2020版高考数学一轮复习第11章算法复数推理与证明第2讲数系的扩充与复数的引入 课后作业(理)(含解析)
- 格式:doc
- 大小:57.50 KB
- 文档页数:5
2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文的全部内容。
11.2 数系的扩充与复数的引入[基础送分 提速狂刷练]一、选择题1.(2018·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i,可得z =-1+ii=错误!=1+i 。
故复数z 的实部与虚部的和是1+1=2,故选C.2.(2018·湖北优质高中联考)已知复数z =1+i (i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B解析 错误!-z 2=错误!-(1+i )2=错误!-2i =1-i -2i =1-3i,其共轭复数是1+3i ,故选B 。
3.(2017·河南洛阳模拟)设复数z 满足错误!=|1-i|+i (i 为虚数单位),则复数z =( )A 。
错误!-i B.错误!+i C .1 D .-1-2i 答案 A解析 复数z 满足错误!=|1-i |+i =错误!+i,则复数z =错误!-i 。
第十一章 算法、复数与推理证明第1讲 算法初步[考纲解读] 1.了解算法的含义及思想,掌握程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.(重点)2.了解几种算法的基本语句,输入语句、输出语句、赋值语句、条件语句、循环语句的含义.[考向预测] 从近三年高考情况来看,本讲是每年高考的必考内容. 预测2020年将会考查:①框图的直接计算;②根据框图的输出值添加满足的条件. 题型为客观题,试题难度不大,属中、低档题型.1.算法的含义与程序框图(1)算法:算法是指按照□01一定规则解决某一类问题的□02明确和□03有限的步骤. (2)程序框图:程序框图又称□04流程图,是一种用□05程序框、□06流程线及□07文字说明来表示算法的图形.在程序框图中,一个或n 个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(3)算法框图的图形符号及其功能2.三种基本逻辑结构及相应语句续表1.概念辨析(1)一个程序框图一定包含顺序结构,也包含条件结构(选择结构)和循环结构.( )(2)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.( )(3)在算法语句中,X=X+1是错误的.( )(4)输入语句可以同时给多个变量赋值.( )答案(1)×(2)×(3)×(4)√2.小题热身)(1)根据给出的程序框图(如图),计算f(-1)+f(2)=(答案 A解析f(-1)=4×(-1)=-4,f(2)=22=4,∴f(-1)+f(2)=-4+4=0.(2)计算机执行下面的程序段后,输出的结果是( )a=1b=3a=a+bb=a-bPRINT a,bENDA.1,3 B.4,1 C.0,0 D.6,0答案 B解析读程序可知a=1+3=4,b=4-3=1.(3)已知输入实数x=12,执行如图所示的流程图,则输出的x是( )A.25 B.102 C.103 D.51答案 C解析输入x=12,经过第一次循环得到x=2×12+1=25,n=2,经过第二循环得到x=2×25+1=51,n=3,经过第三次循环得到x=2×51+1=103,n=4,此时输出x,故选C.(4)按照如图的程序框图执行,若输出结果为15,则M处条件为( )A.k≥16 B.k<8 C.k<16 D.k≥8答案 A解析程序运行过程中,各变量的值如下表所示:故退出循环的条件应为k≥16,故选A.题型一顺序结构和条件结构1.阅读如图所示程序框图.若输入x为3,则输出的y值为( )A.24 B.25 C.30 D.40答案 D解析a=32-1=8,b=8-3=5,y=8×5=40.2.(2017·江苏高考)下图是一个算法流程图.若输入x 的值为116,则输出y 的值是________.答案 -2解析 输入x =116,116≥1不成立,执行y =2+log 2116=2-4=-2.输出y 的值为-2.条件探究 将举例说明2中“输入x ”改为“输出y ”,求输入的x 的值.解 由题意得y =⎩⎪⎨⎪⎧2x,x ≥1,2+log 2x ,x <1,当x ≥1时,2x≥2,所以若输出y =116,则必有x <1,2+log 2x =116,解得x =⎝ ⎛⎭⎪⎫123116.应用顺序结构与条件结构的注意点(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构:利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一程序框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.定义运算a ⊗b 的结果为执行如图所示的程序框图输出的S ,则⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为( )A .4B .3C .2D .-1 答案 A解析 由程序框图可知,S =⎩⎪⎨⎪⎧aa -b ,a ≥b ,ba +1,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2×(1+1)=4. 题型 二 循环结构角度1 由程序框图求输出(输入)结果1.(2019·烟台模拟)执行如图所示的程序框图,输出的n 值为( )A .6B .7C .8D .12 答案 C解析 由程序框图可知,第一次循环:S =13,n =2;第二次循环:S =13+⎝ ⎛⎭⎪⎫132,n =3;第三次循环:S =13+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133,n =4;……第六次循环:S =13+…+⎝ ⎛⎭⎪⎫136=1-17292<10082017,n =7; 第七次循环:S =13+…+⎝ ⎛⎭⎪⎫137=1-121872>10082017,n =8. 