图的深度和广度遍历-实验报告
- 格式:doc
- 大小:49.50 KB
- 文档页数:9
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。
二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。
图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。
class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。
def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。
数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。
2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。
四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
1.问题描述:不少涉及图上操作的算法都是以图的遍历操作为基础的。
试写一个程序,演示在连通的无向图上访问全部结点的操作。
2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。
3.测试数据:教科书图7.33。
暂时忽略里程,起点为北京。
4.实现提示:设图的结点不超过30个,每一个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。
通过输入图的全部边输入一个图,每一个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。
5.选作内容:(1) .借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。
(2) .以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或者树形打印生成树。
1.为实现上述功能,需要有一个图的抽象数据类型。
该抽象数据类型的定义为:ADT Graph{V 是具有相同特性的数据元素的集合,称为顶点集。
R={VR}VR={<v,w> | v ,w v 且P(v,w),<v,w>表示从v 到w 得弧,谓词P(v,w)定义了弧<v,w>的意义或者信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略}ArcCell, AdjMatrix[max_n][max_n];typedef struct{VertexType vexs[max_n]; //顶点AdjMatrix arcs; //邻接矩阵int vexnum, arcnum; //顶点数,边数}MGraph;//队列的类型定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode, *QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue;4.本程序包含三个模块1).主程序模块void main( ){创建树;深度优先搜索遍历;广度优先搜索遍历;}2).树模块——实现树的抽象数据类型3).遍历模块——实现树的深度优先遍历和广度优先遍历各模块之间的调用关系如下:主程序模块树模块遍历模块#include "stdafx.h"#include<iostream>using namespace std;#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
第1篇一、实验目的1. 理解广度遍历的基本概念和原理;2. 掌握广度遍历算法的编程实现;3. 熟悉图的邻接表表示方法;4. 分析广度遍历算法在图中的应用。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验原理广度遍历(Breadth-First Search,BFS)是一种基于图的遍历算法,它按照顶点的层次顺序访问图中的所有顶点。
具体来说,从起始顶点开始,首先访问起始顶点,然后访问起始顶点的所有邻接顶点,接着访问邻接顶点的邻接顶点,以此类推,直到遍历完所有顶点。
广度遍历算法通常采用队列数据结构来实现。
在遍历过程中,首先将起始顶点入队,然后从队列中依次取出顶点,访问其邻接顶点,并将邻接顶点入队。
这样,每个顶点都会按照其被访问的顺序入队,从而实现了广度遍历。
四、实验步骤1. 创建图:使用邻接表表示法创建实验所需的图。
2. 实现广度遍历算法:编写广度遍历算法的代码,实现图的遍历功能。
3. 运行实验:运行实验程序,观察广度遍历算法的执行过程和结果。
五、实验代码```cppinclude <iostream>include <vector>include <queue>using namespace std;// 定义图的结构体struct Graph {int numVertices; // 顶点数量vector<int> adjList; // 邻接表};// 初始化图void initGraph(Graph &g, int numVertices) {g.numVertices = numVertices;g.adjList.resize(numVertices);}// 添加边void addEdge(Graph &g, int src, int dest) {g.adjList[src].push_back(dest);}// 广度遍历void bfs(Graph &g, int startVertex) {queue<int> queue;vector<bool> visited(g.numVertices, false); // 访问标记数组 // 将起始顶点入队queue.push(startVertex);visited[startVertex] = true;while (!queue.empty()) {int vertex = queue.front();cout << "访问顶点: " << vertex << endl; queue.pop();// 遍历邻接顶点for (int neighbor : g.adjList[vertex]) { if (!visited[neighbor]) {queue.push(neighbor);visited[neighbor] = true;}}}}int main() {// 创建图Graph g;initGraph(g, 6);addEdge(g, 0, 1);addEdge(g, 0, 2);addEdge(g, 1, 3);addEdge(g, 1, 4);addEdge(g, 2, 5);addEdge(g, 3, 5);addEdge(g, 4, 5);// 广度遍历cout << "广度遍历结果:" << endl;bfs(g, 0);return 0;}```六、实验结果与分析运行实验程序,可以得到以下输出:```访问顶点: 0访问顶点: 1访问顶点: 2访问顶点: 3访问顶点: 4访问顶点: 5```从输出结果可以看出,广度遍历算法按照顶点的层次顺序访问了图中的所有顶点,符合预期。
数据结构实验报告实验四图的应用一、实验题目:图的应用——深度优先/广度优先搜索遍历二、实验内容:很多涉及图上操作的算法都是以图的遍历操作为基础的。
试编写一个算法,实现图的深度优先和广度优先搜索遍历操作。
要求:以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现连通无向图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。
(注:学号为奇数的同学使用邻接矩阵存储结构实现,学号为偶数的同学使用邻接矩阵实现)提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先、广度优先搜索遍历,并输出遍历的结果。
三、程序源代码:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 20#define OVERFLOW -1int visited[80];typedef struct ArcNode{int adjvex; //该弧所指向的顶点的位置struct ArcNode *nextarc; //指向下一条弧的指针}ArcNode;typedef struct VNode{int data; //顶点信息ArcNode *firstarc; //指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;//图的当前顶点数和弧数}ALGraph;typedef struct QNode{int data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;//队头指针QueuePtr rear;//队尾指针}LinkQueue;void InitQueue(LinkQueue &q){//构造一个空队列qq.front=q.rear=(QueuePtr)malloc(sizeof(QNode));if(!q.front) exit(OVERFLOW);q.front->next=NULL;}void EnQueue(LinkQueue &q,int e){//插入元素e为q的新的队尾元素QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p) exit(OVERFLOW);//存储分配失败p->data=e;p->next=NULL;q.rear->next=p;q.rear=p;}int DeQueue(LinkQueue &q){int e;//若队列不空,则删除q的队头元素,用e返回其值,并返回OK;否则返回ERROR if(q.front==q.rear) return false;QueuePtr p;p=q.front->next;e=p->data;q.front->next=p->next;if(q.rear==p) q.rear=q.front;free(p);return e;}bool QueueEmpty(LinkQueue &q){ //若队列q为空队列,则返回TRUE,否则返回FLASE if(q.front==q.rear) return true;elsereturn false;}int LocateVex(ALGraph G,int v){int i;for(i=0;i<G.vexnum;i++)if(G.vertices[i].data==v)return i;}//用邻接表构造无向图void CreateDG(ALGraph &G){int i,j,k;printf("输入图的顶点数和弧度:\n");scanf("%d %d",&G.vexnum,&G.arcnum);printf("输入顶点信息:\n");for(i=0;i<G.vexnum;i++){scanf("%d",&G.vertices[i].data);G.vertices[i].firstarc=NULL;}printf("输入邻接点:\n");for(k=0;k<G.arcnum;k++){char v1,v2;scanf("%d %d",&v1,&v2);i=LocateVex(G,v1);j=LocateVex(G,v2);struct ArcNode *s;s=(ArcNode *)malloc(sizeof(ArcNode));s->adjvex=j;s->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=s;struct ArcNode *t;t=(ArcNode *)malloc(sizeof(ArcNode));t->adjvex=i;t->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=t;}}void DFSAL(ALGraph G,int v0){visited[v0]=1;printf("%5d",G.vertices[v0].data);struct ArcNode *p;int