2021高考物理一轮复习培优 物理高考培优 专题五 万有引力与航天(讲解部分)
- 格式:pdf
- 大小:590.74 KB
- 文档页数:26
2021年高考物理试题分项版解析专题05 万有引力与航天(含解析)【xx·上海·22B】1.两靠得较近的天体组成的系统成为双星,它们以两者连线上某点为圆心做匀速圆周运动,因而不至于由于引力作用而吸引在一起。
设两天体的质量分布为和,则它们的轨道半径之比__________;速度之比__________。
1.【答案】;【考点定位】万有引力定律;圆周运动【名师点睛】本题考查双星问题,要掌握双星问题的特点:双星角速度相同,向心力由万有引力提供也相同,向心力大小也相等。
【xx·江苏·3】2.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕。
“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径为1/20,该中心恒星与太阳的质量比约为()A.1/10 B.1 C.5 D.102.【答案】B【考点】天体运动【名师点睛】本题主要是公式,在天体运动中,万有引力提供向心力可求中心天体的质量。
【xx·福建·14】3.如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2。
则()3.【答案】 A【考点定位】天体运动【名师点睛】:本题主要是公式,卫星绕中心天体做圆周运动,万有引力提供向心力,由此得到线速度与轨道半径的关系【xx·重庆·2】4.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为A.0 B.C. D.4.【答案】B【考点定位】万有引力定律的应用。
【名师点睛】掌握万有引力定律求中心天体的质量和密度、环绕天体的线速度、角速度、周期、加速度;主要利用。
专题五万有引力与航天五年新高考考点一万有引力定律1.(2021山东,5,3分)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。
在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。
悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1B.9∶2C.36∶1D.72∶1答案 B2.(2020山东,7,3分)我国将在今年择机执行“天问1号”火星探测任务。
质量为m的着陆器在着陆火星前,会在火星表面附近经历一个时长为t0、速度由v0减速到零的过程。
已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g,忽略火星大气阻力。
若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( )A.m(0.4g−v0t0) B.m(0.4g+v0t0)C.m(0.2g−v0t0) D.m(0.2g+v0t0)答案 B3.(2022全国乙,14,6分)2022年3月,中国航天员翟志刚、王亚平、叶光富在离地球表面约400 km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。
通过直播画面可以看到,在近地圆轨道上飞行的“天宫二号”中,航天员可以自由地漂浮,这表明他们( )A.所受地球引力的大小近似为零B.所受地球引力与飞船对其作用力两者的合力近似为零C.所受地球引力的大小与其随飞船运动所需向心力的大小近似相等D.在地球表面上所受引力的大小小于其随飞船运动所需向心力的大小答案 C4.(2021全国乙,18,6分)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。
科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞。
高中物理一轮复习 专项训练 万有引力与航天及解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22RtT v π=3.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t ;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.4.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=5.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
专题五万有引力与航天【考情探究】课标解读考情分析备考指导考点内容万有引力定律及天体运动1.理解开普勒行星运动定律。
2.理解万有引力定律,知道其使用条件。
3.理解天体运动的规律。
1.本专题主要考查天体运动的基本参量分析、天体的质量或密度的计算、重力加速度的计算、同步卫星问题、双星问题、卫星的发射与变轨中的功能关系等。
2.近几年高考考查的题型主要是选择题,难度中等或中等偏下。
3.从2019年的考查情况来看,本专题内容的考查有强化的趋势,需引起重视。