故终止循环,输出n =8.故选C.角度2 完善程序框图2.(2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了下面的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4答案 B解析 由S =1-12+13-14+…+199-1100,知程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入i =i +2,选B.角度3 逆向求解问题3.(2017·全国卷Ⅲ)执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2 答案 D解析 假设N =2,程序执行过程如下:t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意. ∴N =2成立.显然2是最小值.故选D.1.循环结构程序框图求输出结果的方法解决此类问题最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体的过程中:第一,要明确是当型循环结构还是直到型循环结构,根据各自特点执行循环体; 第二,要明确框图中的累加变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环终止的条件是什么,什么时候要终止执行循环体. 2.程序框图补全问题的求解方法 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.1.(2017·全国卷Ⅰ)如图所示的程序框图是为了求出满足3n -2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A >1000?和n =n +1B .A >1000?和n =n +2C .A ≤1000?和n =n +1D .A ≤1000?和n =n +2 答案 D解析 因为题目要求的是“满足3n-2n>1000的最小偶数n ”,所以n 的叠加值为2,所以内填入“n =n +2”.由程序框图知,当内的条件不满足时,输出n ,所以内填入“A ≤1000?”.故选D.2.(2018·洛阳三模)定义[x ]表示不超过x 的最大整数,例如[0.6]=0,[2]=2,[3.6]=3,下图的程序框图取材于中国古代数学著作《孙子算经》.执行该程序框图,则输出a =( )A .9B .16C .23D .30 答案 C解析 由程序框图得k =1,a =9,a -3·⎣⎢⎡⎦⎥⎤a 3=0≠2;k =2,a =16,a -3·⎣⎢⎡⎦⎥⎤a 3=1≠2;k =3,a =23,a -3·⎣⎢⎡⎦⎥⎤a 3=2,a -5·⎣⎢⎡⎦⎥⎤a 5=3,退出循环体,所以输出a =23,故选C.3.(2018·东北三省四市模拟)庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题.现用程序框图描述.如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎪⎫1516,6364,则输入的n 的值为( )A .7B .6C .5D .4答案 C解析 第一次循环得S =12,k =2;第二次循环得S =34,k =3;第三次循环得S =78,k =4;第四次循环得S =1516,k =5;第五次循环得S =3132∈⎝ ⎛⎭⎪⎫1516,6364,k =6,此时满足题意,退出循环,所以输入的n 值为5,故选C.题型 三 基本算法语句1.根据如图算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61答案 C解析 该语句表示分段函数y =⎩⎪⎨⎪⎧ 0.5x ,x ≤50,25+0.6×x -50,x >50,当x =60时,y =25+0.6×(60-50)=31.故输出y 的值为31.2.如图程序执行后输出的结果是________.答案 990解析 程序反映出的算法过程为i =11⇒S =11×1,i =10;i =10⇒S =11×10,i =9;i =9⇒S =11×10×9,i =8;i =8<9,退出循环,执行“PRINT S ”.故S =990.1.解决算法语句的三步骤(1)通读全部语句,把它翻译成数学问题;(2)领悟该语句的功能;(3)根据语句的功能运行程序,解决问题.2.算法语句应用的四关注(2018·保定模拟)根据如图所示的语句,可知输出的结果S=________.答案7解析S=1,I=1;1<8,S=3,I=4;4<8,S=5,I=7;7<8,S=7,I=10;10>8,终止循环,输出S=7.。
第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B解析 z 1z 2=6-8i -i=(6-8i)·i=8+6i.2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B 解析 z =4-7i2+3i=4-7i2-3i13=-13-26i 13=-1-2i ,其共轭复数z =-1+2i对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎨⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i=2+2i 2-2i =1+i1-i=i. 6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12 D.3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x 的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎨⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1)解析 因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2022=4×505+2,所以z =i +i 2+i 3+…+i 20221+i =i +i 21+i =-1+i1+i=-1+i1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i 为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎨⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限. 2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i的“错位共轭”复数为( )A .