第二章 随机过程的基本概念
- 格式:docx
- 大小:22.16 KB
- 文档页数:4
随机过程的基本概念随机过程是随机现象的数学模型,是一种以时间为自变量而取随机数值的函数族,是概率论和数理统计中的重要工具之一。
本文将从定义、性质、分类等方面论述随机过程的基本概念。
一、随机过程的定义随机过程是由一个随机变量族{Xt}(t∈T)所组成的集合的统称,其中T为时间参数集合。
换言之,随机过程是时间与随机变量的集合关系,其中随机变量的取值是时间变化的函数。
随机过程可以用X(t)表示,其中t表示时间,X表示在时间t处的随机变量。
简单来说,随机过程就是为一组日期指定随机变量,使得这些随机变量与其日期相关联。
每个随机变量表示特定日期发生的随机事件。
二、随机过程的性质1. 一般随机过程:随机变量群体的每个成员都需要一个完整的概率空间,并且具有一个抽象的时间参数集合。
因此,一般随机过程的样本空间往往是所有该样本空间下所有概率空间的笛卡尔积。
2. 同伦:如果存在同伦t:s→t+s(s∈S),使得随机过程{Xt}具有相同的联合概率分布,则称该随机过程在t上存在同伦。
3. 马尔科夫性质:在一个离散时间的随机过程中,前时刻的状态随后时刻的状态条件独立,且只与当前状态有关,而与以前的任何状态无关,称之为马尔科夫性质。
三、随机过程的分类1. 离散时间:随机变量在离散位置上取值,时间参数集合为整数集,可表示为{Xn}。
2. 连续时间:随机变量在连续位置上取值,时间参数集合为实数集,可表示为{X(t)}3. 马尔科夫过程:随机过程满足马尔科夫性质的过程,由此得名。
4. 二元过程:仅具有两个状态变量,称之为二元过程。
四、随机过程的应用随机过程广泛应用于电信、生物工程、金融、天气预报等领域。
其中,离散时间的随机过程广泛应用于通信领域,如编码、压缩、调制等;连续时间的随机过程用于天气预报、环境工程、资产定价等领域。
在工程领域,随机过程也有广泛应用。
例如,可以使用随机过程模型预测质量的保证水平。
需要重视的是,应用随机过程模型时,要注意模型的精度和可行性,避免虚假模型带来的风险。
第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。
T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。
随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。
),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。
一般代表的是时间。
根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。
随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。
通常以表示随机过程的状态空间。
根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。
)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。
随机过程的基本概念与应用随机过程是概率论中研究一系列随机事件在时间上的演化规律的重要分支。
它在各个领域都有着广泛的应用,在通信、控制、金融、生物、物理等方面都发挥着重要作用。
一、随机过程的基本概念1.1 随机过程的定义随机过程是指一组随机变量${X_t}$,其中$t$表示时间,$X_t$表示在时间$t$时刻随机变量的取值。
随机过程是随机变量的函数族,常用记号为${X_t:t\in T}$。
其中$t$取遍$T$所表示的时间集合,$T$可以是实数集、整数集或其他有限或无限集合。
1.2 随机过程的分类随机过程根据其时间变化的连续性与离散性可以分为连续时间随机过程和离散时间随机过程两种。
连续时间随机过程是指随机变量在时间上是连续的,如布朗运动、泊松过程等。
离散时间随机过程是指随机变量在时间上是离散的,如马尔可夫过程、随机游走等。
1.3 随机过程的性质随机过程具有多种性质,包括平稳性、独立性、齐次性等。
其中比较重要的平稳性是指在时间平移下,随机过程的统计性质保持不变,即一个随机过程是平稳的,当且仅当对于任意$t_1,t_2$,其一阶矩和二阶矩不随时间变化而改变。
例如,设随机过程${X_t:t\geq 0}$的均值为$\mu$,方差为$\sigma^2$,则其平稳性条件为:$$\mathbb{E}[X_t]=\mu, \ \forall t\geq 0$$$$\mathbb{E}[(X_s-\mu)(X_t-\mu)]=\sigma^2, \ \forall s,t\geq 0$$二、随机过程的应用随机过程在许多领域中都有着广泛的应用。
以下列举其中几个典型应用。
2.1 通信领域随机过程在通信领域中是必不可少的工具。
通信信号可以看作是一种随时间变化的随机过程,而信道则可看作是一种将输入信号映射成输出信号的随机过程。
因此,随机过程在信号调制、信噪比估计、编码等方面都有着广泛的应用。
