2020新高考数学二轮冲刺空间直线平面平行垂直全归纳(基础中档拔高题全解析)
- 格式:pdf
- 大小:2.37 MB
- 文档页数:54
第5节直线、平面垂直的判定和性质【选题明细表】基础巩固(建议用时:25分钟)1.(2018·云南玉溪模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中正确命题的序号是( A )(A)①③ (B)①④ (C)②③ (D)②④解析:①正确;对于②,若α⊥β,m∥α,m与β的关系不确定,故②错误;对于③,若m⊥α,m∥β,可以在β内找到一条直线n与m平行,所以n⊥α,故α⊥β,故③正确;对于④,若m∥n,n⊂α,那么m与α的位置关系为m∥α或者m⊂α,故④错误.故选A.2.已知平面α与平面β相交,直线m⊥α,则( C )(A)β内必存在直线与m平行,且存在直线与m垂直(B)β内不一定存在直线与m平行,不一定存在直线与m垂直(C)β内不一定存在直线与m平行,但必存在直线与m垂直(D)β内必存在直线与m平行,不一定存在直线与m垂直解析:如图,在平面β内的直线若与α,β的交线a平行,则有m与之垂直.但却不一定在β内有与m平行的直线,只有当α⊥β时才存在.故选C.3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在平面ABC上的射影H必在( A )(A)直线AB上(B)直线BC上(C)直线AC上(D)△ABC的内部解析:连接AC1,因为AC⊥AB,AC⊥BC1,AB∩BC1=B,所以AC⊥平面ABC1,又AC⊂平面ABC,所以平面ABC1⊥平面ABC,所以点C1在平面ABC上的射影H必在两平面的交线AB上,故选A.4.(2018·江西南昌摸底)如图,在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是( B )(A)PB⊥AC(B)PD⊥平面ABCD(C)AC⊥PD(D)平面PBD⊥平面ABCD解析:取BP的中点O,连接OA,OC,则BP⊥OA,BP⊥OC,又因为OA∩OC=O,所以BP⊥平面OAC,所以BP⊥AC,故选项A正确;又AC⊥BD,BP∩BD=B,得AC⊥平面BDP,又PD⊂平面BDP,所以AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确.故选B.5.(2018·南宁市联考)如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点.现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H.下列说法错误的是.(填序号)①AG⊥△EFH所在平面;②AH⊥△EFH所在平面;③HF⊥△AEF所在平面;④HG⊥△AEF所在平面.解析:折之前AG⊥EF,CG⊥EF,折之后也垂直,所以EF⊥平面AHG,折之前∠B,∠D,∠BCD均为直角,折之后三点重合,所以折之后AH,EH,FH三条直线两两垂直,所以AH⊥△EFH所在平面,②对;同时可知AH⊥HG,又HF⊥△AEH所在平面,过AE不可能做两个平面与直线HF垂直,③错;如果HG⊥△AEF所在平面,则有HG⊥AG,与AH⊥HG矛盾,④错;若AG⊥△EFH所在平面,则有AG⊥HG,与AH⊥HG矛盾,所以①也错.答案:①③④6.设α,β是空间中两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题: (填序号).解析:因为当n⊥β,m⊥α时,平面α及β所成的二面角与直线m,n所成的角相等或互补,所以若m⊥n,则α⊥β,从而由①③④⇒②正确;同理②③④⇒①也正确.答案:①③④⇒②或②③④⇒①7.如图所示,在四棱锥P ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:由定理可知,BD⊥PC.所以当DM⊥PC时,即有PC⊥平面MBD,而PC⊂平面PCD,所以平面MBD⊥平面PCD.答案:DM⊥PC(答案不唯一)8.如图,直三棱柱ABC A 1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为.解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可以得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h,又2×=h×,所以h=,DE=.在Rt△DB1E中,B1E==.由面积相等得×=x,得x=.即线段B1F的长为.答案:能力提升(建议用时:25分钟)9.(2018·广州模拟)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面三个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC.其中正确结论的个数是( C )(A)0 (B)1 (C)2 (D)3解析:画出该几何体,如图所示,①因为E,F分别是PA,PD的中点,所以EF∥AD,所以EF∥BC,直线BE 与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是PA,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确.故选C.10.(2018·泉州模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是.解析:连接BD交AC于点O,连接DC1交D1C于点O1,连接OO1,则OO1∥BC1,所以BC1∥平面AD1C,动点P到平面AD1C的距离不变,所以三棱锥P-AD1C的体积不变.