第二章 气体分子运动论的基本概念2
- 格式:ppt
- 大小:1.30 MB
- 文档页数:42
理想气体的分子动理论气体分子的运动与理想气体定律理想气体的分子动理论与气体分子的运动气体是一种物质的形态,也是我们生活中经常接触到的物质。
了解气体分子的运动和理论,能够帮助我们更好地理解气体的性质和行为。
本文将介绍理想气体的分子动理论,并探讨气体分子在空间中的运动方式以及与理想气体定律的关系。
一、理想气体的分子动理论理想气体的分子动理论是描述气体分子运动行为的理论模型。
根据分子动理论,气体分子是以高速无规则的方式在空间中运动的。
以下是气体分子的运动特征:1. 气体分子运动无规则性:气体分子在空间中以高速运动,并且没有固定的运动轨迹。
分子之间相互碰撞,这种碰撞是弹性碰撞,没有能量的损失。
2. 气体分子间的相互作用力可忽略不计:气体分子之间的相互作用力非常微弱,可以忽略不计。
这个假设的前提是气体分子之间的距离相对较远,而且气体分子体积相对较小。
3. 气体分子的速度服从麦克斯韦速度分布定律:根据麦克斯韦速度分布定律,气体分子的速度符合高斯分布(也称为正态分布),其中大多数分子具有平均速度,速度分布呈现钟形曲线。
二、气体分子的运动方式理想气体分子的运动方式可以通过分子运动学理论进行研究。
以下是气体分子的运动方式:1. 直线运动:气体分子在空间中以直线的方式运动。
当碰撞到容器壁或其他分子时,会发生反弹,继续直线运动。
2. 碰撞运动:由于气体分子之间的无规则运动,分子之间会发生碰撞现象。
这种碰撞是弹性碰撞,即碰撞后没有能量损失。
3. 自由平均路径:气体分子在碰撞之间的平均路径称为自由平均路径。
自由平均路径受气体分子的浓度和温度的影响。
三、气体分子的运动与理想气体定律的关系理想气体定律是描述理想气体状态的数学表达式,包括波义耳定律、查理定律和盖-吕萨克定律。
这些定律可以通过气体分子的运动来解释。
1. 波义耳定律:波义耳定律描述了气体压强与温度之间的关系。
根据理论分析,当气体分子碰撞容器壁时会产生压力,而压强与温度成正比。
分子运动论的基本概念分子运动论是研究气体分子运动的一种理论。
它的基本概念是,物质由大量微小的粒子组成,这些粒子不断地自由移动,并与周围的粒子发生碰撞。
这个理论可以解释气体体积、温度和压力等物理现象。
首先,分子运动论认为物质是由大量微小的粒子——分子或原子组成的。
这些粒子是不可见的,通过不断的自由移动来维持物质的宏观性质。
这个观点与传统的连续介质假设有很大的不同,传统的连续介质假设认为物质是由无数个连续的微观粒子组成的。
其次,分子运动论认为分子之间存在着各种各样的相互作用力。
这些相互作用力包括万有引力、静电力、分子之间的引力和排斥力等。
这些力使得分子之间发生相互作用,从而导致宏观物质的性质。
一个重要的概念是分子的随机热运动。
根据分子运动论,分子在气体中以高速度做无规则的热运动。
这种运动是与分子的热能相联系的,热能越高,分子的运动越剧烈。
在分子的运动中,它们不断地相互碰撞,碰撞的方向、速度以及相互作用力都是随机的。
分子运动论还解释了气体的压力为何是由于分子对容器壁产生的撞击力。
当气体分子高速运动并与容器壁碰撞时,它们会把自己的动量传递给容器壁,从而产生压力。
这个概念与鲍尔定律相对应,即气体的压力与温度成正比。
另一个重要的概念是分子的平均自由路径。
根据分子运动论,分子在气体中的运动是以直线运动方式进行的。
当它们做直线运动时,与其它分子的相互碰撞会导致它们改变方向。
分子的平均自由路径是指两次相互碰撞之间的平均距离。
平均自由路径与气体的密度以及分子的大小有关。
最后,分子运动论还解释了气体的扩散现象。
根据分子运动论,气体分子的运动是自由的,它们会沿着梯度消除的方向扩散。
当气体分子在高浓度区域与低浓度区域之间的移动时,这个过程被称为扩散。
综上所述,分子运动论是研究气体分子运动的一种理论。
它揭示了物质的微观结构和宏观性质之间的联系。
这个理论对于理解气体的性质、热力学过程以及化学反应等领域有着重要的意义。
分子运动论的理论基本概念是物质由大量微小的粒子组成,它们通过自由移动和相互碰撞来维持物质的宏观性质。
气体分子动理论气体是物质存在的其中一种形态,它的分子运动对于我们理解气体的性质至关重要。
气体分子动理论是一种描述气体性质的科学理论,它通过解释气体分子的运动行为和碰撞规律,为我们提供了对气体行为的深入认识。
1. 分子运动的基本规律气体分子的运动有其基本规律,其中最重要的是玻尔兹曼分布规律。
根据玻尔兹曼分布规律,气体分子的速度分布服从高斯分布,即呈现一个钟形曲线。
这意味着气体分子的速度有一定的平均值,同时也存在一定的速度分散。
这种分布规律的存在,决定了气体的宏观性质,如压强、温度等。
2. 碰撞与压强气体分子之间的碰撞是气体压强产生的主要原因。
当气体分子运动速度较慢,分子之间碰撞不频繁时,气体的压强较低。
相反,当气体分子运动速度较快,分子之间碰撞频繁时,气体的压强较高。
根据气体分子动理论,气体压强与温度呈正相关,其数学关系为压强和温度的乘积与分子间平均速度的平方成正比。
3. 温度与分子速度气体分子运动的速度与气体的温度有着密切的关系。
根据气体分子动理论,气体温度与分子平均动能成正比。
换句话说,温度越高,气体分子的平均动能越大,分子的平均速度也会增加。
这也解释了为什么在相同温度下,不同气体的分子速度可能不同的原因。
