图的实现及遍历
- 格式:doc
- 大小:47.00 KB
- 文档页数:9
数据结构中的图的遍历算法图是一种非常重要且广泛应用的数据结构,它由顶点和边组成,可以用来表示各种实际问题,如社交网络、路线规划等。
图的遍历算法是对图中的所有顶点进行系统访问的方法,它可以用来查找、遍历和搜索图中的元素。
本文将介绍图的遍历算法的基本概念和常用的实现方法。
一、图的遍历算法概述图的遍历算法是指按照某种规则遍历图中的所有顶点,以便于查找、遍历和搜索图中的元素。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)两种。
深度优先搜索(DFS)是一种先访问顶点的所有邻接顶点,再递归访问邻接顶点的邻接顶点的算法。
它以深度为优先级,一直向前走到不能继续为止,然后返回到前一个结点,继续向前走,直到遍历完整个图。
广度优先搜索(BFS)是一种先访问顶点的所有邻接顶点,再访问邻接顶点的邻接顶点,以此类推的算法。
它以广度为优先级,先访问离起始顶点最近的顶点,然后依次访问离起始顶点更远的顶点,直到遍历完整个图。
二、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它的基本思想是从图的某个顶点出发,沿着一条路径一直深入直到不能继续为止,然后返回到前一个结点,继续向前走。
具体实现时,可以使用递归或栈来保存需要访问的顶点。
以下是深度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问。
2. 访问当前顶点,并将其加入遍历结果。
3. 从当前顶点的未访问邻接顶点中选择一个作为下一个当前顶点,重复步骤2。
4. 如果当前顶点的所有邻接顶点都已访问,则返回到前一个顶点,重复步骤3。
5. 重复步骤4,直到遍历完整个图。
三、广度优先搜索(BFS)广度优先搜索是一种迭代的搜索算法,它的基本思想是从图的某个顶点出发,依次访问其所有未访问过的邻接顶点,然后再依次访问这些邻接顶点的未访问过的邻接顶点,直到遍历完整个图。
具体实现时,可以使用队列来保存需要访问的顶点。
以下是广度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问,并将其加入遍历结果。
数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。
图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。
图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。
本文将详细讲解图的遍历算法及其应用。
二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。
(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。
(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。
(4)重复步骤(2)和(3),直到栈为空。
2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。
具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。
(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。
(3)重复步骤(2),直到队列为空。
三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。
1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。
图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。
具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。
(2)重复步骤(1),直到所有顶点都被访问。
2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。
一.实验目的熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。
二.实验原理深度优先搜索遍历是树的先根遍历的推广。
假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
图的邻接表的存储表示:#define MAX_VERTEX_NUM 20#define MAXNAME 10typedef char VertexType[MAXNAME];typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;}ArcNode;typedef struct VNode{VertexType data;ArcNode *firstarc;}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;int kind;}ALGraph;三.实验内容编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。
四。
实验步骤1)结构体定义,预定义,全局变量定义。
#include"stdio.h"#include"stdlib.h"#include"string.h"#define FALSE 0#define TRUE 1#define MAX 20typedef int Boolean;#define MAX_VERTEX_NUM 20#define MAXNAME 10typedef char VertexType[MAXNAME];typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;}ArcNode;typedef struct VNode{VertexType data;ArcNode *firstarc;}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;int kind;}ALGraph;ALGraph G;Boolean visited[MAX];int degree[MAX_VERTEX_NUM];//定义一个数组求每一个顶点的总度数(无向图)或出度(有向图)。
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。
二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。
(2)由有向图G的邻接矩阵产生邻接表,并输出。
(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。
6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。
(5)利用非递归算法重解任务(4)。
(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。
