圆的标准方程说课稿
- 格式:docx
- 大小:207.49 KB
- 文档页数:8
圆的标准方程说课稿一、教学目标交代本课程的目标,让学生理解圆的标准方程的含义和应用。
二、教学重点教授学生圆的标准方程的推导过程和解题方法。
三、教学难点让学生理解圆的标准方程的几何意义和应用。
四、教学过程1. 引入课程以一道问题为例引入课程:问题:已知一个圆的圆心坐标为(2, 3),半径为4,求圆的标准方程。
通过这个问题,学生可以感受到对于一个圆而言,圆心坐标和半径是非常重要的信息,而圆的标准方程可以把这些信息整合在一起。
2. 回顾坐标系和圆复习直角坐标系的概念,以及点的坐标表示方式。
回顾圆的定义:圆是平面上距离圆心相等的所有点的集合。
3. 推导圆的标准方程在笔记本上画出一个坐标系,然后以圆心为原点,以半径为半径画出一个圆。
让学生观察这个圆,并思考如何用方程来表示它。
引导学生通过观察得出结论:圆上的点到圆心的距离等于半径。
得出圆的标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径长度。
4. 解题示例通过几个具体的实例,教授学生如何使用圆的标准方程解题。
例1:已知圆心坐标为(3, -2),半径为5,求圆的标准方程。
解答:根据圆的标准方程,将圆心坐标和半径代入公式,得到方程:(x - 3)^2 + (y + 2)^2 = 25。
例2:已知圆的标准方程为(x + 1)^2 + (y - 4)^2 = 16,求圆心坐标和半径。
解答:根据圆的标准方程,通过比较系数得到圆心坐标为(-1, 4),半径为4。
5. 练习题布置一些练习题,让学生运用所学知识解答。
例题:已知圆的标准方程为(x - 2)^2 + (y + 3)^2 = 9,求圆的面积。
解答:通过比较系数得到圆心坐标为(2, -3),半径为3。
圆的面积公式为πr^2,代入半径值计算得到面积为9π。
6. 拓展思考提出一些拓展问题,让学生深入思考和探索。
问题:如何通过圆的标准方程推导出圆的一般方程?引导学生思考,并向学生提供一些线索和指导。
圆的一般方程说课稿【一】教学背景分析1.教材结构分析《圆的一般方程》安排在高中数学必修2第四章第一节第二课时.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用.2.学情分析圆的一般方程是学生在掌握了求曲线方程一般方法的基础上,在学习过圆的标准方程之后进行研究的,但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标知识与技能:(1).掌握圆的一般方程及一般方程的特点(2).能将圆的一般方程化成圆的标准方程,进而求出圆心和半径(3).能用待定系数法由已知条件求出圆的方程(4)能用坐标法求动点的轨迹方程过程与方法:(1)进一步培养学生用代数方法研究几何问题的能力;(2)加深对数形结合思想的理解和加强对待定系数法的运用,认识研究问题中由简单到复杂,由特殊到一般的化归思想,充分了解分类思想在数学中的重要地位,强化学生的观察,思考能力。
(3)增强学生应用数学的意识.情感,态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。
(3)在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、学情及教学目标的分析,我确定如下的教学重点和难点:4. 教学重点与难点重点:(1).圆的一般方程。
(2).待定系数法求圆的方程.(3)坐标法求动点的轨迹方程难点:圆的一般方程的应用,待定系数法求圆的方程及对坐标法思想的理解.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析教法分析为了充分调动学生学习的积极性,本节课采用“问题探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我利用多媒体课件进行辅助教学,借助信息技术创设问题情境,利用《几何画板》软件作动态演示,既激发了学生的学习兴趣,又直观的诱导了学生的思维过程. 2.学法分析众所周知, 高中数学教学不但要传授给学生基本的数学知识与技能,更要注重过程与方法,态度情感与价值观,因此我在教学活动中,不断地设置问题,提出疑问,诱导学生主动思考,主动探究,讨论交流,使学生在积极的学习中解决问题。
高中数学说课稿:《圆的标准方程》"说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。
下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴!高中数学说课稿:《圆的标准方程》【一】教学背景分析1.教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4. 教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析1.教法分析为了充分调动学生学习的积极性,本节课采用"启发式"问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图.首先:纵向叙述教学过程(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心在,半径为时又如何呢?这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.(三)应用举例——巩固提高I.直接应用内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点.2.写出圆的圆心坐标和半径.我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.II.灵活应用提升能力问题四 1.求以点为圆心,并且和直线相切的圆的方程.2.求过点,圆心在直线上且与轴相切的圆的方程.3.已知圆的方程为,求过圆上一点的切线方程.你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.III.实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.(四)反馈训练——形成方法问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.2.求圆过点的切线方程.3.求圆过点的切线方程.接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块"用武"之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.(五)小结反思——拓展引申1.课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:.②已知圆的方程是,经过圆上一点的切线的方程是:.2.分层作业(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.3.激发新疑问题七 1.把圆的标准方程展开后是什么形式?2.方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争"使教育过程成为一种艺术的事业".。