w;for(p=G.vertices[v0].firstarc;p;p=p->nextarc){w=p->adjvex;if(!visited[w])DFSAL(G,w);}}//深度优先搜索遍历void DFSTraverse(ALGraph G){int v0;for(v0=0;v0<G.vexnum;v0++) visited[v0]=0; //访问标志数组初始化//直到图中所有顶点都被访问到为止for(v0=0;v0<G.vexnum;v0++)if(!visited[v0])DFSAL(G,v0); //对尚未访问的顶点调用DFSAL}//广度优先搜索遍历void BFSTraverse(ALGraph G,LinkQueue q){ int u,w;struct ArcNode *p;for(u=0;u<G.vexnum;u++) visited[u]=0; //访问标志数组初始化InitQueue(q);for(u=0;u<G.vexnum;u++)if(!visited[u]){printf("%5d",G.vertices[u].data);visited[u]=1;EnQueue(q,u);while(!QueueEmpty(q)){u=DeQueue(q);p=G.vertices[u].firstarc;while(p){w=p->adjvex;if(!visited[w]){visited[w]=1;printf("%5d",G.vertices[w].data);EnQueue(q,w);}//ifp=p->nextarc;}//while}//while}//if}//BFSTraverseint main(){ALGraph G;LinkQueue q;CreateDG(G);printf("\n");printf("输出深度优先搜索序列:\n");DFSTraverse(G);printf("\n");printf("输出广度优先搜索序列:\n");BFSTraverse(G,q);printf("\n");return 0;}四、测试结果:。
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
天津理工大学实验报告学院(系)名称:计算机与通信工程学院姓名学号专业计算机科学与技术班级2009级1班实验项目实验四图的深度优先与广度优先遍历课程名称数据结构与算法课程代码实验时间2011年5月12日第5-8节实验地点7号楼215 批改意见成绩教师签字:实验四图的深度优先与广度优先遍历实验时间:2011年5月12日,12:50 -15:50(地点:7-215)实验目的:理解图的逻辑特点;掌握理解图的两种主要存储结构(邻接矩阵和邻接表),掌握图的构造、深度优先遍历、广度优先遍历算法。
具体实验题目:(任课教师根据实验大纲自己指定)每位同学按下述要求实现相应算法:根据从键盘输入的数据创建图(图的存储结构可采用邻接矩阵或邻接表),并对图进行深度优先搜索和广度优先搜索1)问题描述:在主程序中提供下列菜单:1…图的建立2…深度优先遍历图3…广度优先遍历图0…结束2)实验要求:图的存储可采用邻接表或邻接矩阵;定义下列过程:CreateGraph(): 按从键盘的数据建立图DFSGrahp():深度优先遍历图BFSGrahp():广度优先遍历图实验报告格式及要求:按学校印刷的实验报告模版书写。
(具体要求见四)实验思路:首先,定义邻接矩阵和图的类型,定义循环队列来存储,本程序中只给出了有向图的两种遍历,定义深度优先搜索和广度优先搜索的函数,和一些必要的函数,下面的程序中会有说明,然后是函数及运行结果!#include<iostream>#include<cstdlib>using namespace std;#define MAX_VERTEX_NUM 20//最大顶点数#define MaxSize 100bool visited[MAX_VERTEX_NUM];enum GraphKind{AG,AN,DG,DN};//图的种类,无向图,无向网络,有向图,有向网络struct ArcNode{int adjvex;ArcNode * nextarc;};struct VNode{int data;ArcNode * firstarc;};struct Graph{VNode vertex[MAX_VERTEX_NUM];int vexnum,arcnum;//顶点数,弧数GraphKind kind;//图的类型};struct SeqQueue{int *base;int front,rear;SeqQueue InitQueue(){//循环队列初始化SeqQueue Q;Q.base = new int;Q.front=0;Q.rear=0;return Q;}void DeQueue(SeqQueue &Q,int &u){//出队操作u = *(Q.base+Q.front);Q.front = (Q.front+1)%MaxSize;}int QueueFull(SeqQueue Q){//判断循环队列是否满return (Q.front==(Q.rear+1)%MaxSize)?1:0;}void EnQueue(SeqQueue &Q,int x){//入队操作if(QueueFull(Q)){cout<<"队满,入队操作失败!"<<endl;exit(0);}*(Q.base+Q.rear) = x;Q.rear = (Q.rear+1)%MaxSize;void CreateDG(Graph & G,int n,int e){//初始化邻接表头结点int j;for(int i=0;i<n;++i){G.vertex[i].data=i;G.vertex[i].firstarc=NULL;}for(i=0;i<e;++i){cin>>i>>j;//输入边的信息ArcNode* s;s= new ArcNode;s->adjvex = j;s->nextarc = G.vertex[i].firstarc;G.vertex[i].firstarc = s;}}void Visit(Graph G,int u){cout<<G.vertex[u].data<<" ";}int FirstAdjVex(Graph G,int v){if(G.vertex[v].firstarc)return G.vertex[v].firstarc->adjvex;elsereturn -1;}int NextAdjVex(Graph G,int v,int w){ArcNode* p = G.vertex[v].firstarc;while(p->adjvex!