三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。
在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。
本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。
二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。
三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。
四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。
通过邻接矩阵表示图的关系。
```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。
3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。
4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。
经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。
可以看出,DFS算法相对于BFS算法具有更高的效率。
五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。
2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。
DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。
3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。
这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
实验四图的实现及遍历题目:(1)采用邻接矩阵作为图的存储结构,完成有向图和无向图的DFS和BFS操作;(2)采用邻接链表作为图的存储结构,完成有向图和无向图的DFS和BFS操作。
班级:0421001 姓名:杨欢学号:2010211971 完成日期:2011.12.3一、需求分析掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS 及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。
实验要求:1、分析、理解程序。
2、调试程序。
设计一个有向图和一个无向图,任选一种存储结构,完成有向图和无向图的DFS(深度优先遍历)和BFS(广度优先遍历)的操作。
二、概要设计1,分析理解,调试程序2 ,设计一个无向图G,如右图所示3,设计一个有向图K,如右下图所示4,分别对无向图G和有向图K进行邻接矩阵存储和邻接链表存储,再分别进行深度优先遍历和广度优先遍历。
附加程序代码邻接矩阵作为存储结构的程序示例#include"stdio.h"#include"stdlib.h"#define MaxVertexNum 100 //定义最大顶点数typedef struct{char vexs[MaxVertexNum]; //顶点表int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e}MGraph; //用邻接矩阵表示的图的类型//=========建立邻接矩阵=======void CreatMGraph(MGraph *G){int i,j,k;char a;printf("Input VertexNum(n) and EdgesNum(e): ");scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数scanf("%c",&a);printf("Input Vertex string:");for(i=0;i<G->n;i++){scanf("%c",&a);G->vexs[i]=a; //读入顶点信息,建立顶点表}for(i=0;i<G->n;i++)for(j=0;j<G->n;j++)G->edges[i][j]=0; //初始化邻接矩阵printf("Input edges,Creat Adjacency Matrix\n");for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号G->edges[i][j]=1;G->edges[j][i]=1; //若为无向图,矩阵为对称矩阵;若建立有向图,去掉该条语句 }}//=========定义标志向量,为全局变量=======typedef enum{FALSE,TRUE} Boolean;Boolean visited[MaxVertexNum];//========DFS:深度优先遍历的递归算法======void DFSM(MGraph *G,int i){ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵int j;printf("%c",G->vexs[i]); //访问顶点Vivisited[i]=TRUE; //置已访问标志for(j=0;j<G->n;j++) //依次搜索Vi的邻接点if(G->edges[i][j]==1 && ! visited[j])DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点}void DFS(MGraph *G){int i;for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)if(!visited[i]) //Vi未访问过DFSM(G,i); //以Vi为源点开始DFS搜索}//===========BFS:广度优先遍历=======void BFS(MGraph *G,int k){ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索int i,j,f=0,r=0;int cq[MaxVertexNum]; //定义队列for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)cq[i]=-1; //队列初始化printf("%c",G->vexs[k]); //访问源点Vkvisited[k]=TRUE;cq[r]=k; //Vk已访问,将其入队。
实现图的遍历算法实验报告实现图的遍历算法实验报告⼀实验题⽬: 实现图的遍历算法⼆实验要求:2.1:(1)建⽴如图(p126 8.1)所⽰的有向图 G 的邻接矩阵,并输出之(2)由有向图G的邻接矩阵产⽣邻接表,并输出之(3)再由(2)的邻接表产⽣对应的邻接矩阵,并输出之2.2 (1)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(递归算法)(2)输出如图8.1所⽰的有向图G从顶点0开始的深度优先遍历序列(⾮递归算法)(3)输出如图8.1所⽰的有向图G从顶点0开始的⼴度优先遍历序列三实验内容:3.1 图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:R={VR}VR={|v,w∈V且P(v,w),表⽰从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph( &G, V, VR )初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G。
