场论复习
- 格式:ppt
- 大小:1.05 MB
- 文档页数:4
《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
第二章 场论2.1 场1.场的概念:若对全空间或其中的某一区域V 中每一点M ,都有一个数量(或矢量)与之对应,则称在V 上给定了一个数量场(或向量场)。
2.数量场的等值面、等值线设空间中的一数量场(,,)u x y z ,从后我们总假定它单值,连续且具有一阶连续的偏导数。
那么空间中u 取值相同的点在空间中是如何分布的呢?这些点满足方程 (,,)u x y z C ≡,其中C常数。
若u 一阶偏导数不全为0(这也可作为默认的假设),由隐函数存在唯一性定理可知方程(,,)u x y z C ≡中(,)z f x y =,称这一曲面为数量场(,,)u x y z 的等值面,曲面上所有点均满足(,,)u x y z C ≡。
随着常数C 选取的变化,方程(,,)u x y z C ≡对应着不同的等值面,因为C 可取遍了u 值域中的每一个值,所以数量场(,,)u x y z 所在的空间将被这族等值面所充满,这些等值面彼此互不相交(若相交的话u 就不是单值函数了)。
若空间中数量场为平面数量场(,)u x y ,(,)u x y C ≡表示了一条平面曲线,称为数量场(,)u x y 的等值线,显然平面数量场(,)u x y 所在的平面区域被一族等势线充满,这些等值线彼此不相交。
3.矢量场的矢量线、矢量面、矢量管ˆˆˆ(,,)(,,)(,,)(,,)x y z A x y z A x y z i A x y z j A x y z k =++为空间的一矢量场,在空间中作这样的曲线,使得曲线的任一点M 处切线的放向数是()A M的三个分量,即曲线满足微分方程:x y zdx dy dzA A A ==则称这样的曲线为矢量场(,,)A x y z 的矢量线。
由微分方程理论(解的存在与唯一性定理)我们可知x y zdx dy dz A A A ==的解是矢量线族,这族矢量线不仅存在,并且也充满了矢量场所在的空间区域,而且互不相交。
*1.【圆函数】e (φ)=cos φi +sin φj .*2.a.弧长的微分ds =以点M 为界,当ds 位于s 增大一方时取正号;反之取负号.b.矢性函数的微分的模,等于(其矢端曲线的)弧微分的绝对值.矢性函数(其矢端曲线的)弧长s 的导数d r /ds 在几何上为一切单位矢量,恒指向s 增大的一方.+3.证明||.ds d d r t dt=证,d dx dy dz dtdt dtr i j k dt =++d dt r =由于ds 与dt 有相同的符号,故有.ds d dt dt r ===由此可知:矢端曲线的切向单位矢量.d d ds d d dt dt dt dtd r s r r r ==*4.【二重矢积】公式:a ×(b ×c )=(a ·c )b -(a ·b )c .+5.矢性函数A (t)的模不变的充要条件是.d d A A t•=0证假定|A |=常数,则有A 2=|A |2=常数.两端对t 求导[左端用导数公式],就得到.d d A A t •=0反之,若有.d d A A t •=0则有,d dt A =20从而有A 2=|A |2=常数.所有有|A |=常数.定常矢量A (t)与其导矢相互垂直.*6.''.A B A dt t B B A d ×=×+×∫∫''.A B A dt t B B A d •=•−•∫∫+7.一质点沿曲线r =rcos φi +rsin φj 运动,其中r,φ均为时间t 的函数.求速度v 在矢径方向及其垂直方向上的投影v r 和v φ.解将r 写成r =r e (φ),则有()().d dr d r dt dt v d r e e t ϕϕϕ==+1由此可知:,.r dr d v v r dt dtϕϕ==[使用圆函数e (φ),则e (φ)及e 1(φ)之方向即为矢径方向及与之垂直的方向.]*8.【矢量线】A =A x i +A y j +A z k 为单值、连续且有一阶连续导数。
场论基础试题及答案一、单项选择题(每题2分,共10分)1. 场论中,场的强度定义为:A. 场源的密度B. 场源的分布C. 场对单位测试电荷的作用力D. 场源的总电荷量答案:C2. 电场强度的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于等势面D. 与电场线平行答案:B3. 根据麦克斯韦方程组,变化的磁场可以产生:A. 恒定电场B. 变化的电场C. 恒定磁场D. 变化的磁场答案:B4. 电磁波在真空中的传播速度是:A. 光速B. 声速C. 光速的一半D. 声速的两倍答案:A5. 洛伦兹力的方向与电荷运动方向的关系是:A. 垂直B. 平行C. 相反D. 相同答案:A二、填空题(每题2分,共10分)1. 电场强度的单位是________。
答案:牛顿/库仑2. 磁场强度的单位是________。
答案:特斯拉3. 电磁波的频率与波长的关系是________。
答案:频率与波长成反比4. 根据法拉第电磁感应定律,变化的磁场可以产生________。
答案:电场5. 电磁波的传播不需要________。
答案:介质三、简答题(每题5分,共20分)1. 简述电场和磁场的关系。
答案:电场和磁场是电磁场的两个方面,它们相互关联,可以相互转换。
变化的磁场可以产生电场,而变化的电场也可以产生磁场。
2. 什么是电磁波?请简述其特性。
答案:电磁波是由电场和磁场交替变化产生的波动现象。
电磁波的传播不需要介质,可以在真空中传播,具有波长和频率,且波速在真空中是一个常数。
3. 麦克斯韦方程组包含哪四个方程?请简述它们的意义。
答案:麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