=w)p = p->nextarc;if(p->nextarc)return p->nextarc->adjvex;elsereturn -1;}void DFSGrahp(Graph G,int v){visited[v]=true;Visit(G,v);//访问顶点V,对从未访问过的邻接点w递归调用DFS for(int w=FirstAdjVex(G,v);w!=0;w=NextAdjVex(G,v,w))if(!visited[w]) DFSGrahp(G,w);}void DFSTraverse(Graph G){//对图G做深度优先搜索for(int v=0;v<G.vexnum;++v)visited[v]=false;//初始化访问标志数组visitedfor(v=0;v<G.vexnum;++v)if(!visited[v]) DFSGrahp(G,v);//对尚未访问的顶点v调用DFS }void BFSGrahp(Graph G){//图的广度优先搜索SeqQueue Q;Q=InitQueue();int u;for(int v=0;v<G.vexnum;++v)if(!visited[G,v]){EnQueue(Q,v);//v入队列while(!((Q.front==Q.rear)?1:0)){DeQueue(Q,u);//对首元素出队,赋给uvisited[u]=true;Visit(G,u);for(int w=FirstAdjVex(G,u);w!=0;w=NextAdjVex(G,u,w)) //u的未访问过的邻接点w入队列if(!visited[w])EnQueue(Q,w);}}}int main(){Graph p;int n,e;cout<<"输入图的顶点及边数:"<<endl;cin>>n>>e;cout<<"创建图:"<<endl;CreateDG(p,n,e);cout<<"图的优先深度结果为:"<<endl;DFSTraverse(p);cout<<"图的广度优先结果为:"<<endl;BFSGrahp(p);printf("结果如上所示!\n");return 0;}。
实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。
度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。
其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤:(1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。
(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。
所以,下面只考虑从某一顶点出发遍历图的问题。
(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。
(4)这就是遍历次序的问题,图的遍历通常有深度优先遍历和广度优先遍历两种方式,这两种遍历次序对无向图和有向图都适用。
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
图遍历操作实验报告实验报告姓名:班级:12南航网络学号:实验题目图的遍历操作实验时间2012-11-27实验地点指导教师尚鲜莲实验目的与要求:目的:熟练掌握图的的两种存储结构;熟练掌握图的深度优先遍历和广度优先遍历算法;能解决简单的应用问题。
要求:分别采用邻接矩阵和邻接表存储结构,完成图的深度优先遍历(DFS)和广度优先遍历(BFS)的操作。
搞清楚BFS算法中队列的作用。
需求分析和实现功能说明::在test4.c中填写入相应语句,使之能顺利完成图的深度优先和广度优先遍历操作。
测试数据为:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。
将空缺语句补充完整,并写出输出结果。
)算法设计(最好给出流程图)::算法程序(源程序代码)#defineVEX_NUM5#defineMAXSIZE10#includestdio.htypedefcharVextype;type defstruct{Vextypevexs[VEX_NUM];intarcs[VEX_NUM][VEX_NUM];}Mgraph;type defstruct{Vextypeelem[VEX_NUM];intfront,rear;}SqQueue;SqQueueQ;intvisited[VEX_NUM]={0};voidcreat_Mgraph(Mgraph *G,inte);voidDfs_m(Mgraph*G,inti);voidBfs(Mgraph*G,intk);voidInitQueu e(SqQueue*Sq);intEnQueue(SqQueue*Sq,Vextypex);intDelQueue(SqQueue*Sq, Vextype*y);intQueueEmpty(SqQueue*Sq);voidmain(){inte,i,j;Mgraph*G;pri ntf(qingshuruwuxiangtubiandeshumuscanf(%d,creat_Mgraph(G,e);printf(qi ngshurubianlideqishidingdianscanf(%d,Dfs_m(G,i);for(j=0;jVEX_NUM;++j) visited[j]=0;Bfs(G,i);}voidcreat_Mgraph(Mgraph*G,inte){inti,j,k;print f(shurugedingdianxinxi:for(i=0;iVEX_NUM;++i)/*scanf(%c,G-vexs[i]);*/G-vexs[i]=getch();for(i= 