DestroyGraph( &G )初始条件:图G存在。
操作结果:销毁图G。
LocateVex( G, u )初始条件:图G存在,u和G中顶点有相同特征。
操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其它信息。
GetVex( G, v )初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的值。
PutVex( &G, v, value )初始条件:图G存在,v是G中某个顶点。
初始条件:图G存在,v是G中某个顶点。
操作结果:返回v的第⼀个邻接顶点。
若顶点在G中没有邻接顶点,则返回“空”。
NextAdjVex( G, v, w )初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。
操作结果:返回v的(相对于w的)下⼀个邻接顶点。
若w是v 的最后⼀个邻接点,则返回“空”。
InsertVex( &G, v )初始条件:图G存在,v和图中顶点有相同特征。
图遍历算法实现策略概述在算法和计算机科学领域中,图遍历算法是一种用于搜索和遍历图结构的算法。
图遍历算法的实现涉及到多种策略和技巧,本文将概述图遍历算法的实现策略。
一、深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法。
其基本思想是从图中的一个节点开始,递归地访问其相邻节点,直到找到目标节点或者无法继续访问为止。
DFS的实现可以使用递归或者栈来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问。
2. 遍历起始节点的邻居节点,选择一个未访问过的邻居节点进行递归访问。
3. 重复步骤2,直到无法再选取未访问的邻居节点为止。
4. 如果无法再选取未访问的邻居节点,则回溯到上一个节点,选择另一个未访问的邻居节点,并继续递归访问。
二、广度优先搜索(BFS)广度优先搜索也是一种常见的图遍历算法。
其基本思想是从图中的一个节点开始,按照层级顺序依次访问其邻居节点,直到找到目标节点或者遍历完整个图为止。
BFS的实现可以使用队列来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问,并将其加入到队列中。
2. 从队列中取出一个节点,访问其邻居节点,并将未访问过的邻居节点加入到队列中。
3. 重复步骤2,直到队列为空。
4. 如果队列为空,则表示已经遍历完整个图。
三、迭代深化深度优先搜索(IDDFS)迭代深化深度优先搜索是一种结合深度优先搜索和广度优先搜索的图遍历算法。
它的基本思想是在每一次迭代中,限制搜索的深度,从而逐渐递增搜索的深度,直到找到目标节点或者遍历完整个图为止。
IDDFS的实现可以使用递归或者栈来辅助实现,下面是一种常见的实现策略:1. 从起始节点开始,将其标记为已访问,并将其加入到栈中。
2. 从栈中取出一个节点,访问其邻居节点,并将未访问过的邻居节点加入到栈中。
3. 重复步骤2,直到达到当前迭代的深度限制。
4. 如果达到当前迭代的深度限制,而且还有未访问的节点,则增加深度限制,并重复步骤1。
图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。
图是一种常见的数据结构,用于表示对象之间的关系。
图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。
在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。
2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。
邻接矩阵是一个二维数组,用于表示图中节点之间的关系。
具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。
4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。
DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。
我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。
●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。
4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。
BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。
我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。
●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。
●重复上述步骤,直到队列为空。
4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。
Java实现⽆向图的建⽴与遍历⼀、基于邻接矩阵表⽰法的⽆向图 邻接矩阵是⼀种利⽤⼀维数组记录点集信息、⼆维数组记录边集信息来表⽰图的表⽰法,因此我们可以将图抽象成⼀个类,点集信息和边集信息抽象成类的属性,就可以在Java中描述出来,代码如下:1class AMGraph{23private String[] vexs = null; //点集信息45private int[][] arcs = null; //边集信息67 } 每⼀个具体的图,就是该类的⼀个实例化对象,因此我们可以在构造函数中实现图的创建,代码如下:1public AMGraph(int vexNum,int arcNum) { //输⼊点的个数和边的个数23this.vexs = new String[vexNum];4this.arcs = new int[vexNum][vexNum];56 System.out.print("请依次输⼊顶点值,以空格隔开:");7 Scanner sc = new Scanner(System.in);8for(int i = 0; i < vexNum; i++) { //根据输⼊建⽴点集9this.vexs[i] = sc.next();10 }1112for(int i = 0; i < vexNum; i++) { //初始化边集13for(int j = 0; j < vexNum; j++) {14this.arcs[i][j] = 0; //0表⽰该位置所对应的两顶点之间没有边15 }16 }1718 start:for(int i = 0; i < arcNum; i++) { //开始建⽴边集1920 sc = new Scanner(System.in);21int