数学场论初步
- 格式:ppt
- 大小:1.22 MB
- 文档页数:34
第二十二章 各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ⎰-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(⎰-++Ldy y x dx y x L 同(1);(3)dy y x dx y x L)()(222+-+⎰, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+⎰y x L dy y x dx y x L为取正向;(5),sin sin ydy exdx e xLy-+⎰L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e L xy+++++⎰其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x yDD⎰⎰⎰⎰+=--2222)(=ab()r dr r b r a d ⎰⎰+1022222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b aab+=+⎰πθθθπ.(2)⎰-++Ldy y x dx y x )()(=⎰⎰=-Ddxdy 0)11(.(3)原式 ⎰⎰+-=Ddxdy y x x ))(22(⎪⎪⎭⎫ ⎝⎛+-=-=⎰⎰⎰⎰⎰⎰-+-+215231143124322yy y y D dx ydy dx ydy ydxdy9143))5(127)(47(2252221-=-+--=⎰⎰dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=⎰⎰⎰⎰DD dxdy y x dxdy y x . (5)原式 dxdy x e y eDy x⎰⎰--=-)cos sin ()cos sin (⎰⎰⎰⎰+-=-b adcdcydy bax e dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee cd b a --+--=. (6))]cos(sin [),(y x xy ye y x P xy++=,)]cos(sin [),(y x xy x e y x Q xy++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=∂∂ )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=∂∂ )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=∂∂-∂∂, 所以,原式⎰⎰+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域. 2.利用格林公式计算下列曲线所围成的面积: (1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2⋅=,π≤≤20t . 解(1)⎰⎰⎰⎰==12||D Ddxdy dxdy D ⎰-⨯=L ydx xdy 212 ⎰=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===⎰⎰--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成. (2)作代换,tx y =则得曲线的参数方程为313t at x +=,3213t at y +=.所以,dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=,从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =⎰C x y y x d -d 21=dt t t a ⎰∞++02322)1(29=223a . (3)D =⎰-cydx xdy 21={}⎰-++⋅--⋅+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}⎰π-++⋅--⋅+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+⎰π=24a π 3.利用高斯公式求下列积分:(1)y x z x z y z y x sd d d d d d 222++⎰⎰。
场论的相关数学理论场论是研究某些物理量在空间中的分布状态及其运动形式的数学理论,它的内容是进一步深入研究电磁场及流体等的运动规律的基础,也是学习某些后继课程的基础,本章主要介绍场论中几个基本概念(梯度、散度、旋度)以及它们的应用。
§2.1 场 1、 场的概念 设有一个区域(有限或无限)V ,如果V 内每一点M ,都对应着某个物理量的一个确定的值,则称在区域V 中确定了该物理量的一个场。
若该物理量是数量,则称此场为数量场;若是矢量,则称此场为矢量场。
例如温度场、密度场、电位场等为数量场,而力场、速度场等为矢量场。
此外,若物理量在场中各点处的对应值不随时间而变化,则称该场为稳定场;否则,称为不稳定场。
后面我们只讨论稳定场(当然,所得的结果也适合于不稳定场的每一瞬间情况)。
在数学上给定一个数量场就相当于给定了一个数性函数)(M u u =;同样,给定了一个矢量场就相当于给定了一个矢性函数A=A )(M ,其中M 表示区域V 中的点。
当取顶了直角坐标系Oxyz 以后,空间中的点M 由它的三个坐标x 、、y、所确定,因此,一个数量场可以用一个数性函数)(x 、、y、z u u = (2.1.1)来表示。
同样,一个矢量场可用一个矢性函数A=A )(x 、、y、 (2.1.2) 来表示。
从数学观点看,数量场的概念与点函数概念相比没有新的内容,向量场的概念与向量函数相比没有新的内容,但是为了强调场这个概念的起源与物理意义,我们仍用“场”的有关术语重述前面有关章节的内容,并赋予它新的含义。
2、 数量场的等值面 在数量场中,为了直观地研究数量u 在场中的分布状况,我们引入等值面的概念。
所谓等值面,是指由场中使函数u 取相同数值的点所组成的曲面。
例如电位场中的等值面,就是由电位相同的点所组成的等值面。
显然,数量场u 的等值面方程为C x 、、y、u ==)((C 为常数)。
由隐函数存在定理知道,在函数u 为单值,且连续偏导数z y x u 、u 、u '''不全为零时,这种等值面一定存在。