高斯定律描述了电荷分布与电场的关系;高斯磁定律表明磁场是由电流产生的;法拉第电磁感应定律描述了变化的磁场产生电场的现象;安培环路定律则描述了电流和磁场之间的关系。
4. 洛伦兹力是如何定义的?请简述其作用。
答案:洛伦兹力是运动电荷在电磁场中受到的力,其大小和方向由电荷量、电荷速度、电场强度和磁场强度共同决定。
梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++ 12323(24)T x x x y y ++=+31321)43(y y x x x T +=++ 1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基. 11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=1)()())(),((dx x g x f x g x f若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解.13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。
第二十二章 曲面积分4 场论初步一、场的概念概念:若对全空间或其中某一区域V 中每一点M ,都有一个数量(或向量)与之对应,则称V 上给定了一个数量场(或向量场).温度场和密度场都是数量场. 若数量函数u(x,y,z)的偏导数不同时为0, 则满足方程u(x,y,z)=c(常数)的所有点通常是一个曲面.曲面上函数u 都取同一个值时,称为等值面,如温度场中的等温面.重力场和速度场都是向量场. 设向量函数A(x,y,z)在三坐标轴上投影分别为:P(x,y,z), Q(x,y,z), R(x,y,z), 则A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z)), 其中P , Q, R 为定义区域上的数量函数,且有连续偏导数.设向量场中的曲线L 上每点M 处的切线方向都与向量函数A 在该点的方向一致,即P dx =Q dy =Rdz, 则称曲线L 为向量场A 的向量场线. 如, 电力线、磁力线等都是向量场线.二、梯度场概念:梯度是由数量函数u(x,y,z)定义的向量函数grad u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 且grad u 的方向是使lu∂∂达到最大值的方向, 其大小为u 在这个方向上的方向导数. 所以可定义数量场u 在点M 处的梯度grad u 为在M 处最大的方向导数的方向,及大小为在M 处最大方向导数值的向量. 因为方向导数的定义与坐标系的选取无关,所以梯度定义也与坐标系选取无关. 由梯度给出的向量场,称为梯度场. 又数量场u(x,y,z)的等值面u(x,y,z)=c 的法线方向为⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, 所以 grad u 的方向与等值面正交, 即等值面法线方向. 引进符号向量: ▽=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ,,. 将之视为运算符号时, grad u=▽u.基本性质:若u,v 是数量函数, 则 1、▽(u+v)=▽u+▽v ;2、▽(uv)=u(▽v)+(▽u)v. 特别地▽u 2=2u(▽u);3、若r=(x,y,z), φ=φ(x,y,z), 则d φ=dr ▽φ;4、若f=f(u), u=u(x,y,z), 则▽f=f ’(u)▽u ;5、若f=f(u 1,u 2,…,u n ), u i =u i (x,y,z) (i=1,2,…,n), 则▽f=i ni iu u f∑=∇∂∂1. 证:1、▽(u+v)=⎪⎪⎭⎫ ⎝⎛∂+∂∂+∂∂+∂z v u y v u x v u )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v z u y v y u x v x u ,, =⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z v y v x v ,,=▽u+▽v. 2、▽(uv)=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z uv y uv x uv )(,)(,)(=⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+∂∂∂∂+∂∂z v u v z u y v u v y u x v u v x u ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v u y v u x v u,,+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂v z u v y u v x u ,,=u ⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z v y v x v ,,+⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,v=u(▽v)+(▽u)v. 