又因为=,所以①正确;因为平面A1C1B∥平面ACD1,A1P⊂平面A1C1B,所以A1P∥平面ACD1,②正确;由于当点P在B点时,DB不垂直于BC1,即DP不垂直BC1,故③不正确;由于DB1⊥D1C,DB1⊥AD1,D1C∩AD1=D1,所以DB1⊥平面ACD1.又因为DB1⊂平面PDB1,所以平面PDB1⊥平面ACD1,④正确.答案:①②④11.(2018·武汉调研)在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确结论的序号是.解析:①假设AC与BD垂直,过点A作AE⊥BD于E,连接CE.则⇒BD⊥平面AEC⇒BD ⊥CE,而在平面BCD中,EC与BD不垂直,故假设不成立,①错误.②假设AB⊥CD,因为AB⊥AD,AD∩CD=D,所以AB⊥平面ACD,所以AB⊥AC,由AB<BC可知,在矩形ABCD中,0°<∠BAC<90°,当△ABD折叠到与△BCD重叠时,∠BAC>90°,故折叠过程中存在∠BAC=90°的情况,使AB⊥CD,故假设成立,②正确.③假设AD⊥BC,因为DC⊥BC,所以BC⊥平面ADC,所以BC⊥AC,即△ABC为直角三角形,且AB为斜边,而AB<BC,故矛盾,假设不成立,③错误.答案:②12.(2018·兰州实战考试)α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD ⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是.解析:由题意得,AB∥CD,所以A,B,C,D四点共面.①中,因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABCD,又因为BD⊂平面ABCD,所以BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③中,由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,所以平面ABCD⊥α.因为平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,所以EF⊥平面ABCD,又BD ⊂平面ABCD,所以BD⊥EF,故③正确;④中,由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.答案:①③13.(2018·广西三市第二次调研)如图,四棱锥F ABCD中,底面ABCD为边长是2的正方形,E,G 分别是CD,AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求多面体B-AGE的体积.(1)证明:作GO⊥AE于点O,连接BO,因为AG=AB=2,∠GAO=∠BAO,AO=AO,所以△AOG≌△AOB,所以∠AOB=∠AOG=90°,即GO⊥AE,BO⊥AE,又GO∩BO=O,所以AE⊥平面OGB,又BG⊂平面OGB,所以AE⊥BG.(2)解:因为平面AEF⊥平面AEB,平面AEF∩平面AEB=AE,GO⊥AE,所以GO⊥平面AEB,因为S△ABE=·AB·BC=AE·BO,所以×2×2=××BO.所以BO=,即GO=.所以=V G-ABE=×·AB·BC·GO=××2×2×=.14.(2018·东北三省三校三模)已知△ABC中,AB⊥BC,BC=2,AB=4,分别取边AB,AC的中点D,E,将△ADE沿DE折起到△A1DE的位置,使得A1D⊥BD,设点M为棱A1D的中点,点P为A1B的中点,棱BC上的点N满足BN=3NC.(1)求证:MN∥平面A1EC;(2)求三棱锥N PCE的体积.(1)证明:取A1E中点F,连接MF,CF,因为M为棱A1D的中点,所以MF∥DE且MF=DE,而△ABC中,D,E为边AB,AC的中点,则DE∥BC,且DE=BC.所以MF∥BC,即MF∥NC,且MF=BC=NC,所以四边形MFCN为平行四边形,所以MN∥FC,因为MN⊄平面A1EC,FC⊂平面A1EC,所以MN∥平面A1EC.(2)解:取BD中点H,连接PH,因为AB⊥BC,DE∥BC,所以DE⊥DA1,DE⊥BD,因为A1D⊥BD,DB∩DE=D,所以A1D⊥平面BCED,因为PH∥A1D,所以PH⊥平面BCED,所以PH为三棱锥P NCE的高,所以PH=A1D=AB=1,S△NCE=NC·BD=××2=,所以==PH·S△NCE=×1×=.。
第2讲空间中的平行与垂直「考情研析」 1.从具体内容上:(1)以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.(2)以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查.2.从高考特点上,难度中等,常以一道选填题或在解答题的第一问考查.分值一般为5分.核心知识回顾1.直线与平面平行的判定和性质⑴判定①判定定理:理,〃b,bu a,2an a〃a.②面面平行的性质:陞a II B,au an all B、(2)性质:®〃a,lu8,a Q8=g1〃m.2.直线和平面垂直的判定和性质⑴判定①判定定理:也a LD,a Lc,b,cu a,力ric=如a La.②线面垂直的其他判定方法:a.莒一〃次,a L a.b.笆7J a,a〃Ed B.c.a C8=1,au a,c L7=>a L B.(2)性质①色/L。
,au a=>/La.②曲/L a,m上an12m.3.两个平面平行的判定和性质⑴判定①判定定理:也mu B,bu8,a。
b=P,a〃a,/?〃an8II a、②面面平行的其他判定方法:a.也7J a,Bn al".b.笆。
〃x,a H Bn B H丫、⑵性质:也。
〃Y C B=b^b.4.两个平面垂直的判定和性质⑴判定:也au a,aUn aU.⑵性质:遂 a LS, a C 8 = 1, au a ,,L7na LS .热点考向探究考向1空间线面位置关系的判定例1 (1) (2019 •陕西延安高考模拟)已知m, n 表示两条不同的直线,a 表示平面.下列说法正确的是()A. 若 mil a , n// a ,贝。