-36-12iB .-32+32iC.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎨⎧ b +22=0,a +b =0,所以⎩⎨⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎨⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7解析 由复数相等的充要条件,可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。
第十一篇复数、算法、推理与证明(必修3、选修1-2)第1节数系的扩充与复数的引入知识点、方法题号复数的相关概念1,5,10,12,14,15,19,22复数代数形式的运算3,6,8,9,16,24复数的几何意义2,11,13,18,20复数相等的应用4,7,17,21复数的综合23,251.(2016资阳模拟)复数m2-1+(m+1)i是纯虚数,则实数m的值为( B )(A)-1 (B)1 (C)±1 (D)±2解析:若复数m2-1+(m+1)i是纯虚数,则m2-1=0且m+1≠0,解得m=1.2.(2016重庆模拟)在复平面内,复数i·(1-i)对应的点位于( A )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:因为i·(1-i)=1+i,所以复数i·(1-i)对应的点的坐标为(1,1),显然位于第一象限.3.(2016绵阳模拟)已知i是虚数单位,则错误!未找到引用源。
等于( D )(A)-1+i (B)-1-i(C)1+i (D)1-i解析:错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=1-i.4.(2016宿州三模)设i为虚数单位,若错误!未找到引用源。
=b-i(a,b∈R),则a+b等于( C )(A)1 (B)2 (C)3 (D)4解析:因为错误!未找到引用源。
=b-i(a,b∈R),所以a+2i=bi+1,所以a=1,b=2,所以a+b=3.5.(2015高考广东卷)若复数z=i(3-2i)(i是虚数单位),则错误!未找到引用源。
等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以错误!未找到引用源。
=2-3i,故选A.6.(2015高考四川卷)设i是虚数单位,则复数i3-错误!未找到引用源。
2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案理的全部内容。
11.2 数系的扩充与复数的引入[知识梳理]1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量错误!。
3.复数代数形式的四则运算(1)运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z+z1,(z1+z2)+z3=z1+(z2+z3).2(3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z1,z2,z3∈C,有z·z2=z2·z1,(z1·z2)·z3=z1·(z2·z3),z1(z2+z3)=z1z2+z1z3.1(4)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量错误!,错误!不共线,则复数z1+z2是以错误!,错误!为两邻边的平行四边形的对角线错误!所对应的复数.②复数减法的几何意义:复数z1-z2是错误!-错误!=错误!所对应的复数.4.模的运算性质:①|z|2=|错误!|2=z·错误!;②|z1·z2|=|z1||z2|;③错误!=错误!。
第2讲数系的扩充与复数的引入[考纲解读] 1.理解复数的基本概念及复数相等的充要条件.(重点)2.了解复数的代数表示法及几何意义,能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.3.能进行复数形式的四则运算,并了解复数代数形式的加、减运算的几何意义.(重点、难点)[考向预料] 从近三年高考状况来看,本讲在高考中属于必考内容. 预料2024年将会考查:①复数的基本概念与四则运算;②复数模的计算;③复数的几何意义. 题型为客观题,难度一般不大,属于基础题型.1.复数的有关概念2.复数的几何意义复数集C 和复平面内全部的点组成的集合是一一对应的,复数集C 与复平面内全部以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i复平面内的点□01Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R ) 平面对量OZ →.3.复数代数形式的四则运算 (1)运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(2)复数加法的运算定律复数的加法满意交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=□04z 2+z 1,(z 1+z 2)+z 3=□05z 1+(z 2+z 3). (3)复数乘法的运算定律复数的乘法满意交换律、结合律、安排律,即对于随意z 1,z 2,z 3∈C ,有z 1·z 2=□06z 2·z 1,(z 1·z 2)·z 3=□07z 1·(z 2·z 3),z 1(z 2+z 3)=□08z 1z 2+z 1z 3. (4)复数加、减法的几何意义①复数加法的几何意义:若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是□09OZ 1→+OZ 2→所对应的复数.