当u=v 时,有▽u 2=▽(uv)=u(▽v)+(▽u)v =2u(▽u).3、∵dr=dx+dy+dz, ▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴dr ▽φ=(dx+dy+dz)⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=dz z dy y dx x ∂∂+∂∂+∂∂ϕϕϕ=d φ. 4、∵▽f=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,, 又▽u=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z u y u x u ,,, f ’(u)=du df, ∴f ’(u)▽u=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u y u x u du df ,,=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z u du df y u du df x u du df ,,=▽f. 5、▽f =⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z f y f x f ,,=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂∑∑∑===n i i i n i i i n i i i z u u f y u u f x u u f 111,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂ni i i i i i i z u u f y u u f x u u f 1,,=∑=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂n i i i i iz u y u x u u f1,,=i n i iu u f∑=∇∂∂1.例1:设质量为m 的质点位于原点, 质量为1的质点位于M(x,y,z), 记OM=r=222z y x ++, 求rm的梯度. 解:rm∇=⎪⎭⎫ ⎝⎛-r z r y r x r m ,,2.注:若以r 0表示OM 上的单位向量,则有r m∇=02r rm -, 表示两质点间引力方向朝着原点, 大小是与质量的乘积成正比, 与两点间的距离的平方成反比. 这说明引力场是数量函数r m 的梯度场. 所以称rm为引力势.三、散度场概念:设A(x,y,z)=(P(x,y,z), Q(x,y,z), R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义数量函数D(x,y,z)=zRy Q x P ∂∂+∂∂+∂∂, 则 称D 为向量函数A 在(x,y,z)处的散度,记作D(x,y,z)=div A(x,y,z).设n 0=(cos α, cos β, cos γ)为曲面的单位法向量, 则=n 0dS 就称为曲面的面积元素向量. 于是得高斯公式的向量形式:⎰⎰⎰VdivAdV =⎰⎰⋅SdS A .在V 中任取一点M 0, 对⎰⎰⎰VdivAdV 应用中值定理,得⎰⎰⎰VdivAdV =div A(M*)·△V=⎰⎰⋅SdS A , 其中M*为V 中某一点,于是有div A(M*)=VdSA S∆⋅⎰⎰. 令V 收缩到点M 0(记为V →M 0) 则M*→M 0, 因此div A(M 0)=VdSA SM V ∆⋅⎰⎰→0lim.因⎰⎰⋅SdS A 和△V 都与坐标系选取无关,所以散度与坐标系选取无关.由向量场A 的散度div A 构成的数量场,称为散度场.其物理意义:div A(M 0)是流量对体积V 的变化率,并称它为A 在点M 0的流量密度.若div A(M 0)>0, 说明在每一单位时间内有一定数量的流体流出这一点,则称这一点为源.反之,若div A(M 0)<0, 说明流体在这一点被吸收,则称这点为汇. 若向量场A 中每一点皆有div A=0, 则称A 为无源场.向量场A 的散度的向量形式为:div A=▽·A.基本性质:1、若u,v 是向量函数, 则▽·(u+v)=▽·u+▽·v ; 2、若φ是数量函数, F 是向量函数, 则▽·(φF)=φ▽·F+F ·▽φ;3、若φ=φ(x,y,z)是一数量函数, 则▽·▽φ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)), 则▽·(u+v)=zR R y Q Q x P P ∂+∂+∂+∂+∂+∂)()()(212121 =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P z R y Q x P 222111=▽·u+▽·v. 2、▽·(φF)=z R y Q x P ∂∂+∂∂+∂∂)()()(ϕϕϕ=zR z R y Q y Q x P x P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂ϕϕϕϕϕϕ =φ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P +(P ,Q,R)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ϕϕϕ=φ▽·F+F ·▽φ. 3、∵▽φ=⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,, ∴▽·▽φ=⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂z z y y x x ϕϕϕ=222222zy x ∂∂+∂∂+∂∂ϕϕϕ.注:算符▽的内积▽·▽常记作△=▽·▽=222222zy x ∂∂+∂∂+∂∂,称为拉普拉斯算符, 于是有▽·▽φ=△φ.例2:求例1中引力场F=⎪⎭⎫⎝⎛-r z r y r x r m,,2所产生的散度场.解:∵r 2=x 2+y 2+z 2, ∴F=3222)(z y x m ++-(x,y,z),▽·F=-m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂333r z z r y y r x x =0.