m//nB. 若应_L 。
,nl. a ,贝lj m//nC. 若应_L a , m_Ln f 贝!| n// aD. 若成〃 a , m_Ln,贝!| nl_ a答案B解析若m// a , nil a ,则应,〃相交或平行或异面,故A 错误;若ml_ a , nl_ a ,由线面垂直的性质定理可知成〃力,故B 正确;若ml. a , 则nil a 或a ,故C 错误;若m// a , m_Ln,则n//。
2020年高考数学(理)二轮复习命题考点串讲系列-专题12 空间的平行与垂直1、考情解读1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以客观题形式考查有关线面平行、垂直等位置关系的命题真假判断或充要条件判断等.3.以多面体或旋转体为载体(棱锥、棱柱为主)命制空间线面平行、垂直各种位置关系的证明题或探索性问题,以大题形式呈现.2、重点知识梳理1.点、线、面的位置关系(1)平面的基本性质名称图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内⎭⎬⎫A∈lB∈lA∈αB∈α⇒l⊂α公理2过不在一条直线上的三点有且只有一个平面若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a(2)平行公理、等角定理公理4:若a∥c,b∥c,则a∥b.等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°. 2.直线、平面的平行与垂直定理名称文字语言图形语言符号语言线面平行的判定定理平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行⎭⎬⎫a⊄αb⊂αa∥b⇒a∥α线面平行的性质定理一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b,⇒a∥b面面平行的判定定理如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β面面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β且γ∩α=a且γ∩β=b⇒a∥b线面垂直的判定定理一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α线面垂直的性质定理垂直于同一平面的两条直线平行a⊥α,b⊥α⇒a∥b面面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直a⊥α,a⊂β,⇒α⊥β面面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直α⊥β,b ∈β,α∩β=a ,b ⊥a ⇒b ⊥α3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础. 学科.网【误区警示】1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件. 2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.3.若a 、b 、c 代表直线或平面,△代表平行或垂直,在形如⎭⎬⎫a △b a △c ⇒b △c 的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a 、b 、c 中有两个为平面,一条为直线,命题⎭⎬⎫a ⊥αa ⊥β⇒α∥β是成立的.⎭⎬⎫a ∥αa ∥β⇒α∥β是不成立的. 3、高频考点突破考点1 空间中点、线、面的位置例1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行 C .若α,β不平行,则在α内不存在与β平行的直线 D .若m ,n 不平行,则m 与n 不可能垂直于同一平面答案 D【变式探究】已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α答案 B考点二 空间中平行的判定与垂直例2.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ,所以EF AB P.(第15题)ADBC EF又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥, 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD .又AB ⊥AD , BC AB B ⋂=, AB ⊂平面ABC , BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.【变式探究】【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=I ,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=I F ,平面平面 所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C , 所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.【举一反三】【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)295 25.【变式探究】如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则()A.∠A′DB≤α B.