的目标函数即为访问所有城市的路径总长度或称为代价函数:我们要求此代价函数的最小值。
新解的产生随机产生1和n之间的两相异数k和m,若k<m,则将 (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)变为:(w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).如果是k>m,则将(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)变为: (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为:根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:Procedure TSPSA:Begininit-of-T; { T为初始温度}S={1,……,n}; {S为初始值}termination=false;while termination=falsebeginfor i=1 to L dobegingenerate(S′form S); { 从当前回路S产生新回路S′}Δt:=f(S′))-f(S);{f(S)为路径总长}IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])S=S′;IF the-halt-condition-is-TRUE THENtermination=true;End;T_lower;End;End模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero OneKnapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(SchedulingProblem)等等。
模拟退火算法的参数控制问题模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:(1)温度T的初始值设置问题。
温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。
实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。
(2)退火速度问题。
模拟退火算法的全局搜索性能也与退火速度密切相关。
一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。
实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。
(3)温度管理问题。
温度管理问题也是模拟退火算法难以处理的问题之一。
实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:T(t+1)=k×T(t)式中k为正的略小于1.00的常数,t为降温的次数。
Matlab源代码:main.mzuobiao=[0.37 0.75 0.45 0.76 0.71 0.07 0.42 0.59 0.32 0.6 0.3 0.67 0.62 0.67 0.20 0.35 0.27 0.94 0.82 0.37 0.61 0.42 0.6 0.39 0.53 0.4 0.63 0.5 0.98 0.68;0.91 0.87 0.85 0.75 0.72 0.74 0.71 0.69 0.64 0.64 0.59 0.59 0.55 0.55 0.5 0.45 0.43 0.42 0.38 0.27 0.26 0.25 0.23 0.19 0.19 0.13 0.08 0.04 0.02 0.85];plot(zuobiao(1,:),zuobiao(2,:),'g*'),hold onplot(zuobiao(1,:),zuobiao(2,:))length=max(size(zuobiao));%求初始距离..zhixu=randperm(length) %随机生成一个路线经过点的顺序temp=zuobiao(1,:);newzuobiao(1,:)=temp(zhixu);temp=zuobiao(2,:);newzuobiao(2,:)=temp(zhixu);newzuobiaof=juli(newzuobiao)%参数定义区-------------------------------------- %初始温度为10000tmax=100;tmin=0.001;%温度下降速率down=0.95;%退火算法的函数..figuret=tmax;while t>tminfor n=1:500newzuobiao=newpath(zuobiao,length);newf=juli(newzuobiao);if newf<fzuobiao=newzuobiao;f=newf;elseif rand<exp(-(newf-f)/t)zuobiao=newzuobiao;f=newf;endendhuatu=[zuobiao,zuobiao(:,1)];plot(huatu(1,:),huatu(2,:)),hold onplot(huatu(1,:),huatu(2,:),'ro'),hold off pause(0.00001)t=t*downfendnewpath.mfunction zuobiao=newpath(zuobiao,length)%随机交换两个点的坐标..a=ceil(rand(1,2)*length);qian=a(1);hou=a(2);temp=zuobiao(:,qian);zuobiao(:,qian)=zuobiao(:,hou);zuobiao(:,hou)=temp;juli.mfunction lucheng=juli(zuobiao)length=max(size(zuobiao));s=0;for i=2:lengths=s+sqrt(sum((zuobiao(:,i)-zuobiao(:,i-1)).^2)); endif length~=2s=s+sqrt(sum((zuobiao(:,1)-zuobiao(:,length)).^2)); endlucheng=s;。