例如,氢气分子较轻,根据等温分子速度公式,它的速度较大;而氮气分子较重,其速度相对较低。
4. 分子扩散与扩散速率分子扩散是气体分子运动的另一个重要现象。
根据气体分子动理论,气体分子会自发地从高浓度区域向低浓度区域扩散。
扩散速率受到多种因素的影响,如温度、分子间相互作用力以及分子质量等。
高温下的气体分子动能较大,扩散速率较快;而分子间的相互作用力越大,扩散速率越慢。
5. 分子间相互作用力气体分子间存在一定的相互作用力,这种作用力对气体性质有着重要影响。
分子间相互作用力可以分为吸引力和斥力。
对于吸引力较大的气体分子,它们的运动速度相对较慢,而分子间距离较小。
这种相互作用力称为范德华力。
相反,当气体分子间的斥力较大时,其运动速度较快,分子间距离较大,这种相互作用力被称为排斥力。
无机化学部分第一章 物质存在的状态一、气体1、气体分子运动论的基本理论①气体由分子组成,分子之间的距离>>分子直径;②气体分子处于永恒无规则运动状态;③气体分子之间相互作用可忽略,除相互碰撞时;④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。
碰撞时总动能保持不变,没有能量损失。
⑤分子的平均动能与热力学温度成正比。
2、理想气体状态方程①假定前提:a 、分子不占体积;b 、分子间作用力忽略②表达式:pV=nRT ;R ≈8.314kPa ·L ·mol 1-·K 1-③适用条件:温度较高、压力较低使得稀薄气体④具体应用:a 、已知三个量,可求第四个;b 、测量气体的分子量:pV=M W RT (n=MW ) c 、已知气体的状态求其密度ρ:pV=M W RT →p=MV WRT →ρMVRT =p 3、混合气体的分压定律①混合气体的四个概念a 、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力;b 、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积c 、体积分数:φ=21v v d 、摩尔分数:xi=总n n i ②混合气体的分压定律a 、定律:混合气体总压力等于组分气体压力之和;某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比 b 、适用范围:理想气体及可以看作理想气体的实际气体c 、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、4、气体扩散定律①定律:T 、p 相同时,各种不同气体的扩散速率与气体密度的平方根成反比: 21u u =21p p =21M M (p 表示密度) ②用途:a 、测定气体的相对分子质量;b 、同位素分离二、液体1、液体①蒸发气体与蒸发气压A、饱和蒸汽压:与液相处于动态平衡的气体叫饱和气,其气压叫做饱和蒸汽压简称饱和气;B、特点:a、温度恒定时为定值;b、气液共存时不受量的变化而变化;c、物质不同,数值不同②沸腾与沸点A、沸腾:当温度升高到蒸汽压与外界压力相等时,液体就沸腾,液体沸腾时的温度叫做沸点;B、特点:a、沸点的大小与外界压力有关;外界压力等于101kPa时的沸点为正常沸点;b、沸腾是液体表面和内部同时气化的现象2、溶液①溶液与蒸汽压a、任何物质都存在饱和蒸汽压;b、纯物质的饱和蒸汽压只与物质本身的性质和温度有关;c、一定温度下饱和蒸汽压为常数;d、溶液蒸汽压的下降:△p=p纯液体-p溶液=K·m②溶液的沸点升高和凝固点的下降a、定量描述:沸点升高△Tb =Kb·m凝固点下降△Tf =Kf·m仅适用于非电解质溶液b、注意:①Tb 、Tf的下降只与溶剂的性质有关②Kb 、Kf的物理意义:1kg溶剂中加入1mol难挥发的非电解质溶质时,沸点的升高或凝固点下降的度数c、应用计算:i、已知稀溶液的浓度,求△Tb 、△Tfii、已知溶液的△Tb 、△Tf求溶液的浓度、溶质的分子量d、实际应用:i、制冷剂:电解质如NaCl、CaCl2ii、实验室常用冰盐浴:NaCl+H2O→22°CCaCl2+H2O→-55°Ciii、防冻剂:非电解质溶液如乙二醇、甘油等③渗透压a、渗透现象及解释:渗透现象的原因:半透膜两侧溶液浓度不同;渗透压:为了阻止渗透作用所需给溶液的额外压力b、定量描述:Vant'Hoff公式:∏V=nRT ∏=VnRT 即∏=cRT ∏为溶液的渗透压,c 为溶液的浓度,R 为气体常量,T 为温度。
第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。
解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。
解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。
为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。
若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。
解:设烘烤前容器内分子数为N 。
,烘烤后的分子数为N 。
根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。
设混合气体的温度为150℃,求混合气体的压强。