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB 都可以大于0,排除A,C.故选B.答案 B考点三平面图形的折叠问题例3、(2016·全国甲卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′-ABCFE的体积.由(1)知,AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322.【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.【变式探究】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且DGGH=BRRH.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径.(2)正方形ABCD 边长为4.由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4. S △DEF =12×22×252-22=6.设三棱锥P -DEF 内切球的半径为r ,则三棱锥的体积V P -DEF =13×12×2×2×4=13(S △PEF +2S △DPF +S △DEF )·r ,解得r =12. ∴三棱锥P -DEF 的内切球的半径为12.学科.网 4、真题感悟(2014-2017)1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A B C D答案:A2.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.3.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P.又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC.(第15题)ADBC EF1.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】由题意知,l l αββ=∴⊂I ,,n n l β⊥∴⊥Q .故选C .2.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.3.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=o .由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDCBAP过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△, 即2112342sin 3022x x d x -+⨯=⋅o ,解得2234x d x x =-+.而△BCD 的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-o .当平面PBD ⊥平面BDC 时: 四面体PBCD 的体积2111(23)332234BCD xV S d x x x =⨯=⨯-⋅-+△21(23)6234x x x x -=-+. 观察上式,易得23(23)2x xx x +--≤,当且仅当=23x x -,即=3x 时取等号,同时我们可以发现当=3x 时,2234x x -+取得最小值,故当=3x 时,四面体PBCD 的体积最大,为1.24.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)32 (B )22 (C)33 (D)13【答案】A5.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B6.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.1.【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP AN NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号),∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.【考点定位】立体几何中的动态问题2.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)π-D.312(21)π-【答案】A.322162()327a a a ++-≤⨯=,当且仅当y x =,3222=⇒-=a a a 时,等号成立,此时利用率为ππ98213127162=⨯⨯,故选A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.3.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B4.【2015高考四川,理14】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。