②复数减法的几何意义:复数z 1-z 2是□10OZ 1→-OZ 2→即Z 2Z 1→所对应的复数.4.模的运算性质:①|z |2=|z |2=□01z ·z ;②|z 1·z 2|=□02|z 1||z 2|;③⎪⎪⎪⎪⎪⎪z 1z 2=□03|z 1||z 2|.1.概念辨析(1)关于x 的方程ax 2+bx +c =0(a ,b ,c ∈R 且a ≠0)肯定有两个根.( ) (2)若复数a +b i 中a =0,则此复数必是纯虚数.( ) (3)复数中有相等复数的概念,因此复数可以比较大小.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)√ (2)× (3)× (4)√ 2.小题热身(1)(2024·全国卷Ⅱ)3+i1+i =( )A .1+2iB .1-2iC .2+iD .2-i 答案 D 解析3+i 1+i =3+i1-i 1+i1-i =4-2i2=2-i.故选D. (2)(2024·北京高考)在复平面内,复数11-i 的共轭复数对应的点位于( )A .第一象限B .其次象限C .第三象限D .第四象限 答案 D解析 设复数z =11-i =1+i 1-i 1+i =1+i 1-i 2=1+i 2=12+12i ,所以z 的共轭复数z =12-12i ,z 对应的点为⎝ ⎛⎭⎪⎫12,-12,位于第四象限.(3)(2024·华南师大附中一模)在复平面内,复数z =cos3+isin3(i 为虚数单位),则|z |为( )A .4B .3C .2D .1 答案 D解析 |z |=cos 23+sin 23=1.(4)设复数z 1=2-i ,z 2=a +2i(i 为虚数单位,a ∈R ),若z 1z 2∈R ,则a =________. 答案 4解析 因为z 1z 2=(2-i)(a +2i) =2a +2+(4-a )i ,且z 1z 2是实数,所以4-a =0即a =4.题型 一 复数的有关概念1.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =( )A .-1B .1C .-2D .2 答案 C解析 因为m 2+m -2+(m 2-1)i 是纯虚数,所以⎩⎪⎨⎪⎧m 2+m -2=0,m 2-1≠0,解得m =-2.2.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3 D .-1,4答案 A解析 因为(1+i)+(2-3i)=3-2i =a +b i , 所以a =3,b =-2.3.(2024·合肥一检)设i 为虚数单位,复数z =1-i3-i 的虚部是( )A.15 B .-15 C .1 D .-1 答案 B 解析 复数z =1-i3+i 3-i3+i =4-2i 10=25-15i ,则z 的虚部为-15. 4.(2024·全国卷Ⅰ)设z =1-i1+i+2i ,则|z |=( ) A .0 B.12 C .1 D. 2答案 C解析 因为z =1-i 1+i +2i =1-i 21+i 1-i +2i =-2i 2+2i =i ,所以|z |=0+12=1,故选C.有关处理复数基本概念问题的关键因为复数的分类、相等、模、共轭复数等问题都与实部与虚部有关,所以处理复数有关基本概念问题的关键是找准复数的实部和虚部,即转化为a +b i(a ,b ∈R )的形式,再从定义动身,把复数问题转化成实数问题来处理.1.(2024·安徽安庆模拟)设i 是虚数单位,假如复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13 C .3 D .-3 答案 C 解析a +i 2-i=2a -1+a +2i5,由题意知2a -1=a +2,解得a =3.故选C.2.已知集合A =N ,B ={x ∈R |z =3+x i ,且|z |=5}(i 为虚数单位),则A ∩B =________. 答案 {4}解析 因为|z |=32+x 2=5,所以x =±4, 所以B ={-4,4}, 所以A ∩B ={4}.3.(2024·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.答案 5 2解析 因为(a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.题型 二 复数的几何意义1.(2024·福州质检)设复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,则z 1z 2=( )A .1+i B.35+45i C .1+45iD .1+43i答案 B解析 因为复数z 1,z 2在复平面内对应的点关于实轴对称,z 1=2+i ,所以z 2=2-i ,所以z 1z 2=2+i 2-i =2+i 25=35+45i ,故选B. 2.若复数z =a -2i2在复平面内对应的点在直线y =-x 上,则z ·z =( )A .1B .2C .-1D .-2 答案 B 解析 因为z =a -2i 2=a2-i , 且z 在复平面内对应的点⎝ ⎛⎭⎪⎫a2,-1在直线y =-x 上, 所以-1=-a2,a =2,所以z ·z =(1-i)(1+i)=1-i 2=2.3.若复数z 满意①|z |≥1;②|z +i|≤|-1-2i|,则z 在复平面内所对应的图形的面积为________.答案 4π解析 设z =x +y i(x ,y ∈R ),由|z |≥1及|z +i|≤|-1-2i|易得x 2+y 2≥1及x 2+(y +1)2≤5知z 在复平面内对应图形的面积为5π-π=4π.条件探究1 把举例说明1中的“实轴”改为“虚轴”,求z 1z 2.解 因为复数z 1,z 2在复平面内对应的点关于虚轴对称,z 1=2+i ,所以z 2=-2+i.