注:由例2知,引力场内每一点处的散度都为0(除原点处外).四、旋度场概念:设A(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))为空间区域V 上的向量函数, 对V 上每一点(x,y,z), 定义向量函数F(x,y,z)=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,, 称之为向量函数A 在(x,y,z)处的旋度, 记作rot A.设(cos α,cos β,cos γ)是曲线L 的正向上的单位切线向量t 0的方向余弦, 向量ds =(cos α,cos β,cos γ)ds= t 0dl 称为弧长元素向量. 于是有 斯托克斯公式的向量形式:⎰⎰SdS rotA ·=⎰Lds A ·.向量函数A 的旋度rot A 所定义的向量场,称为旋度场.在流量问题中,称⎰L A ·为沿闭曲线L 的环流量. 表示流速为A 的不可压缩流体在单位时间内沿曲线L 的流体总量,反映了流体沿L 时的旋转强弱程度. 当rot A=0时,沿任意封闭曲线的环流量为0,即流体流动时不成旋涡,这时称向量场A 为无旋场.注:旋度与坐标系的选择无关. 在场V 中任意取一点M 0,通过M 0作平面π垂直于曲面S 的法向量n 0, 且在π上围绕M 0作任一封闭曲线L, 记L 所围区域为D ,则有⎰⎰SrotA ·=⎰⎰DdS n rotA 0·=⎰LA ·. 又由中值定理有 ⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 其中 μ(D)为区域D 的面积, M*为D 中的某一点. ∴(rotA ·n 0)M*=)(·D A Lμ⎰.当D 收缩到点M 0(记作D →M 0)时, 有M*→M 0, 即有 (rotA ·n 0)0M =)(·limD A LMD μ⎰→ .左边为rot A 在法线方向上的投影,即为旋度的另一种定义形式. 右边的极限与坐标系的选取无关,所以rot A 与坐标系选取无关.物理意义:⎰⎰DdS n rotA 0·=(rotA ·n 0)M*μ(D)=⎰LA ·, 表明向量场在曲面边界线上的切线投影对弧长的曲线积分等于向量场旋度的法线投影在曲面上对面积的曲面积分. 即流体的速度场的旋度的法线投影在曲面上对面积的曲面积分等于流体在曲面边界上的环流量.刚体旋转问题:设一刚体以角速度ω绕某轴旋转,则角速度向量ω方向沿着旋转轴,其指向与旋转方向的关系符合右手法则,即右手拇指指向角速度ω的方向,其它四指指向旋转方向. 若取定旋转轴上一点O 作为原点,则刚体上任一点P 的线速度v 可表示为v=ω×r, 其中r=OP 是P 的径向量. 设P 的坐标为(x,y,z),便有r=(x,y,z),设ω(ωx ,ωy ,ωz ), ∴v=(ωy z-ωz y,ωz x-ωx z,ωx y-ωy x), ∴rot v=(2ωx ,2ωy ,2ωz )=2ω或ω=21rot v.即线速度向量v 的旋度除去21, 就是旋转的角速度向量ω. 也即 v 的旋度与角速度向量ω成正比.基本性质:rot A=▽×A. 1、若u,v 是向量函数, 则 (1)▽×(u+v)=▽×u+▽×v ;(2)▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u ; (3)▽·(u ×v)=v ·(▽×u)-u ·(▽×v);(4)▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v.2、若φ是数量函数, A 是向量函数, 则▽×(φA)=φ(▽×A)+▽φ×A.3、若φ是数量函数, A 是向量函数, 则 (1)▽·(▽×A)=0, ▽×▽φ=0,(2)▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.证:1、记u(P 1(x,y,z),Q 1(x,y,z),R 1(x,y,z)), v(P 2(x,y,z),Q 2(x,y,z),R 2(x,y,z)),则(1)▽×(u+v)=⎪⎪⎭⎫⎝⎛∂+∂-∂+∂∂+∂-∂+∂∂+∂-∂+∂yP P xQ Q xR R zP P zQ Q yR R )()(,)()(,)()(212121212121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,+⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,,=▽×u+▽×v. (2)∵▽(u ·v)=▽(P 1P 2+Q 1Q 2+R 1R 2)=⎪⎪⎭⎫⎝⎛∂++∂∂++∂∂++∂z R R Q Q P P y R R Q Q P P x R R Q Q P P )(,)(,)(212121212121212121 = ⎝⎛∂∂+∂∂+∂∂+∂∂+∂∂+∂∂,122112211221x RR x R R x Q Q x Q Q x P P x P P,122112211221y RR y R R y Q Q y Q Q y P P y P P ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂⎪⎭⎫∂∂+∂∂+∂∂+∂∂+∂∂+∂∂z R R z R R z Q Q z Q Q z P P z P P 122112211221.