立体几何(10)直线、平面垂直的判定及其性质(B )1、以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( )A.①②③B.②③④C.①②④D.①③④2、已知,m n 是不同的直线, ,αβ是不同的平面,则下列条件能使n α⊥成立的是( )A. ,m αββ⊥⊂B. //,n αββ⊥C. ,//n αββ⊥D. //,m n m α⊥3、设l 是直线, α,β是两个不同的平面( )A.若,l l αβP P ,则αβPB.若,l l αβ⊥P ,则αβ⊥C.若,l αβα⊥⊥,则l β⊥D.若,l αβα⊥P ,则l β⊥4、设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是() A.若,,l m m α⊥P 则l αPB.若,,,,l m l n m n α⊥⊥⊂则l α⊥C.若,,,l l m αβαβ⋂=P P 则l m PD.若,,,l m l m αβ⊂⊂⊥则αβ⊥5、在正方体1111ABCD A B C D -中, ,M N 分别是11,BC CD 的中点,则( )A. 11MN C D PB. 1MN BC ⊥C. MN ⊥平面1ACDD. MN ⊥平面1ACC6、如图,在正方形ABCD 中, ,E F 分别是,BC CD 的中点, G 是EF 的中点,现在沿,AE AF 及EF 把这个正方形折成一个空间图形,使,,B C D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A. AG EFH ⊥∆所在平面B. AH EFH ⊥∆所在平面C. HF AEF ⊥∆所在平面D. HG AEF ⊥∆所在平面7、在棱长为1的正方体1111ABCD A B C D -中, ,M N 分别是111,AC A B 的中点.点P 在该正方体的表面上运动,则总能使MP 与BN 垂直的点P 所构成的轨迹的周长等于( )A.51+ B. 52+C. 251+D. 252+8、如图,在正方体1111ABCD A B C D -中,下列结论不正确的是( )A. 111C D B C ⊥B. 1BD AC ⊥C. 11BD B C PD. 160ACB ∠=o9、如图,在下列四个正方体1111ABCD A B C D -中, ,,E F G 均为所在棱的中点,过,,E F G 作正方体的截面,则在各个正方体中,直线1BD 与平面EFG 不垂直的是( )A.B.C.D.10、已知四边形ABCD 为矩形, PA ⊥平面ABCD ,则下列判断中正确的是()A. AB PC ⊥B. AC ⊥平面PBDC. BC ⊥平面PABD.平面PBC ⊥平面PDC11、若,b α表示直线, α表示平面,下列命题:①,//a b a b αα⊥=⇒⊥;②,//a a b b αα⊥=⊥⇒ ;③//,a a b b αα=⊥⇒⊥;④,//.a b a b αα⊥=⊥⇒其中正确的是_________(将你认为正确的序号都填上)12、如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .给出下列命题:①存在点E ,使得1AC P 平面1BED F ;②对于任意的点E ,平面11A C D ⊥平面1BED F ;③存在点E ,使得1B D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变.其中正确命题的序号是__________.(写出所有正确命题的序号)13、如图, PA ⊥圆O 所在的平面, AB 是圆O 的直径, C 是圆O 上的一点, E 、F 分别是点A 在PB 、PC 上的射影,给出下列结论:①AF PB ⊥;②EF PB ⊥;③AF BC ⊥;④AE ⊥平面PBC ;⑤平面PBC ⊥平面PAC .其中正确命题的序号是__________14、设,,αβγ是三个不重合的平面, ,m n 是直线,给出下列命题:①若,αββγ⊥⊥,则αγP ;②若,m n γβP P 则m n ⊥;③若,αβγβP P ,则αγP ; ④若,m n 在γ内的射影互相垂直,则m n ⊥其中错误命题为__________15、如图所示, E 、F 分别是边长为1的正方形12SD DD 边1D D 、2DD 的中点,沿,,SE SF EF 将其折成一个几何体,使12,,D D D 重合,记作D .给出下列命题:①SD ⊥平面DEF ;②点S 到平面DEF 的距离为5;③DF SE ⊥;④该几何体的体积为112,其中正确的有__________16、,αβ是两个平面, ,m n 是两条直线,有下列四个命题:①如果,,m n m n αβ⊥⊥P ,那么αβ⊥.②如果,m n αα⊥P ,那么m n ⊥.③如果,m αβα⊂P ,那么m βP .④如果,m n αβP P ,那么m 与α所成的角和n 与β所成的角相等.其中错误的命题有__________.(填写错误命题的编号)17、如图所示,下列五个正方体图形中, l 是正方体的一条对角线,点,,M N P 分别为其所在棱的中点,能得出l ⊥平面MNP 的图形的序号是________.(写出所有符合要求的图形的序号)18、如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90,BAC O ∠=o为BC 中点1.证明: SO ⊥平面ABC2.设AB a =,求点B 到平面SAC 的距离19、如图,在三棱柱111ABC A B C -中,已知1CC ⊥底面ABC ,AC⊥BC AC BC ⊥,四边形11BB C C 为正方形1.求异面直线1AA 与1BC 所成角的大小;2.求证: 1BC ⊥平面1AB C答案以及解析1答案及解析:答案:D解析:法1:因为1λμ+=,所以,,A B P三点共线.如图(1),当P在,?A B之间时(含,?A B两点),OAu u u r在OPuuu r的投影的取值范围是[]0,1;如图(2),当P在BA的延长线上时(不含A点),OAu u u r在OPuuu r的投影的取值范围是5⎤⎥⎝⎦(当OP接近于平行AB时, OAu u u r在OPuuu r5如图(3),当P在AB的延长线上时(不含A点),OAu u u r在OPuuu r的投影的取值范围是5,05⎛⎫- ⎪⎪⎝⎭(当OP接近于平行OPuuu r时, OAu u u r在OPuuu r的投影的无限接近于55-);综上, OAu u u r在OPuuu r的投影的取值范围是5⎛⎤⎥⎝⎦.法2:不妨设O为坐标原点, ()0,1A, ()2,0B,则()2,P uλ,也就是()()21,Pλλ-.