所以z 1z 2=(2+i)(-2+i)=i 2-22=-5.条件探究2 将举例说明1中z 1对应的向量OZ 1→绕点O 逆时针旋转90°,得z 2对应的向量OZ 2→,试求z 1z 2.解如图所示,z 1=2+i ,z 2=-1+2i ,所以z 1z 2=2+i-1+2i=2+i-1-2i5=-i.复数几何意义及应用1.复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. 2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.提示:|z |的几何意义:令z =x +y i(x ,y ∈R ),则|z |=x 2+y 2,由此可知表示复数z 的点到原点的距离就是|z |的几何意义;|z 1-z 2|的几何意义是复平面内表示复数z 1,z 2的两点之间的距离.1.在复平面内,若O (0,0),A (2,-1),B (0,3),则在▱OACB 中,点C 所对应的复数为( )A .2+2iB .2-2iC .1+iD .1-i 答案 A解析 在▱OACB 中,OC →=OA →+OB →=(2,-1)+(0,3)=(2,2),所以点C 所对应的复数为2+2i.2.如图所示的网格纸中小正方形的边长是1,复平面内点Z 对应的复数z 满意(z 1-i)·z =1,则复数z 1=( )A .-25+45iB.25+45iC.25-45i D .-25-45i答案 B解析 由图可知z =2+i ,因为(z 1-i)·z =1, 所以z 1=1z +i =12+i +i =2-i 5+i =25+45i.题型 三 复数的四则运算角度1 复数的加、减、乘、除运算1.(1)(2024·天津高考)i 是虚数单位,复数6+7i1+2i =________;(2)已知i 是虚数单位,⎝⎛⎭⎪⎫1+i 1-i 8+⎝ ⎛⎭⎪⎫21-i 2024=________.答案 (1)4-i (2)1+i 解析 (1)6+7i 1+2i =6+7i1-2i 1+2i 1-2i =20-5i5=4-i.(2)原式=⎝⎛⎭⎪⎫1+i 1-i 8+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 21009=i 8+⎝ ⎛⎭⎪⎫2-2i 1009=i 8+i 1009=1+i 4×252+1=1+i.角度2 复数四则运算的综合应用2.若复数(1-i)(cos θ+isin θ)在复平面内对应的点在其次象限,则实数θ的取值范围是________.答案 ⎝⎛⎭⎪⎫2k π+3π4,2k π+5π4,k ∈Z解析 (1-i)(cos θ+isin θ) =(cos θ+sin θ)+(sin θ-cos θ)i ,此复数在复平面内对应的点为(cos θ+sin θ,sin θ-cos θ).由题意得⎩⎪⎨⎪⎧cos θ+sin θ<0,sin θ-cos θ>0,角θ终边所在的区域如图所示. 所以2k π+3π4<θ<2k π+5π4,k ∈Z .1.复数代数形式运算问题的解题策略 (1)复数的加减法在进行复数的加减法运算时,可类比合并同类项,运用法则(实部与实部相加减,虚部与虚部相加减)计算即可.(2)复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(3)复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题中要留意把i 的幂写成最简形式. 2.记住以下结论,可提高运算速度 (1)(1±i)2=±2i; (2)1+i1-i =i ; (3)1-i 1+i =-i ; (4)a +b ii=b -a i ;(5)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N ).1.(2024·太原二模)2+i 1-i21-2i =( )A .2B .-2 C.13 D .-13答案 A 解析 2+i 1-i 21-2i=2+i -2i1-2i=-4i +21-2i =21-2i1-2i=2. 2.若复数z 满意(1+2i)z =1-i ,则|z |=( ) A.25 B.35 C.105 D.10 答案 C解析 ∵z =1-i 1+2i ,∴|z |=|z |=|1-i||1+2i|=25=105.3.复数z =cos75°+isin75°(i 是虚数单位),则在复平面内,z 2对应的点位于第________象限.答案 二解析 z 2=(cos75°+isin75°)2=(cos 275°-sin 275°)+(2sin75°cos75°)i =cos150°+isin150° =-32+12i ,其对应的点⎝ ⎛⎭⎪⎫-32,12位于其次象限.。
课时作业67 数系的扩充与复数的引入[基础达标]一、选择题1.[2021·黄冈中学,华师附中等八校联考]设i是虚数单位,若复数a+5i1+2i(a∈R)是纯虚数,则a=()A.-1B.1C.-2D.22.[2021·湖南省长沙市高三调研试题]复数错误!=() A.错误!-iB。
错误!-错误!iC.-1D.-i3.[2021·大同市高三学情调研测试试题]设z=错误!2,则z 的共轭复数为()A.-1B.1C.iD.-i4.[2021·南昌市高三年级摸底测试卷]复数z满足错误!=1-i,则|z|=()A.2iB.2C.iD.15.[2021·合肥市高三调研性检测]已知i是虚数单位,复数z=错误!在复平面内对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限6.[2021·安徽省示范高中名校高三联考]已知i为虚数单位,z=错误!,则z的虚部为()A.1B.-3C.iD.-3i7.[2021·惠州市高三调研考试试题]已知复数z满足(1-i)z=2+i(其中i为虚数单位),则z的共轭复数是()A.-错误!-错误!iB.错误!+错误!iC.-错误!+错误!iD.错误!-错误!i8.[2021·长沙市四校高三年级模拟考试]已知复数z=错误!,则下列结论正确的是()A.z的虚部为iB.|z|=2C.z的共轭复数错误!=-1+iD.z2为纯虚数9.[2021·广东省七校联合体高三第一次联考试题]已知复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1-2i,则错误!=()A.35-错误!iB.-错误!+错误!iC.-错误!-错误!iD.错误!+错误!i10.[2021·唐山市高三年级摸底考试]已知p,q∈R,1+i是关于x的方程x2+px+q=0的一个根,其中i为虚数单位,则p·q=()A.-4B.0C.2D.4二、填空题11.[2020·江苏卷]已知i是虚数单位,则复数z=(1+i)·(2-i)的实部是________.12.[2021·重庆学业质量抽测]已知复数z1=1+2i,z1+z2=2+i,则z1·z2=________。