圆的标准方程教案圆的标准方程教案7篇作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
那么问题来了,教案应该怎么写?以下是小编收集整理的圆的标准方程教案,仅供参考,希望能够帮助到大家。
圆的标准方程教案11.教学目标(1)知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程;2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
(2)能力目标:1.进一步培养学生用解析法研究几何问题的能力;2.使学生加深对数形结合思想和待定系数法的理解;3.增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.2.教学重点.难点(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题。
3.教学过程(一)创设情境(启迪思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?[引导]画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)将x=2.7代入,得.即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2y2=r22.如果圆心在,半径为时又如何呢?[学生活动]探究圆的方程。
[教师预设]方法一:坐标法如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}由两点间的距离公式,点m适合的条件可表示为①把①式两边平方,得(x―a)2(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)应用举例(巩固提高)i.直接应用(内化新知)问题三:1.写出下列各圆的方程(课本p77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为;(3)经过点,圆心在点。
圆的标准方程说课稿各位评委:上午好!今天我说课的课题是《圆的标准方程》。
下面我对本课题进行分析:首先是我的说课思路是:1、教材分析 2、教法学法设计 3、教学过程 4、自我评价。
一、教材分析1、教材的地位与作用《圆的标准方程》是人教版必修二第4章第1节的第1个课题。
在此之前,学生已经学习了直线及其方程,这为过渡到本课题起到铺垫的作用。
同时,学好本课题为今后学习圆锥曲线及其方程奠定了基础,所以本课题在整个教材中起到承上启下的作用。
2、教学目标根据本教材的结构和内容分析,结合高一年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:(1)知识目标①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程③利用圆的标准方程解决简单的实际问题。
(2)能力目标①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解;③增强学生用数学的意识。
(3)情感目标①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。
3、教学重难点⑴重点:圆的标准方程的求法及其简单应用;⑵难点:会根据不同的已知条件求圆的标准方程。
二、教法分析我们都知道数学是一门培养人的逻辑思维能力的重要学科。
因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。
我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。
为了充分调动学生学习的积极性,本节课采用“启发式”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。
借助创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
三、学法分析通过推导圆的标准方程,求圆的标准方程,理解必须具备两个个独立的条件才可以确定一个圆。
通过应用圆的标准方程,使学生认识到数学在实际问题中的应用。
四、教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
《圆的标准方程》的说课稿各位老师好!今天我说课的课题是《圆的标准方程》第一课时。
对于本节课,我将围绕“说教材,说教法,说学法,说教学过程”四个方面来说明。
一、教材分析分三个方面阐述:教材的地位和作用;教学目标;教学重点与难点1.教材的地位和作用《圆的标准方程》是在认识《直线与方程》等知识的基础上对解析几何进一步深入的认识。
圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。
它是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.2.教学目标根据教学大纲的要求和高一学生对逻辑推理的认知规律特点,制定本节课的教学目标:(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆心坐标和半径,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③提高学生自主探究问题的能力,增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②增强学生学习的积极性,提高学习的乐趣。
依据课程标准,根据以上对教材、教学目标的分析,确定如下的教学重点和难点:3、教学重点与难点(1)重点:圆的标准方程的求法及其应用.(2)难点:如何运用坐标法或几何法研究圆的问题二、教法学法分析包括:学情分析、教法分析、学法分析1、学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。
但由于学生学习解析几何的时间不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难,学生在探究问题的能力,合作交流的意识等方面有待加强。
2、教法分析根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,为了充分调动学生学习的积极性,采用探究性学习模式,激发学生的学习兴趣,引导学生注重思维、建模的过程。
《圆的标准方程》说课稿《圆的标准方程》说课稿(第一课时)大家好,我今天说课的题目是圆的标准方程。
下面我将从以下几个方面来阐述我的教学设计。
一、教材分析《圆的标准方程》选基础模块下册第八章第4节的内容,在此之前我们学了直线方程,圆的标准方程是是进一步学习圆的一般方程、直线与圆的位置关系的基础,所以本节内容在整个解析几何中起着承前启后的作用。
二、学情分析我教授的是幼教二年级的学生,他们在知识、能力和情感上有以下特征。
在新课开始之前教师借助“问卷星”创建网络问卷,通过微信将问卷发布到班级微信群,学生填写提交。