1.复习时侧重对规律的理解和应用,强化几种常见的题型,如:天体质量和密度的估算、人造卫星的发射和运行规律、双星问题、同步卫星问题等。
2.解决本专题问题应注意以下两点:①GMmr2=mg;②GMmr2=mv2r=mω2r=m4π2T2r。
人造卫星、宇宙速度1.了解人造卫星的发射和运行规律,知道宇宙速度。
2.知道同步卫星的特点,会用万有引力定律解答多星、追及问题。
【真题探秘】基础篇固本夯基【基础集训】考点一万有引力定律及天体运动1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积答案C2.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中轨道和倾斜轨道。
其中,同步轨道半径大约是中轨道半径的1.5倍,那么同步卫星与中轨道卫星的周期之比约为()A.(32)12 B.(32)23 C.(32)32 D.(32)2答案 C3.(2018河北定州期中,13)某地区的地下发现了天然气资源,如图所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气。
假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计。
姓名,年级:时间:专题五万有引力与航天一、选择题(共13小题,78分)1.2019年6月25日,我国成功发射第46颗北斗导航卫星。
这颗卫星是倾斜地球同步轨道卫星(该卫星的高度与地球静止轨道卫星相同,但轨道平面与赤道平面成一定角度).有关该卫星的说法正确的是( )A。
该卫星相对地球处于静止状态B.该卫星的发射速度小于第二宇宙速度C.该卫星入轨后的运行速度大于第一宇宙速度D.发射此卫星要比发射等质量的近地卫星少消耗能量2。
火星被认为是太阳系中最有可能存在地外生命的行星.火星探测器首先要脱离地球成为太阳系的人造行星,接近火星后在火星近地点进行制动,进入绕火星运行的椭圆轨道,从而成为火星的人造卫星.关于火星探测器,下列说法正确的是( )A。
脱离地球前,在地球近地点的速度必须大于或等于地球的第三宇宙速度B。
到达火星近地点时,制动前的速度等于火星的第一宇宙速度C.在绕火星的椭圆轨道上运行时,速度不小于火星的第一宇宙速度D.在火星近地点,制动前、后的加速度相等3.“伽利略”木星探测器,从1989年10月进入太空,历经6年,终于到达木星周围.此后在t秒内绕木星运行N圈,并对木星及其卫星进行考察,最后坠入木星大气层烧毁。
设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探测器上的照相机正对木星,拍摄整个木星时的视角为θ(如图所示),木星为一球体.已知引力常量为G,根据以上信息下列物理量不能确定的是()A。
探测器在轨道上运行时的轨道半径B.木星的第一宇宙速度C。
木星的平均密度D.木星探测器在轨道上做圆周运动的动能4。
石墨烯是目前世界上已知的强度最高的材料,它的发现使“太空电梯"的制造成为可能,人类将有望通过“太空电梯”进入太空。
设想在地球赤道平面内有一垂直于地面延伸到太空的电梯,电梯始终相对地面静止.如图所示,假设某物体B乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星A、地球同步卫星C相比较,下列说法正确的是( )A.物体B的角速度大于卫星A的角速度B。
专题五万有引力与航天考情探究课标解读考情分析备考指导考点内容万有引力定律及其应用1.通过史实,了解万有引力定律的发现过程。
2.知道万有引力定律。
3.认识发现万有引力定律的重要意义。
4.认识科学定律对人类探索未知世界的作用。
本专题考查的学科素养主要是物理观念,科学思维。
具体内容:1.开普勒行星运动定律;2.万有引力定律;3.引力常量;4.利用万有引力定律研究天体运动;5.天体质量和密度的计算。
命题趋势:万有引力定律在航空航天领域的应用,月球的探测,嫦娥系列。
多以选择题形式出现。
1.本专题是万有引力定律在天体运行中的应用,注意同步卫星是与地球相对静止的卫星;而双星或多星模型有可能没有中心天体。
2.学好本专题有助于学生加深万有引力定律的灵活应用,加深力和运动关系的理解。
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等。
人造卫星、宇宙航行1.会计算人造地球卫星的环绕速度。
2.知道第二宇宙速度和第三宇宙速度。
真题探秘基础篇固本夯基基础集训考点一万有引力定律及其应用1.(2017江苏单科,6,4分)(多选)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空。
与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km的圆轨道上飞行,则其()A.角速度小于地球自转角速度B.线速度小于第一宇宙速度C.周期小于地球自转周期D.向心加速度小于地面的重力加速度答案BCD2.(2017北京理综,17,6分)利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离答案 D3.(2018课标Ⅲ,15,6分)为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。