又u ×(▽×v)=u ×⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q yR 222222,, = ⎝⎛∂∂+∂∂-∂∂-∂∂,21212121xRR z P R y P Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 2121212121212121,. v ×(▽×u)= ⎝⎛∂∂+∂∂-∂∂-∂∂,12121212xR R zP R yP Q xQ Q ⎪⎪⎭⎫∂∂+∂∂-∂∂-∂∂∂∂+∂∂-∂∂-∂∂z Q Q y R Q x R P z P P x R P z P P y P R x Q R 1212121212121212,. (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q x P 111v =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q x P P 212121212121212121,,(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; ∴▽(u ·v)=u ×(▽×v)+v ×(▽×u)+(u ·▽)v+(v ·▽)u. (3)∵▽·(u ×v)=▽·(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2) =zP Q Q P y R P P R xQ R R Q ∂-∂+∂-∂+∂-∂)()()(212121212121=y P R y R P y R P y P R x R Q x Q R x Q R x R Q ∂∂-∂∂-∂∂+∂∂+∂∂-∂∂-∂∂+∂∂1221122112211221zQP z P Q z P Q z Q P ∂∂-∂∂-∂∂+∂∂+12211221.又v ·(▽×u)=v ·⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR 111111,,=yP R xQ R xR Q zP Q zQ P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂121212121212;u ·(▽×v)=yPR x Q R x R Q z P Q z Q P yR P ∂∂-∂∂+∂∂-∂∂+∂∂-∂∂212121212121;∴▽·(u ×v)=v ·(▽×u)-u ·(▽×v).(4)∵▽×(u ×v)=▽×(Q 1R 2-R 1Q 2,R 1P 2-P 1R 2,P 1Q 2-Q 1P 2)=⎪⎪⎭⎫⎝⎛∂-∂-∂-∂∂-∂-∂-∂∂-∂-∂-∂y Q R R Q x R P P R x P Q Q P z Q R R Q z R P P R y P Q Q P )()(,)()(,)()(212121212121212121212121= ⎝⎛∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂,1221122112211221zP R zR P zR P zP R yQ P yP Q yP Q yQ P,1221122112211221x QP x P Q x P Q x Q P z R Q z Q R z Q R z R Q ∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂⎪⎪⎭⎫∂∂+∂∂+∂∂-∂∂-∂∂-∂∂-∂∂+∂∂y R Q y Q R y Q R y R Q x P R x R P x R P x P R 1221122112211221; 又(v ·▽)u=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yR Q xR P zQ R yQ Q xQ P zP R yP Q xP P 121212121212121212,,; (u ·▽)v=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y R Q x R P z Q R y Q Q x Q P z P R y P Q xP P 212121212121212121,,;(▽·v)u=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂z R y Q xP 222u =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R y Q R x P R z R Q y Q Q x P Q z R P y Q P xP P 212121212121212121,,; (▽·u)v=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂+∂∂+∂∂∂∂+∂∂+∂∂z R R yQ R xP R zR Q yQ Q xP Q zR P yQ P xP P 121212121212121212,,; ∴▽×(u ×v)=(v ·▽)u-(u ·▽)v+(▽·v)u-(▽·u)v. 2、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则▽×(φA)=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ xR zP zQ yR )()(,)()(,)()(ϕϕϕϕϕϕ=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂∂∂-∂∂-∂∂+∂∂P yyP Q xxQ R xxR P zzP Q zzQ R yyR ϕϕϕϕϕϕϕϕϕϕϕϕ,,=φ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂P yQ xR xP zQ zR yϕϕϕϕϕϕ,,=φ(▽×A)+▽φ×A.3、记φ=φ(x,y,z), A=A(P(x,y,z),Q(x,y,z),R(x,y,z)), 则(1)▽·(▽×A)=▽·⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,=⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂y P x Q z x R z P y z Q y R x=⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂y P z x Q z x R y z P y z Q x y R x =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂z Q x x Q z y P z z P y x R y y R x =0. ▽×▽φ=▽×⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂z y x ϕϕϕ,,=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂x y y x z x x z y z z y ϕϕϕϕϕϕ,,=0. (2)▽×(▽×A)=▽×⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂y P xQ x R zP z Q yR ,,= ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂z Q y R y x R z P x y P x Q x z Q y R z x R z P z y P x Q y ,, =⎪⎪⎭⎫ ⎝⎛∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂∂∂∂+∂∂-∂∂-∂∂∂z y Q y R x R z x P y x P x Q z Q y z R x z R z P y P x y Q 222222222222222222,,; 又▽(▽·A)=▽⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z R yQ xP=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂∂z R y Q x P z z R y Q x P y z R y Q x P x ,,, =⎪⎪⎭⎫⎝⎛∂∂+∂∂∂+∂∂∂∂∂∂+∂+∂∂∂∂∂∂+∂∂∂+∂∂222222222222,,z R y z Q x z P z y R y Q x y P x z R y x Q x P ; ▽2A=△A=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∂+∂∂+∂∂∂+∂∂+∂∂222222222222222222,,z R y R x R z Q y Q x Q z P y P x P ;∴▽×(▽×A)=▽(▽·A)-▽2A =▽(▽·A)-△A.五、管量场与有势场概念:对无源场A ,即div A=0,由高斯公式知,此时沿任何闭曲面的曲面积分都为0,这样的向量场称为管量场. 因为 在向量场A 中作一向量管,即由向量线围成的管状曲面, 用断面S 1, S 2截它,以S 3表示所截出的管的表面,即得到 由S 1, S 2, S 3围成的封闭曲面S ,于是有⎰⎰⋅SdS A =⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A +⎰⎰⋅外侧3S dS A =0. 又由向量线与曲面S 3的法线正交知,⎰⎰⋅外侧3S dS A =0.∴⎰⎰⋅外侧1S dS A +⎰⎰⋅外侧2S dS A =0, 即⎰⎰⋅内侧1S dS A +⎰⎰⋅外侧2S dS A . 等式说明,流体通过向量管的任意断面流量相同,∴称场A 为管量场. 如例2,由梯度rm ∇所成的引力场F 是管量场.概念:对无旋场A ,即rot A=0,由斯托克斯公式知,这时在空间单连通区域内沿任何封闭曲线的曲线积分都等于0,该向量场称为有势场. 因为当rot A=0时,由定理22.7推得此时空间曲线积分与路线无关, 且有u(x,y,z), 使得du=Pdx+Qdy+Rdz, 即grad u=(P ,Q,R), u 称为势函数. 所以,若向量场A 的旋度为0,则必存在某势函数u ,使得grad u=A. 这也是一个向量场是某个数量场的梯度场的充要条件. 例1中引力势u=r m 就是势函数. ∴▽u=F=-⎪⎭⎫⎝⎛r z r y r x r m ,,2. 又▽×▽u ≡0, ∴▽×F=0, 它也是引力场F 是有势场的充要条件.若向量场A 既是管量场,又是有势场,则称其为调和场.例2中的引力场F 就是调和场. 若A 是一个调和场,则必有 ▽·A=0, ▽u=A. 显然▽·▽u=▽2u=△u=0, 即必有势函数u 满足222222z uy u x u ∂∂+∂∂+∂∂=0, 这时称函数u 为调和函数. 习题1、若r=222z y x ++, 计算▽r, ▽r 2, ▽r1, ▽f(r), ▽r n (n ≥3). 解:∵x r ∂∂=r x , y r ∂∂=r y , z r ∂∂=r z, ∴▽r=⎪⎭⎫ ⎝⎛r z r y r x ,,=r1(x,y,z); 记u=r 2=x 2+y 2+z 2, ∵x u ∂∂=2x, y u ∂∂=2y, zu ∂∂=2z, ∴▽r 2=▽u=2(x,y,z);记v=r1, ∵x v ∂∂=-3r x , y v ∂∂=-3r y , z v∂∂=-3rz , ∴▽r 1=▽v=31r -(x,y,z);∵x f ∂∂=f ’(r)r x , y f ∂∂=f ’(r)ry , z f∂∂=f ’(r)r z , ∴▽f(r)=f ’(r)r 1(x,y,z); ∴▽r n =nr n-1⎪⎭⎫ ⎝⎛r z r y r x ,,=nr n-2(x,y,z), (n ≥3).2、求u=x 2+2y 2+3z 2+2xy-4x+2y-4z 在O(0,0,0), A(1,1,1), B(-1,-1,-1)处的梯度,并求梯度为0的点. 