而OAu u u r在OPuuu r上的投影为()22·41OAOPOPλλ=-+uuu r uu u ru u r.令()()2241fλλλ-+=,如果0λ>,则()()22222584485411,0f t t t tλλλλ-+==-+=-+>,所以()21f λ≥也就是()1f λ≥,所以()220141λλ<≤-+;当0λ=时, ()22041λλ=-+;当0λ<时, ()()222485411,0f t t t t λ=-+=-+<,所以()25fλ>也就是()5f λ<-, 所以()225041λλ-<<-+. 综上, ·OAO O P P uu r uu u r uu u r 的取值范围为5,1⎛⎤- ⎥ ⎝⎦.2答案及解析:答案:B解析:解: ,m αββ⊥⊂,不能说明n 与α的关系,A 错误;//,n αββ⊥能够推出n α⊥,B 正确;,//n αββ⊥可以得到n 与平面α平行、相交,所以C 不正确.//,m n m α⊥则n 与平面α可能平行,所以D 不正确.所以B 选项是正确的.3答案及解析:答案:B解析:对于选项A,若,l l αβP P ,则平面,αβ可能相交,此时交线与l 平行,故A 错误; 对于B,若l αP ,l β⊥,则αβ⊥,则在平面α内有一条直线垂直平面β,则根据面面垂直的判定定理得到成立,对于C,由于αβ⊥,l α⊥,则l β⊥,可能是平行,不能垂直。
第一章空间直线、平面平行垂直一、考纲解读1.要理解空间直线和平面各种位置关系的定义.2.以立体几何的定义,公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定,理解其判定定理与性质定理.二、命题趋势探究有关平行的问题是高考的必考内容,主要分为两大类:一类是空间线面关系的判定和推理;一类是几何量的计算,主要考查学生的空间想象能力,思维能力和解决问题的能力.平行关系是立体几何中的一种重要位置关系,在高考中,选择题、填空题几乎每年都考,难度一般为中档题,且常常以棱柱、棱锥为背景.(1)高考始终把直线与平面、平面与平面平行的判定与性质作为考查的重点,通常以棱柱、棱锥为背景设计命题.考查的方向是直线与平面、平面与平面的位置关系,结合平面几何有关知识考查.(2)以棱柱、棱锥为依托考查两平行平面的距离,可转化为点面距离,线面距离和两异面直线间的距离问题,通常是算、证结合,考查学生的渗透转化思想.三、知识点精讲(一).直线和平面平行1.定义直线与平面没有公共点,则称此直线l与平面α平行,记作l∥α2.判定方法(文字语言、图形语言、符号语言)(见表8-9)表8-9文字语言图形语言符号语言线∥线⇒线∥面如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行11l ll llααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥面∥面⇒线∥面如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面aaαββα⎫⇒⎬⊂⎭∥∥3.性质定理(文字语言、图形语言、符号语言)(见表8-10)表8-10文字语言图形语言符号语言线∥面⇒线∥线如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ll l llαβαβ⎫⎪'⊂⇒⎬⎪'=⎭I∥∥(二).两个平面平行1.定义没有公共点的两个平面叫作平行平面,用符号表示为:对于平面α和β,若αβφ=I,则α∥β2.判定方法(文字语言、图形语言、符号语言)(见表8-11)表8-11文字语言图形语言符号语言判定定理线∥面⇒面∥面如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行,,a b a b Pαα⊂⊂=Ia bββαβ⇒∥,∥∥线⊥面⇒面∥面如果两个平面同垂直于一条直线,那么这两个平面平行llααβ⊥⎫⇒⎬⊥⎭∥β3.性质定理(文字语言、图形语言、符号语言)(见表8-12)表8-12文字语言图形语言符号语言面//面⇒线//面如果两个平面平行,那么在一个平面中的所有直线都平行于另外一个平面////aaαββα⎫⇒⎬⊂⎭性质定理如果两个平行平面同时和第三个平面相交,那么他们的交线平行(简记为“面面平行⇒////.a a bbαβαγβγ⎫⎪=⇒⎬⎪=⎭II线面平行”)面//面⇒线⊥面如果两个平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线//llαββα⎫⇒⊥⎬⊥⎭(三).线面垂直1.定义:如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.2.判定定理(文字语言、图形语言、符号语言)(见表1)表1文字语言图形语言符号语言判断定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直面⊥面⇒线⊥面两个平面垂直,则在一个平面内垂直于交线的直线与另一个平面垂直αββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥babba,a ba llb la b Pαα⊂⎫⎪⊥⎪⇒⊥⎬⊥⎪⎪=⎭I__a平行与垂直的关系1一条直线与两平行平面中的一个平面垂直,则该直线与另一个平面也垂直βαβα⊥⇒⎭⎬⎫⊥aa//平行与垂直的关系2两平行直线中有一条与平面垂直,则另一条直线与该平面也垂直αα⊥⇒⎭⎬⎫⊥baba//3.性质定理(文字语言、图形语言、符号语言)(见表2)表2文字语言图形语言符号语言性质定理垂直于同一平面的两条直线平行babaa////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα文字语言图形语言符号语言垂直与平行的关系垂直于同一直线的两个平面平行βαβα//⇒⎭⎬⎫⊥⊥aa线垂直于面的性质如果一条直线垂直于一个平面,则该直线与,l a l aαα⊥⊂⇒⊥_α_b_aα_b_a_平面内所有直线都垂直(四).