vex1Site = 0;22int vex2Site = 0;23 String vex1 = null;24 String vex2 = null;2526 System.out.print("请输⼊第" + (i+1) + "条边所依附的两个顶点,以空格隔开:");27 vex1 = sc.next();28 vex2 = sc.next();29for(int j = 0; j < this.vexs.length; j++) { //查找输⼊的第⼀个顶点的位置30if (this.vexs[j].equals(vex1)) {31 vex1Site = j;32break;33 }34if (j == this.vexs.length - 1) {35 System.out.println("未找到第⼀个顶点,请重新输⼊!");36 i--;37continue start;38 }39 }40for (int j = 0; j < this.vexs.length; j++) { //查找输⼊的第⼆个顶点的位置41if(this.vexs[j].equals(vex2)) {42 vex2Site = j;43break;44 }45if (j == this.vexs.length - 1) {46 System.out.println("未找到第⼆个顶点,请重新输⼊!");47 i--;48continue start;49 }50 }51if(this.arcs[vex1Site][vex2Site] != 0) { //检测该边是否已经输⼊52 System.out.println("该边已存在!");53 i--;54continue start;55 }else {56this.arcs[vex1Site][vex2Site] = 1; //1表⽰该位置所对应的两顶点之间有边57this.arcs[vex2Site][vex1Site] = 1; //对称边也置158 }59 }60 System.out.println("基于邻接矩阵的⽆向图创建成功!");61 sc.close();62 } 创建好图后,我们还要实现图的遍历。
实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
编程思路:深度优先算法:计算机程序的一种编制原理,就是在一个问题出现多种可以实现的方法和技术的时候,应该优先选择哪个更合适的,也是一种普遍的逻辑思想,此种思想在运算的过程中,用到计算机程序的一种递归的思想。
度优先搜索算法:又称广度优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim 最小生成树算法都采用了和宽度优先搜索类似的思想。
其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
以临接链表作为存储结构,结合其存储特点和上面两种算法思想,给出两种遍历步骤:(1)既然图中没有确定的开始顶点,那么可从图中任一顶点出发,不妨按编号的顺序,先从编号小的顶点开始。
(2)要遍历到图中所有顶点,只需多次调用从某一顶点出发遍历图的算法。
所以,下面只考虑从某一顶点出发遍历图的问题。
(3)为了在遍历过程中便于区分顶点是否已经被访问,设置一个访问标志数组visited[n],n为图中顶点的个数,其初值为0,当被访问过后,其值被置为1。
(4)这就是遍历次序的问题,图的遍历通常有深度优先遍历和广度优先遍历两种方式,这两种遍历次序对无向图和有向图都适用。
实验四图的遍历算法4.1.实验的问题与要求1.如何对给定图的每个顶点各做一次且仅做一次访问?有哪些方法可以实现图的遍历?2.如何用这些算法解决实际问题?3.熟练掌握图的基本存储方法4.熟练掌握图的两种搜索路径的遍历方法5.掌握有关图的操作算法并用高级语言实现4.2.实验的基本思想和基本原理和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
遍历常用两种方法:深度优先搜索遍历;广度优先搜索遍历4.2.1 深度优先搜索(Depth-First Traversal)深度优先搜索是一种递归的过程,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。
在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续下去。
当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。
这一过程一直进行到已发现从源结点可达的所有结点为止。
如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。
1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v 为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
图算法表示及遍历方法详解图是计算机科学中常用的数据结构之一,用于表示和解决各种实际问题。
本文将详细介绍图的算法表示以及遍历方法,帮助读者更深入了解和应用图算法。
一、图的定义和表示方法图是由节点(顶点)和边构成的一种数据结构。
常见的图表示方法有两种:邻接矩阵和邻接表。
1. 邻接矩阵表示法邻接矩阵是一个二维矩阵,其中的元素表示图中各个节点之间的连接关系。
对于一个有n个节点的图,邻接矩阵是一个n x n的矩阵,用0和1表示节点之间是否有边相连。
例如,对于一个有4个节点的图,邻接矩阵可以表示为:1 2 3 41[0, 1, 1, 0]2[1, 0, 0, 1]3[1, 0, 0, 0]4[0, 1, 0, 0]邻接矩阵表示法简单直观,适用于节点数量相对较小、边的数量相对较大时。
2. 邻接表表示法邻接表是通过链表的形式,将每个节点的邻接顶点存储起来,用于表示图的连接关系。
对于一个有n个节点的图,可以使用一个长度为n 的数组,数组中的每个元素都是一个链表,链表中存储了与该节点相连的其他节点。
例如,对于一个有4个节点的图,邻接表可以表示为:1->2->32->1->43->14->2邻接表表示法相对节省存储空间,适用于节点数量较大、边的数量相对较小的情况。
二、图的遍历方法图的遍历是指按一定规则依次访问图中的每个节点,以达到查找、搜索或其他操作的目的。
常见的图遍历方法有深度优先搜索(DFS)和广度优先搜索(BFS)。
1. 深度优先搜索(DFS)深度优先搜索从某个节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,再选择另一条未访问过的路径,重复上述过程,直到遍历完整个图。
DFS可以使用递归或栈来实现。
以下是使用递归实现DFS的示例代码:```pythondef dfs(graph, start, visited):visited[start] = Trueprint(start)for neighbor in graph[start]:if not visited[neighbor]:dfs(graph, neighbor, visited)```2. 广度优先搜索(BFS)广度优先搜索从某个节点开始,先访问其所有邻接节点,然后再访问邻接节点的邻接节点,依次类推,直到遍历完整个图。