解:∵x u ∂∂=2x+2y-4, y u ∂∂=4y+2x+2, zu∂∂=6z-4,∴在O(0,0,0), grad u=(-4,2,-4); 在A(1,1,1), grad u=(0,8,2); 在B(-1,-1,-1), grad u=(-8,-4,-10);又由2x+2y-4=0, 4y+2x+2=0, 6z-4=0, 解得x=5, y=-3, z=32, ∴在(5,-3,32), |grad u|=0.3、证明梯度的基本性质1~5. 证:见梯度的基本性质.4、计算下列向量场A 的散度与旋度:(1)A=(y 2+z 2,z 2+x 2,x 2+y 2);(2)A=(x 2yz,xy 2z,xyz 2);(3)A=⎪⎪⎭⎫⎝⎛++xy z zx y yz x . 解:(1)∵P=y 2+z 2, Q=z 2+x 2, R=x 2+y 2; ∴div A=x ∂∂(y 2+z 2)+y ∂∂(z 2+x 2)+z ∂∂(x 2+y 2)=0;又y ∂∂(x 2+y 2)-z ∂∂(z 2+x 2)=2y-2z; z ∂∂(y 2+z 2)-x∂∂(x 2+y 2)=2z-2x; x∂∂(z 2+x 2)-y ∂∂(y 2+z 2)=2x-2y. ∴rot A=2(y-z,z-x,x-y).(2)∵P=x 2yz, Q=xy 2z, R=xyz 2; ∴div A=x ∂∂(x 2yz)+y ∂∂(xy 2z)+z∂∂(xyz 2)=6xyz ;又y ∂∂(xyz 2)-z ∂∂(xy 2z)=x(z 2-y 2); z ∂∂(x 2yz)-x∂∂(xyz 2)=y(x 2-z 2); x∂∂(xy 2z)-y ∂∂(x 2yz)=z(y 2-x 2). ∴rot A=(x(z 2-y 2),y(x 2-z 2),z(y 2-x 2)).(3)A=⎪⎪⎭⎫ ⎝⎛++xy z zx y yz x . ∵P=yz x , Q=zxy, R=xy z ;∴div A=⎪⎪⎭⎫ ⎝⎛∂∂yz x x +⎪⎭⎫ ⎝⎛∂∂zx y y +⎪⎪⎭⎫ ⎝⎛∂∂xy z z =xyzx yz 111++; 又⎪⎪⎭⎫ ⎝⎛∂∂xy z y -⎪⎭⎫ ⎝⎛∂∂zx y z =22xy z xz y -; ⎪⎪⎭⎫ ⎝⎛∂∂yz x z -⎪⎪⎭⎫ ⎝⎛∂∂xy z x =22yz x y x z-; ⎪⎭⎫ ⎝⎛∂∂zx y x -⎪⎪⎭⎫ ⎝⎛∂∂yz x y =z x y z y x 22-. ∴rot A=⎪⎪⎭⎫⎝⎛---x y y x z x x z y z z y xyz 222222,,1.5、证明散度的基本性质1~3. 证:见散度的基本性质.6、证明旋度的基本性质1~3. 证:见旋度的基本性质.7、证明:场A=(yz(2x+y+z),zx(x+2y+z),xy(x+y+2z))是有势场并求其势函数.证:P=yz(2x+y+z), Q=zx(x+2y+z), R=xy(x+y+2z),y ∂∂[xy(x+y+2z)]-z∂∂[zx(x+2y+z)]=x 2+2xy+2xz-x 2-2xy-2xz=0; z ∂∂[yz(2x+y+z)]-x∂∂[xy(x+y+2z)]=2xy+y 2+2yz-2xy-y 2-2yz=0; x∂∂[zx(x+2y+z)]-y ∂∂[yz(2x+y+z)]=2xz+2yz+z 2-2xz-2yz-z 2=0.∴对空间任一点(x,y,z)都有rot A=(0,0,0)=0i+0j+0k=0, ∴A 是有势场. 由d[xyz(x+y+z)]=yz(2x+y+z)dx+xz(x+2y+z)dy+xy(x+y+2z)dz 知, 其势函数为u(x,y,z)=xyz(x+y+z)+C.8、若流体流速A=(x 2,y 2,z 2), 求单位时间内穿过81球面x 2+y 2+z 2=1, x>0,y>0,z>0的流量.解:设S 为所给81球面,S 1, S 2, S 3分别是S 在三个坐标面上的投影, 则 所求流量为:⎰⎰⋅SdS n A 0+⎰⎰⋅11S dS n A +⎰⎰⋅22S dS n A +⎰⎰⋅33S dS n A =⎰⎰⎰⎪⎭⎫ ⎝⎛球体81V divAdV=⎰⎰⎰++Vdxdydz z y x )(2=⎰⎰⎰++103202sin )cos sin sin cos (sin 2dr r d d ϕϕθϕθϕϕθππ=⎰⎥⎦⎤⎢⎣⎡++2021)sin (cos 421πθθθπd =83π.注:其中n 0, n 1, n 2, n 3分别是S, S 1, S 2, S 3的单位法矢,显然有A|n i (i=1,2,3),∴A ·n i =0,从而⎰⎰⋅iS i dS n A =0 (i=1,2,3), 于是所求流量为:⎰⎰⋅SdS n A 0=83π.9、设流速A=(-y,x,c) (c 为常数),求环流量: (1)沿圆周x 2+y 2 =1, z=0;(2)沿圆周(x-2)2+y 2 =1, z=0.解:(1)圆周x 2+y 2 =1, z=0的向径r 适合方程r=costi+sintj+0k(0≤t ≤2π). ∵A ·dr=(-sinti+costj+ck)·(-sinti+costj+0k)dt=dt, ∴所环流量为⎰⋅c dr A =⎰π20dt =2π.(2)圆周(x-2)2+y 2 =1, z=0的向径r=(2+cost)i+sintj+0k (0≤t ≤2π); ∵A ·dr=[-sinti+(2+cost)j+ck]·(-sinti+costj+0k)dt=(2cost+1)dt, ∴所环流量为⎰⋅c dr A =⎰+π20)1cos 2(dt t =2π.。
同济大学课程考核试卷(A卷)2009—2010学年第一学期命题教师签名:审核教师签名:课号:2102001课名:场论(工科本科生)考试考查:考试此卷选为:期中考试( )、期终考试( )、重考(√)试卷(注意:本试卷共四大题,二大张,满分100分.考试时间为120分钟。