2.2 控制领域在控制领域中,随机过程被广泛用于表示、建模和分析控制系统的动态特性。
第二章随机过程的基本概念
说明与解释
2.1 随机过程的定义
◆{X(t), t∈T}称为随机过程,是定义在样本空间Ω和参数集T上的一个二
元函数
◆当t=t0固定时,X(t0)为一个随机变量,当样本点ω固定时,X(ω,t)随时
间变化,称为样本函数,在平面上为一条曲线,或折线段
2.2 随机过程的分布
◆对于随机过程{X(t), t∈T},当参数t取有限n个不同值时,则得到一个n维随机向量(X(t1),X(t2),⋯,X(t n)),它的概率分布即为概率论中多维随机向量的联合概率分布。
◆定理2.2.1的说明
(1)对称性随机过程的n维分布函数
F(x1,x2⋯,x n;t1,t2⋯,t n)=P[(X(t1)≤x1,X(t2)≤x2,⋯,X(t n)≤x n]
上面大括号内是n个事件的积,事件的积运算满足交换律,所以对称性成立。
(2)相容性以二维随机向量(X,Y)为例,有
F X(x)=F XY(x,∞)
所以,相容性成立。
◆例2.2.1的说明
因为U、V相互独立且同分布,都服从标准正态分布,因此它们的线性组合也服从正态分布,只需求出X(t)=U+tV的数学期望和方程即可。
(1)一维密度函数根据期望与方差的性质,有
E(X(t))=E(U+tV)E(U)+tE(V)=0
D(X(t))=D(U+tV)=D(U)+D(tV)=1+t2D(V)=1+t2而一维正态随机变量的密度函数为
f(x)=
1
√2πσ
{−
(x−μ)2
2σ2
}
(2)n维密度函数可以根据定理1.2.2证明(X(t1),X(t2),⋯,X(t n))服从n维正态分布,所以下面只需求出其数学期望向量μ和协方差矩阵Σ
根据(1)的计算结果,μ=E(X(t))为0向量
cov(X(t i),X(t j))=cov(U+t i V,U+t j V)
=cov(U,V)+t i cov(V,U)+t j cov(U,V)+t i t j cov(V,V)
=D(U)+0+0+t i t j D(V)=1+t i t j
记σij=1+t i t j,( i,j=1,2,⋯,n),Σ=(σij)n×n,x=(x1,x2,⋯,x n)
由定理1.2.1知n维正态变量(X(t1),X(t2),⋯,X(t n))的密度函数为
f(x)=
1
√2π
n√|Σ|
{−
1
2
(x−μ)TΣ−1(x−μ)}
◆如果随机过程{X(t),−∞<t<+∞}的任意有限为分布都是正态分布,则称随
机过程为正态过程,或高斯过程
2.3 随机过程的数字特征
◆随机过程的数字特征与概率论中的数字特征完全类似
◆均方值函数存在的随机过程称为二阶矩过程
◆例设随机过程X(t)=tV,t>0,其中V为离散型随机变量,其分布律为
试求X(t)的均值函数、均方值函数、方差函数、均方差函数、自相关函数、协方差函数
解根据概率论知识,E(V)=0.2,E(V2)=1,由此可得
均值函数μX(t)=E(tV)=tE(V)=0.2t
均方值函数ψX2(t)=E((X(t))2)=E((tV)2)=t2E(V2)=t2
方差函数σX2(t)=ψX2(t)−(μX(t))2=t2−(0.2t)2=0.96t2
均方差函数σX(t)=√σX2(t)=√0.96t
自相关函数R X(s,t)=E(X(s)X(t))=E(sVtV)=stE(V2)=st
自协方差函数C X(s,t)=R X(s,t)−μX(s)μX(t)=st−0.04st=0.95st
◆在随机过程所有的数字特征中,均值函数和自相关函数是最基本的数字
特征,其它数字特征都可从它们推出
2.4 二维随机过程和复随机过程
2.5 几类常用的随机过程
◆平稳过程的分布只与参数的起点有关,而与参数的增量无关,即(X(t))
与X(t+ℎ)同分布
◆定理2.5.1的说明一般来说,利用随机过程的自协方差函数可以直
接写出它的方差函数,但定理2.3.1告诉我们,当随机过程在初始时刻的状态为常数时,则已知方差可直接写出自协方差函数,即C X(t,t)=σX2(t)
◆独立过程独立抛掷一颗骰子100次,观察每次掷出的点数,记X n为第
n次出现的点数,则{X n, n=1,2,3,⋯,100}为独立过程(独立时间序列)◆参数为p的贝努利过程{X n, n≥1}是独立过程
◆以贝努利过程{X n, n≥1}说明平稳独立增量过程
记N n =∑X i n i=1,则服从二项分布B(n,p). 当m <n 时, N n −N m =N m+1+N m+2+⋯+N n ~B(n −m,p) 对任意正整数k ≥1,N n+k −N m+k =N m+k+1+⋯+N n+k ~B(n −m,p) 所以,{X n , n ≥1}是平稳过程
其次,如果n 1<n 2<⋯<n mm ,可证N n 2−N n 1,N n 3−N n 2,⋯,N n m −N n m−1相互独立。
考虑一种特殊情况来验证,考察1<2<3的情形,根据
X n 的定义,有 N 2−N 1=X 2,N 3−N 2=X 3
因为X 3,X 2是独立的,所以, N 2−N 1,N 3−N 2是独立的。