矢量分析与场论基础
- 格式:ppt
- 大小:2.16 MB
- 文档页数:101
矢量分析与场论第一章 矢量分析一 内容概要1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。
与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。
2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。
3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。
如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()dsd s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。
这一点在几何和力学上都很重要。
4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。
因此单位矢量与其导矢互相垂直。
比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。
(圆函数还可以用来简化较冗长的公式,注意灵活运用)。
5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:dt dt ''⎰⎰⋅-⋅=⋅A B B A B Adt dt ''⎰⎰⨯+⨯=⨯A B B A B A前者与高等数学种数性函数的分部积分法公式一致,后者由两项相减变为了求和,这是因为矢量积服从于“负交换律”之故。
《矢量分析与场论》知识点归纳一、内容概览首先矢量,是这本书的基础。
它代表的是有大小又有方向的量,像是速度、力等物理量。
书中会详细介绍矢量的各种运算,比如加法、减法、数乘等,还有矢量的几何意义和代数意义。
接下来向量场和标量场是本书的重点之一,向量场可以理解为空间中每个点都有一个矢量,而标量场则是每个点都有一个数值。
这两个概念在物理和工程中有广泛应用,比如风的速度和方向就可以形成一个向量场。
此外书中还会涉及到一些更高级的概念,如矢量函数、矢量场的积分和微分等。
这些内容在物理学、工程学等领域都有着重要的应用。
《矢量分析与场论》是一本帮助我们理解矢量与场论基础知识的书籍。
无论你是数学爱好者,还是物理或工程专业的学子,都可以从中受益匪浅。
让我们一起期待书中更多精彩内容吧!二、矢量基础知识矢量分析与场论,听起来好像很高大上,但其实它就在我们身边,矢量基础知识就是它的基石。
咱们先来聊聊矢量的基本概念。
想象一下我们在谈论一个既有大小又有方向的东西,比如风的速度、水流的方向等。
这时候就需要用到矢量了,矢量就像一个有箭头的线段,箭头表示方向,线段的长度表示大小。
像速度、加速度、力这些我们生活中经常遇到的物理量,都可以看作是矢量。
接下来我们要了解矢量的基本运算,矢量的加减就像我们平时处理数字一样简单,只要对应着加上或减去就可以了。
但是要注意,矢量有方向性,所以我们要沿着正确的方向去加或减。
还有矢量的模,那就是矢量的长度,也就是大小。
这些基础概念了解清楚了之后,咱们就能更好地理解矢量分析的一些内容了。
知道了矢量的基本概念和运算后,我们再来说说场论中矢量的一些重要概念和应用场景。
记住哦矢量基础知识虽然听起来有点复杂,但其实它并不神秘,只要我们掌握了这些基础内容,理解矢量分析与场论就不再是难题了!1. 矢量的定义和性质首先我们来聊聊矢量的定义和性质,矢量简单来说,就是既有大小又有方向的量。
想象一下我们在谈论速度时,不只是说“快”或“慢”,还要指明是往哪个方向。
矢量分析与场论一、标量场的梯度,∇算符1、场的概念(The Concept of Field )场是用空间位置函数来表征的。
在物理学中,经常要研究某种物理量在空间的分布和变化规律。
如果物理量是标量,并且空间每一点都对应着该物理量的一个确定数值,则称此空间为标量场。
如:电势场、温度场等。
如果物理量是矢量,且空间每一点都存在着它的大小和方向,则称此空间为矢量场。
如:电场、速度场等。
若场中各点物理量不随时间变化,称为稳定场,否则,称为不稳定场。
2、方向导数(Directional Gradient )方向导数是标量函数)(x ϕ在空间一点沿任意方向l相对距离的变化率,它的数值与所取l 的方向有关。
一般来说,在不同的方向上lP l∂∂ϕ的值是不同的,但它并不是矢量。
如图所示,l为场中的任意方向,P 1是这个方向线上给定的一点,P 2为同一线上邻近的一点。
l ∆为p 2和p 1之间的距离,从p 1沿l到p 2的增量为)()(12p p ϕϕϕ-=∆若下列极限lp p l l l ∆-=∆∆→∆→∆)()(lim lim1200ϕϕϕ(1.1) 存在,则该极限值记作)(x ϕ,称之为标量场lP l∂∂ϕ在p 1处沿l的方向导P 1P 2l数。
3.梯度(Gradient )在某点沿某一确定方向取得)(xϕ在该点的最大方向导数。
n nˆgrad ∂∂=∇=ϕϕϕ (1.2) l l n n n l ⋅=⋅∂∂=∂∂=∂∂ϕϕϕθϕgrad ˆcos (1.3)4、∇算符(哈密顿算符)(Hamilton Functor )∇算符既具有微分性质又具有方向性质。
在任意方向l上移动线元距离dl ,ϕ的增量ϕd 称为方向微分,即l d dl ld ⋅∇=∂∂=ϕϕϕ (1.4)显然,任意两点ϕ值差为⎰⋅∇=-B AA B l dϕϕϕ (1.5)二、矢量场的散度、旋度、高斯定理和斯托克斯定理1、通量(Fluid )一个矢量场空间中,在单位时间内,沿着矢量场v 方向通过s d的流量是dN ,而dN 是以ds 为底,以v cos θ为高的斜柱体的体积,即s d v ds v dN⋅==θcos(1.6)称为矢量v 通过面元s d的通量。