0;iVEX_NUM;++i)printf(%d%c\n,i,G-vexs[i]);/*getch();*/for(i=0;iVEX_NU M;++i)for(j=0;jVEX_NUM;++j)G-arcs[i][j]=0;printf(shurugebiandedingdianxuhaoi,j:for(k=0;kk++){scanf(%d,%d,i,G-arcs[i][j]=1;G-arcs[j][i]=1;}}/*creat_M graph*/voidDfs_m(Mgraph*G,inti){intj;printf(%3c,G-vexs[i]);visited[i] =1;for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]==1)(!visited[j]))Dfs_m(G,j); }/*Dfs_m*/voidBfs(Mgraph*G,intk){intx,i,j;SqQueue*Q;InitQueue(Q);prin tf(%3c,G-vexs[k]);visited[k]=1;x=EnQueue(Q,G-vexs[k]);while(!QueueEmp ty(Q)){x=DelQueue(Q,G-vexs[i]);for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]= =1)(!visited[j])){printf(%3c,G-vexs[j]);visited[j]=1;x=EnQueue(Q,G-vexs[j]);}}}/*Bfs*/voidInitQueue(SqQueue*Sq){Sq-front=Sq-rear=0;}/*InitQueue*/intEnQueue(SqQueue*Sq,Vextypex){ if((Sq-rear+1)%MAXSIZE==Sq-front)return0;Sq-elem[Sq-rear]=x;Sq-rear=( Sq-rear+1)%MAXSIZE;return1;printf(Sq-rearis:%d\n,Sq-rear);}/*EnQueue* /intDelQueue(SqQueue*Sq,Vextype*y){if(Sq-front==Sq-rear)return0;*y=Sq -elem[Sq-front];Sq-front=(Sq-front+1)%MAXSIZE;return1;}/*DelQueue*/in tQueueEmpty(SqQueue*Sq){return(Sq-front==Sq-rear);}上机调试情况说明(包括调试数据、调试过程中遇到的问题及解决方法)经调试没有发现问题测试结果和输出数据,对结果的分析和说明:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。
图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
实验中使用的数据结构为邻接表来表示图。
三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。
它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。
(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。
它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。
四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。
例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。
实验三 图的广度优先遍历和深度优先遍历算法的设计一、实验目的本实验的目的是通过理解图的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。
二、实验内容1.分别编写BFS 、DFS 算法。
2.判断无向图G 是否连通,若连通则返回1,否则返回0。
3.判断无向图G 是否是一棵树。
若是树,返回1;否则返回0。
4.判断有向图中是否存在回路。
5.假设图G 采用邻接表存储,求距离顶点vO 的最短路径长度为k 的所有顶点,要求尽可能节省 时间。
三、实验类型验证性四、实验要求和提示1.实验前充分预习实验指导书内容及相关理论知识内容:实验中严格遵守实验室规范和制度,认真完成实验内容并做好实验纪录:实验后必须按照要求独立完成实验报告。
2.以上6个题中,题1是必做题,题2—5可任意选作l 或2题。
3.提示:(1)最好使用邻接表法建立无向图和有向图的存储结构,然后实现图的遍历。
(2)结点结构:typedef struct node{ int adjvex ; //邻接点域,存放与Vi 邻接的结点在表头数组中的位置 struct node * next ; //链域,指示下一条边或弧)JD :表头接点:typedef struct tnode{ int vexdata ;//存放顶点信息struct node *firstarc ;//指示第一个邻接点}TD ;4.程序实现方面的提示:(1)可采用遍历方式判断无向图是否连通。
先给visited[]数组置初值O,然后从O 开始遍历该图,之后若所有顶点i的visited[i]均为1,则该图是连通的,否则不连通。
(2)一个无向图G是一棵树的条件是:G必须是无回路的连通图或者是有n—l条边的连通图(注:本题可以只给出算法)(3)判断有向图中是否存在回路时,若一个有向图拓扑排序不成功,则一定存在回路;反之,若拓扑排序成功,则一定不存在回路。
(3)采用宽度优先搜索方法,找出第k层的所有顶点即为所求(宽度优先搜索保证找到的路径是最短路径)。
实验五:图的广度和深度遍历1、实验目的:(1)理解图的含义和性质。
(2)掌握图的存储结构以及描述方法。
(3)掌握图遍历方式和相应算法。
(4)掌握图一些基本操作。