老师在手机浏览每一份问卷,并获得详细的统计分析报告,准确了解学生知识准备情况。
三、教学目标依据教学大纲和新课程理念,结合本专业学生的认知特点,我确定本节课的教学目标如下:四、重点、难点分析重点:圆的标准方程的推导和初步运用。
难点:利用待定系数法求圆的标准方程,五、教法学法分析结合本节课的教学目标,我主要采用了以下教学策略,本着以学生发展为核心的理念,我引导学生形成以下几种学习方法下面我将着重阐述我教学过程设计。
六、教学过程设计(一)课前诊测,扫除障碍根据课前调查了解的情况,学生对两点间距离公式有关知识不太熟悉了。
我制作微课以便学生在线学习。
课前教师通过问卷星设计课前检测,让学生可以在线答题。
(二)创设情境,导入新课通过播放赵州桥的视频,设置问题引起学生思考。
使学生感受到数学源于生活,学会用数学的眼光去关注生活,体现了数学的应用价值。
(三)合作交流,探究新知本环节旨在探究圆的标准方程,整个教学环节分三步完成。
第一步,深入探究圆的定义我指出“不以规矩,无以成方圆。
”要求学生用圆规在直角坐标系中作出一个圆,我又利用几何画板演示了一遍圆的定义。
让他们尝试回忆出圆的定义,最后说出完整的圆的定,也为下一步方程的推导奠定了基础。
第二步,探究圆的标准方程中职学生数学基础薄弱,很大部分原因是没有建立基本数学思维,因此我让他们自学圆的标准方程的推导过程。
圆的标准方程说课稿 Prepared on 22 November 2020
《圆的标准方程》的说课稿
各位老师、同学们,大家好!
今天我说课的题目是《圆的标准方程》,按大纲要求《圆的方程》这一节共分三课时,我今天要说的是第一课时的内容——圆的标准方程.下面我将从三个方面来阐述我对这节课的教学认识,分别是,教学背景分析、教法学法分析、以及具体的教学过程与设计.
首先,我对本节课的教学背景进行一些分析:在这里我分四小点进行说明.【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.在新课表实验教材中,被安排在必修二的平面解析几何初步中,我们知道,圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.而圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对接下来直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析:圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方
程;
③利用圆的标准方程解决简单的实际问题.
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4.教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点:①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:【二】教法学法分析
1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导学生通过建模来解决问题
2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求r b a 、、的过程.
下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维
反馈训练形成方法小结反思拓展引申
下面我详细叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为,高为3m 的货车能不能驶入这个隧道
通过对这
个实际问题的探究,把学生的思维由用勾CD 的长度转移为用曲线的方程来解决.一股定理求线段
方面帮助学生
回顾旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。
用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二1.根据问题一的探究能不能得到圆心在原点,半径为r 的圆的方程
2.如果圆心在),(b a ,半径为r 时又如何呢
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r 的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I .直接应用内化新知
问题三1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点)1,5(P ,圆心在点)3,8(-C .
2.写出圆222)2()2(-=++y x 的圆心坐标和半径.
在这里,我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II .灵活应用提升能力
问题四1.求以点)3,1(C 为圆心,并且和直线0743=--y x 相切的圆的方程.
2.求过点)4,1(C ,圆心在直线03=-y x 上且与y 轴相切的圆的方程.
3.已知圆的方程为2522=+y x ,求过圆上一点)3,4(-A 的切线方程.
你能归纳出具有一般性的结论吗
已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是什么
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III .实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m 需用一个支柱支撑,求支柱22P A 的长度(精确到).
我选用了教材的例3,它是待定系数法求出圆的三个参数r b a 、、的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六1.求过原点和点),(11P ,且圆心在直线0132=++y x 上的圆的标准方程.
2.求圆1322=+y x 过点)3,2(-P 的切线方程.
3.求圆2522=+y x 过点)2,5(-B 的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到
自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为),(b a C ,半径为r 的圆的标准方程为:222)()(r b y a x =-+-;
圆心在原点时,半径为r 的圆的标准方程为:222r y x =+.
②已知圆的方程是222r y x =+,经过圆上一点),(00y x M 的切线的方程是:
200r y y x x =+.
2.分层作业(A )巩固型作业:教材P81-82:(习题)1,2,4.
(B )思维拓展型作业:
试推导过圆222)()(r b y a x =-+-上一点),(00y x M 的切线方程.
3.激发新疑
问题七1.把圆的标准方程展开后是什么形式
2.方程0208622=++-+y x y x 表示什么图形
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.谢谢大家!。