第二章基本概念解读
- 格式:ppt
- 大小:5.24 MB
- 文档页数:81
第二章基本概念抽样是指从一个总体重选取一部分作为研究对象,从中抽取的研究对象的总体又称为母体或全域 ,是一定时空范围内研究对象的全部总和。
样本 :抽样总体中的单个成员是抽样单位,抽取出来的那一部分叫做样本,是能够代表总体的一定数量的研究对象。
参数 :由来自同一个总体的无数样本数据而获得的该总体的某种特征,称为参数。
随机抽样也叫概率抽样, 是指在抽取样本时,研究者严格遵循随机性原则的抽样方法。
通过某种随机化过程,以保证总体中每一抽取单位被抽取的概率非零,即每个成员都有被选择成为样本的机会。
非概率抽样:是指研究者不用严格遵循随机性原则而进行的抽样。
抽样误差:又叫随即误差,是由随机抽样方法的先天局限造成的。
变量是随着条件或情景的变化而在质和量的方面起变化的个体的某些特征或方面。
自变量:也称研究变量,是能引起因变量发生变化的变量。
一般是由研究者主动操纵而变化的变量,是能独立地变化并引起因变量变化的条件、因素或条件的组合。
因变量是随着自变量的变化而变化的,是研究中需要观测的指标。
在学前教育研究中,一般是指研究对象所具有有的可以进行测量的某些方面或因素。
控制变量是与特定研究目标无关的非研究变量,也叫无关变量,是研究者在研究过程中可以控制的。
测量就是一个按照一定的研究目的和法则, 对一定的事件或物体的某些特征或属性给出具有规定意义的数值的过程。
抽样误差又叫随机误差 ,是由随机抽样方法的先天局限造成的,当随机样本被用来代替总体时,由于随机波动的原因,抽样误差总是存在的。
即使是有代表性的样本,当重复测量某一属性时,其结果也可能只是相似,总有一定程度的波动,不会完全一致。
测量误差是使用各种测量工具进行测量时所造成的误差。
系统误差是指由与研究目的物管的因素所引起的有规律性的误差, 持续的使测量或研究结果向某一方向产生偏差。
抽象定义是对概念或命题共同本质的概括。
操作性定义就是研究者按照特定研究中对变量进行测量时所要进行的必要操作过程下变量定义, 包括对必须测定的活动及操作过程作详细说明。
第二章随机过程的基本概念说明与解释2.1 随机过程的定义◆{X(t), t∈T}称为随机过程,是定义在样本空间Ω和参数集T上的一个二元函数◆当t=t0固定时,X(t0)为一个随机变量,当样本点ω固定时,X(ω,t)随时间变化,称为样本函数,在平面上为一条曲线,或折线段2.2 随机过程的分布◆对于随机过程{X(t), t∈T},当参数t取有限n个不同值时,则得到一个n维随机向量(X(t1),X(t2),⋯,X(t n)),它的概率分布即为概率论中多维随机向量的联合概率分布。
◆定理2.2.1的说明(1)对称性随机过程的n维分布函数F(x1,x2⋯,x n;t1,t2⋯,t n)=P[(X(t1)≤x1,X(t2)≤x2,⋯,X(t n)≤x n]上面大括号内是n个事件的积,事件的积运算满足交换律,所以对称性成立。
(2)相容性以二维随机向量(X,Y)为例,有F X(x)=F XY(x,∞)所以,相容性成立。
◆例2.2.1的说明因为U、V相互独立且同分布,都服从标准正态分布,因此它们的线性组合也服从正态分布,只需求出X(t)=U+tV的数学期望和方程即可。
(1)一维密度函数根据期望与方差的性质,有E(X(t))=E(U+tV)E(U)+tE(V)=0D(X(t))=D(U+tV)=D(U)+D(tV)=1+t2D(V)=1+t2而一维正态随机变量的密度函数为f(x)=1√2πσ{−(x−μ)22σ2}(2)n维密度函数可以根据定理1.2.2证明(X(t1),X(t2),⋯,X(t n))服从n维正态分布,所以下面只需求出其数学期望向量μ和协方差矩阵Σ根据(1)的计算结果,μ=E(X(t))为0向量cov(X(t i),X(t j))=cov(U+t i V,U+t j V)=cov(U,V)+t i cov(V,U)+t j cov(U,V)+t i t j cov(V,V)=D(U)+0+0+t i t j D(V)=1+t i t j记σij=1+t i t j,( i,j=1,2,⋯,n),Σ=(σij)n×n,x=(x1,x2,⋯,x n)由定理1.2.1知n维正态变量(X(t1),X(t2),⋯,X(t n))的密度函数为f(x)=1√2πn√|Σ|{−12(x−μ)TΣ−1(x−μ)}◆如果随机过程{X(t),−∞<t<+∞}的任意有限为分布都是正态分布,则称随机过程为正态过程,或高斯过程2.3 随机过程的数字特征◆随机过程的数字特征与概率论中的数字特征完全类似◆均方值函数存在的随机过程称为二阶矩过程◆例设随机过程X(t)=tV,t>0,其中V为离散型随机变量,其分布律为试求X(t)的均值函数、均方值函数、方差函数、均方差函数、自相关函数、协方差函数解根据概率论知识,E(V)=0.2,E(V2)=1,由此可得均值函数μX(t)=E(tV)=tE(V)=0.2t均方值函数ψX2(t)=E((X(t))2)=E((tV)2)=t2E(V2)=t2方差函数σX2(t)=ψX2(t)−(μX(t))2=t2−(0.2t)2=0.96t2均方差函数σX(t)=√σX2(t)=√0.96t自相关函数R X(s,t)=E(X(s)X(t))=E(sVtV)=stE(V2)=st自协方差函数C X(s,t)=R X(s,t)−μX(s)μX(t)=st−0.04st=0.95st◆在随机过程所有的数字特征中,均值函数和自相关函数是最基本的数字特征,其它数字特征都可从它们推出2.4 二维随机过程和复随机过程2.5 几类常用的随机过程◆平稳过程的分布只与参数的起点有关,而与参数的增量无关,即(X(t))与X(t+ℎ)同分布◆定理2.5.1的说明一般来说,利用随机过程的自协方差函数可以直接写出它的方差函数,但定理2.3.1告诉我们,当随机过程在初始时刻的状态为常数时,则已知方差可直接写出自协方差函数,即C X(t,t)=σX2(t)◆独立过程独立抛掷一颗骰子100次,观察每次掷出的点数,记X n为第n次出现的点数,则{X n, n=1,2,3,⋯,100}为独立过程(独立时间序列)◆参数为p的贝努利过程{X n, n≥1}是独立过程◆以贝努利过程{X n, n≥1}说明平稳独立增量过程记N n =∑X i n i=1,则服从二项分布B(n,p). 当m <n 时, N n −N m =N m+1+N m+2+⋯+N n ~B(n −m,p) 对任意正整数k ≥1,N n+k −N m+k =N m+k+1+⋯+N n+k ~B(n −m,p) 所以,{X n , n ≥1}是平稳过程其次,如果n 1<n 2<⋯<n mm ,可证N n 2−N n 1,N n 3−N n 2,⋯,N n m −N n m−1相互独立。
2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。
()()()()(){}{}[]()为随机序列。
时,通常称,取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。
则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。