2、实验内容:a.问题描述:b.算法提示1、广度优先搜索的基本思想从图中某一顶点Vo出发,首先访问Vo相邻的所有未被访问过的顶点V1、V2、……Vt;再依次访问与V1、V2、……Vt相邻的且未被访问过的所有顶点。
如此继续,直到访问完图中所有的顶点。
代码见(附录)2.广度优先搜索基本算法:1)从某个顶点出发开始访问,被访问的顶点作相应的标记,并输出访问顶点号;2)从被访问的顶点出发,依次搜索与该顶点有边的关联的所有未被访问的邻接点,并作相应的标记。
3)再依次根据2)中所有被访问的邻接点,访问与这些邻接点相关的所有未被访问的邻接点,直到所有顶点被访问为止。
代码见(附录)3、实验总结:(1)结论图的遍历和二叉树的遍历不同,二叉树有左子树,右子树,有根点。
可以是先序,中序,后序遍历,而图是比树更复杂的数据结构。
在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树开拓结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素相关。
而在图形结构中,对点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
(2)心得体会从图到树的变化很大,开始心里还有点谱,怎样去创建树,怎样去遍历树。
现在对图的操作感觉挺茫然的,不知道从哪儿下手,怎么去构建一个图,图的存储结构是怎样的等等一系列问题的出现让我一时不知道怎么去处理。
还好有pair的帮助,让我静下心来看了书,看到了图和树的相似的地方,看到了图和树的不同的地方。
在后来的调试代码过程中让我看到了自己的不足,之前代码只是了解每一段代码是什么意思,现在程序有问题了还真是有点困难不得不一句一句的去读代码。
在调试代码过程序中还得感觉老师的帮助,有的问题却是我们真不懂的要不是老师能及时的帮助我们写程序的思想可能会一直错下去。
实验报告一、实验目的和内容1.实验目的掌握图的邻接矩阵的存储构造;实现图的两种遍历:深度优先遍历和广度优先遍历。
2.实验内容1.图的初始化;2.图的遍历:深度优先遍历和广度优先遍历。
二、实验方案程序主要代码:///<summary>///邻接矩阵的节点数据///</summary>public struct ArcCell{public int Type; //顶点的关系类型,对无权图,用1或0表示相邻;//对带权图,那么为权值类型。
public object Data; //该弧相关信息public ArcCell(int type,object data){Type = type;Data = data;}}///<summary>///图的类型///</summary>public enum GKind {DG,DN,UDG,UDN}; //有向图,有向网,无向图,无向网///<summary>///图类///</summary>public class Graph{public static int Max_Vertex_Num = 20; //最大顶点数private object [] Vexs; //顶点数据数组private ArcCell [,] Arcs; //邻接矩阵private GKind Kind; //图的种类private int VexNum,ArcNum; //当前顶点数和弧数///<summary>///图的初始化方法///</summary>///<param name="vexnum">顶点数</param>///<param name="arcnum">弧数</param>///<param name="k">图的类型</param>public Graph(int vexnum,int arcnum,GKind k){VexNum = vexnum;ArcNum = arcnum;Kind = k;Vexs = new object[Max_Vertex_Num];Arcs = new ArcCell[Max_Vertex_Num,Max_Vertex_Num];}///<summary>///设置v1,v2之间的弧的权值,顶点的关系类型,对无权图,用1或0表示相邻;///对带权图,那么为权值类型。
///</summary>///<param name="v1">顶点1</param>///<param name="v2">顶点2</param>///<param name="adj">权</param>///<returns>成功返回真,否那么返回假</returns>public bool SetArcInfo(int v1,int v2,int adj,object data){if(v1<VexNum && v2<VexNum){Arcs[v1,v2].Type = adj;Arcs[v1,v2].Data = data;switch(Kind){case GKind.DG:break;case GKind.UDG:Arcs[v2,v1].Type = adj;Arcs[v2,v1].Data = data;break;case GKind.DN:break;case GKind.UDN:break;}return true;}elsereturn false;}///<summary>///设置指定顶点的信息///</summary>///<param name="v">顶点号</param>///<param name="info">要设置的信息</param>///<returns>成功返回真,否那么返回假</returns>public bool SetVexInfo(int v,object info){if(v<VexNum){Vexs[v] = info;return true;}elsereturn false;}///<summary>///返回v的第一个邻接顶点,假设没有那么返回-1///</summary>public int FirstAdjVex(int v){for(int j=0;j<this.VexNum;j++){if((this.Arcs[v,j].Type>0)&&(this.Arcs[v,j].Type<int.MaxValue)) {return j;}}return -1;}//指定节点vex的(相对于Fvex)下一个邻接顶点,假设没有那么返回-1public int NextAdjVex(int vex,int Fvex){for(int j=0;j<this.VexNum;j++){if((this.Arcs[vex,j].Type>0)&&(this.Arcs[vex,j].Type<int.MaxValue )&&(j>Fvex)){return j;}}return -1;}public static bool [] visited; //访问标志数组///<summary>///深度遍历,递归算法///</summary>public string DFSTraverse(){visited = new bool[this.VexNum]; //初始化访问标志数组string str ="";for(int v=0;v<this.VexNum;v++){visited[v] = false;}for(int v=0;v<this.VexNum;v++){if(!visited[v])str +=DFS(v);}return str;}///<summary>///从第v个顶点出发递归地深度优先遍历///</summary>public string DFS(int v){string str ="";visited[v] = true;str +=" "+ this.Vexs[v];for(int i=FirstAdjVex(v);i>=0;i=NextAdjVex(v,i))if(!visited[i])str +=DFS(i);return str;}///<summary>///深度优先遍历,非递归算法///</summary>public string DFSTrav(){visited = new bool[this.VexNum]; //初始化访问标志数组string str ="";for(int v=0;v<this.VexNum;v++){visited[v] = false;}new Stack(); //初始化辅助栈for(int v=0;v<this.VexNum;v++) //可以遍历多个散图{if(!visited[v]){visited[v] = true;str +=" "+this.Vexs[v];st.Push(v); //v入栈while(st.Count>0){int u = (int)st.Pop();for(int w=FirstAdjVex(u);w>=0;w=NextAdjVex(u,w)){if(!visited[w]){visited[w] = true;str +=" "+this.Vexs[w];st.Push(w);break;}}}}}return str;}///<summary>///广度优先遍历,非递归算法///</summary>public string BFSTraverse(){visited = new bool[this.VexNum]; //初始化访问标志数组string str ="";for(int v=0;v<this.VexNum;v++){visited[v] = false;}new Queue(); //初始化辅助队列for(int v=0;v<this.VexNum;v++) //可以遍历多个散图{if(!visited[v]){visited[v] = true;str +=" "+this.Vexs[v];Q.Enqueue(v); //v入队列while(Q.Count>0){int u = (int)Q.Dequeue();for(int w=FirstAdjVex(u);w>=0;w=NextAdjVex(u,w)){if(!visited[w]){visited[w] = true;str +=" "+this.Vexs[w];Q.Enqueue(w);}}}}}return str;}///<summary>///显示邻接矩阵///</summary>public string Display(){string graph = "";for(int i=0;i<this.VexNum;i++){for(int j=0;j<this.ArcNum;j++){graph +=" "+ this.Arcs[i,j].Type;}graph +="\n";}return graph;}}///<summary>///应用程序的主入口点。
///</summary>[STAThread]static void Main(string[] args){string a="";while(true){Graph g = new Graph(8,9,GKind.UDG);g.SetArcInfo(0,1,1,0);g.SetArcInfo(0,2,1,0);g.SetArcInfo(1,3,1,0);g.SetArcInfo(1,4,1,0);g.SetArcInfo(2,5,1,0);g.SetArcInfo(2,6,1,0);g.SetArcInfo(3,7,1,0);g.SetArcInfo(4,7,1,0);g.SetArcInfo(5,6,1,0);g.SetVexInfo(0,"V1");g.SetVexInfo(1,"V2");g.SetVexInfo(2,"V3");g.SetVexInfo(3,"V4");g.SetVexInfo(4,"V5");g.SetVexInfo(5,"V6");g.SetVexInfo(6,"V7");g.SetVexInfo(7,"V8");顶点,9弧无向图的邻接矩阵:\n");深度优先遍历(递归算法):\n");深度优先遍历(非递归算法):\n");广度优先遍历(非递归算法):\n");输入:exit ,退出程序");if(a =="exit")break;if(a.Trim().Length ==0 )continue;}}三、实验数据、结果分析程序运行结果:图如下:理论结果如下:深度优先遍历:V1 –> V2 -> V4 -> V8 -> V5 -> V3 -> V6 -> V7 广度优先遍历:V1 –> V2 -> V3 -> V4 -> V5 -> V6 -> V7 -> V8实验结果与理论结果一致。