要求在答题纸上写出解题过程,否则不予计分)一、填空题(共4小题,每小题6分,总计24分)1.数量场u=x2y+xz3在点M(2,0,1)处的梯度为2.数量场u=ln(x2+y2+z2)经过点(1,2,1)的等值面方程为3.矢量函数rθ=2θ2i+(sinθ+2)j+cosθk的导矢r′θ为4.矢量场A=x2yi+y2zj+(z2+x)k在点M(4,1,2)处的散度为5.设矢量场A=xzi+yzj−x2k,则div(rot A )=6.数量场u=xyz在点M(1,2,3)处的最大方向导数为二、解答题(共2小题,每小题8分,总计16分)7.求数量场u=3x2+z2-2xy+2xz在点M(1,2,3)处沿方向l=yzi+xzj+xyk的方向导数8.求矢量场A=2yzi+xzj+3xyk在点M(1,2,1)处沿方向n=i−j+k的环量面密度三、解答题(共4小题,每小题10分,总计40分)9.求矢量场A=xy2i+x2yj+zy2k的矢量线方程10.已知平面调和场的力函数u=x2 -y2+xy,求该场的势函数V11.求矢量场A=−yi+xj+ck(c为常数)沿曲线L:x2+y2=R2,z=0正向的环量12.设曲面S是由上半球面x2+y2+Z2=a2(z>=0)与xoy面围城的封闭曲面,求矢量场r=xi+yj+zk从穿出曲面S的通量∅四、证明题(共2小题,每小题10分,总计20分),其中L是从13.证明A=2xy+3i+x2−4z j−4yk为保守场,并计算曲线积分A·dllA(3,-1,2)到B(2,1,-1)的任意路径14.证明矢量场A=x2−2yz i+y2−2xz j+(x2−2xy)k为有势场,并求其势函数全体。
《地球物理场论》题库与答案一、填空题 (每小题 1分,共30)1. 场是时空坐标的函数。
2. 在矢量场A 分布的空间中,有向面元dS 与该面元处的A 两个矢量的点乘是矢量场A通过dS 的 通量 。
3. 矢量场的散度是一个标量场。
4. 矢量场的散度是空间坐标的函数。
5. 矢量场的散度代表矢量场的通量源的分布特性。
6. 若矢量场A(x,y,z)的散度为f(x,y,z),且f 不全为0,则该矢量场称为有源场。
7. 若矢量场A(x,y,z)的散度为f(x,y,z),则称f(x,y,z)为源密度。
8. 在场矢量A 空间中一有向闭合路径l ,则称A 沿l 积分的结果称为矢量A 沿l 的环流。
9. 一个矢量场的旋度是另外一个为矢量场。
10. 矢量在空间某点处的旋度表征矢量场在该点处的漩涡源密度11. 对一个矢量场进行旋度变换后再进行散度变化,运算结果等于012. 标量场的梯度表征标量场变化规律:其方向为标量场增加最快的方向,其幅度表示标量场的最大增加率。
13. 在有限区域内,任意矢量场由矢量场的散度、旋度和边界条件唯一确定。
14. 若矢量场A 的散度和旋度值在某区域V 内处处有为0,称该矢量场A 为调和场。
15. 描述电荷在三维空间中分布状态的函数是电荷体密度。
16. 描述电荷在二维空间的面上分布状态的函数是电荷面密度。
17. 电流密度矢量描述空间电流分布的状态。
18. 电流连续性方程描述了电荷密度 与电流密度矢量两者之间的关系。
19. 电场是在电荷周围形成的一种物质。
20. 产生电场的源泉有2个。
21. 电场的特性是对处于其中的电荷产生力的作用。
22. 处在电场中的电荷所受的作用力与电场强度大小成正比。
23. 磁场是在电流周围形成的一种物质。
24. 在磁场中运动电荷所受到的作用力的方向由电荷运动方向和磁场方向共同确定。
25. 线电流元Idl 在距其R 产生的磁感应强度为:03()4Idl R dB Rμπ⨯=⋅。
电动力学阐述经典电动力学以矢量分析、张量分析、复变函数、格林函数、特殊函数、数学物理方程、矩阵等数学知识为工具,以库仑定律、安培-毕奥-萨伐尔定律、法拉第电磁感应定律、楞茨定律等实验定律为基础,以宏观电磁现象为研究对象,在麦克斯韦、亥姆霍兹、达朗伯、菲涅耳等科学家的研究中逐步发展起来的。
研究对象宏观电磁现象主要包括内容:电磁场的激发、辐射和传播,介质在电磁场作用下的极化和磁化,电场和电荷,电流系统的相互作用,以及电磁场和导体间的相互作用等等。
电磁场是一种运动的物质,运动的根本原因是空间中变动的电场和变动的磁场的相互激发转化。
对于电磁场的分布可以通过研究电场强度E 和磁感应强度B (电标势φ和磁矢势A )来描述。
和其他物体一样,通过能量和动量两物理量实现对电磁场运动特性的描述,在一些特殊情况下,他们也满足能量守恒和动量守恒。
描述宏观电磁现象的基本关系是:库仑定律、奥斯特定律、安培力、洛仑兹力、麦克斯韦方程组、介质的电磁性质方程、麦克斯韦方程在介质分界面上的边值关系,以及电磁场与带电物质之间能量守恒和动量守恒定律,还有电荷守恒定律。
明确电动力学的学习目的:1) 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解; 2) 获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础;3)通过电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,帮助我们加深辩证唯物主义的世界观。
第零章 预备知识—矢量场论复习 Preliminary Knowledge —Revise in theVector Field Theory学习电动力学前需要补充的数学知识,矢量场论部分主要包括:梯度、散度、旋度三个重要概念及其在不同坐标系中的运算公式,它们三者之间的关系。
其中包括两个重要定理:即 高斯定理(Gauss Theorem) 和斯托克斯定理(Stokes Theorem),以及二阶微分运算和算符运算的重要公式和格林定理(Green Theorem)。