2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入学案文的全部内容。
11。
2 数系的扩充与复数的引入[知识梳理]1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈(2)复数z=a+b i(a,b∈R) 平面向量错误!.3.复数代数形式的四则运算(1)运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z+z1,(z1+z2)+z3=z1+(z2+z3).2(3)复数乘法的运算定律复数的乘法满足交换律、结合律、分配律,即对于任意z1,z2,z3∈C,有z1·z2=z2·z1,(z1·z2)·z3=z1·(z2·z3),z1(z2+z3)=z1z2+z1z3。
(4)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量错误!,错误!不共线,则复数z1+z2是以错误!,错误!为两邻边的平行四边形的对角线错误!所对应的②复数减法的几何意义:复数z1-z2是错误!-错误!=错误!所对应的复数.4.模的运算性质:①|z|2=|错误!|2=z·错误!;②|z1·z2|=|z1||z2|;③错误!=错误!.[诊断自测]1.概念思辨(1)关于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)一定有两个根.()(2)若复数a+b i中a=0,则此复数必是纯虚数.()(3)复数中有相等复数的概念,因此复数可以比较大小.()(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案(1)√(2)×(3)×(4)√2.教材衍化(1)(选修A1-2P63A组T1(3))在复平面内,复数z=错误!(i为虚数单位)对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案D解析z=错误!=错误!=错误!-错误!i,其对应的点为错误!,在第四象限.故选D.(2)(选修A1-2P61A组T3)在复平面内,复数6+5i,-2+3i对应的点分别为A,B。
第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B 解析z 1z 2=6-8i -i=(6-8i)·i=8+6i. 2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 z =4-7i 2+3i =4-7i 2-3i 13=-13-26i13=-1-2i ,其共轭复数z =-1+2i 对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i 答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2, ∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i 3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎪⎨⎪⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i =2+2i 2-2i =1+i 1-i=i.6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32 B.33 C.12D. 3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎪⎨⎪⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1) 解析 因为i4n +1+i4n +2+i4n +3+i4n +4=i +i 2+i 3+i 4=0,而2022=4×505+2, 所以z =i +i 2+i 3+…+i20221+i =i +i 21+i =-1+i 1+i=-1+i 1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x=cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎪⎨⎪⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限.2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为( )A .-36-12i B .-32+32i C.36+12i D.32+32i 答案 D 解析 由(z -i)⎝⎛⎭⎪⎫32-12i =1,可得z -i =132-12i=32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎪⎨⎪⎧b +22=0,a +b =0,所以⎩⎪⎨⎪⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎪⎨⎪⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7 解析 由复数相等的充要条件,可得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。