斜线在平面内的射影1.斜线的定义一条直线与一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和这个平面的交点叫做斜足.2.射影的定义过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.3.直线与平面所成的角平面内的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.特别地,一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是的角,故直线与平面所成的角的范围是.如图8-122所示,是平面的斜线,为斜足;是平面的垂线,为垂足;是在平面的射影,的大小即为直线与平面所成的角的大小.0,2π⎡⎤⎢⎥⎣⎦PAαA POαO AO PAαPAO∠PAα(五).平面与平面垂直 1.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面;如图8-123所示,在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角,二面角的范围是.平面角是直角的二面角叫做直二面角.2.平面与平面垂直的定义如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直.(如图8-124所示,若,,且,,,则)l αβ--l O O αβl OA OB OA OB AOB ∠[]0,πCD αβ=I CD γ⊥AB αγ=I BE βγ=I AB BE ⊥αβ⊥一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.3.判定定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直βαβα⊥⇒⎭⎬⎫⊂⊥bb4.性质定理(文字语言、图形语言、符号语言)文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直αββαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥babba___a四、思路小结(一).线线平行、线面平行、面面平行的转换如图0所示.(1) 证明直线与平面平行的常用方法:①利用定义,证明直线a 与平面α没有公共点,一般结合反证法证明;②利用线面平行的判定定理,即线线平行⇒线面平行.辅助线的作法为:平面外直线的端点进平面,同向进面,得平行四边形的对边,不同向进面,延长交于一点得平行于第三边的线段;③利用面面平行的性质定理,把面面平行转化成线面平行; (2) 证明面面平行的常用方法:①利用面面平行的定义,此法一般与反证法结合; ②利用面面平行的判定定理; ③利用两个平面垂直于同一条直线; ④证明两个平面同时平行于第三个平面.(3) 证明线线平行的常用方法:○1利用直线和平面平行的判定定理;○2利用平行公理; (二).证明空间中直线、平面的垂直关系线线线面面面 ⊥−−−−→←−−−−判定定理性质定理⊥−−−−→←−−−−判定定理性质定理⊥性质 性质性质 判定判定判定 线∥面 线∥线面∥面图 0(1)证明线线垂直的方法 ①等腰三角形底边上的中线是高; ②勾股定理逆定理; ③菱形对角线互相垂直; ④直径所对的圆周角是直角; ⑤向量的数量积为零;⑥线面垂直的性质(); ⑦平行线垂直直线的传递性(∥). (2)证明线面垂直的方法 ①线面垂直的定义;②线面垂直的判定(); ③面面垂直的性质(); 平行线垂直平面的传递性(∥); ⑤面面垂直的性质(). (3)证明面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理().,a b a b αα⊥⊂⇒⊥,a c a ⊥b b c ⇒⊥,,,,a b a c c b b c P a ααα⊥⊥⊂⊂=⇒⊥I ,,,b a b a a αβαβαβ⊥=⊥⊂⇒⊥I ,a b α⊥a b α⇒⊥,,l l αγβγαβγ⊥⊥=⇒⊥I ,a a βααβ⊥⊂⇒⊥性质性质性质性质性质 判定判定 判定 判定 判定线∥面 线∥线面∥面线⊥面 线⊥线面⊥面图 3空间中的线面平行、垂直的位置关系结构图如图3所示,由图可知,线面垂直在所有关系中处于核心位置. 五、解答题题型总结 核心考点一:平行证明【例1】 如图所示,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点.在棱11C D 上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.原图:【解析】 在棱11C D 上存在点F ,使1B F ∥平面1A BE .且F 为11C D 的中点. 法一:分别取11C D 和CD 的中点F ,G ,连结EG ,BG ,1CD ,FG . 由四边形11A BCD 是平行四边形,有11D C A B ∥.又E ,G 分别为1D D ,CD 的中点,有1EG D C ∥,∴1EG A B ∥. 这说明1A 、B 、G 、E 共面,所以BG ⊂平面1A BE .BACD A 1B 1D 1C 1E E C 1D 1B 1A 1DCAB G F因四边形11C CDD 与11B BCC 皆为正方形,F ,G 分别为11C D 和CD 的中点, 所以11FG C C B B ∥∥,且11FG C C B B ==, ∴四边形1B BGF 是平行四边形,所以1B F BG ∥. 而1B F ⊄ 平面1A BE ,BG ⊂平面1A BE ,故1B F ∥平面1A BE .法二:连结1C D ,EF ,1AB ,且1AB 与1A B 交于点K ,连结EK , (要证线面平行转化为线线平行即1B F EK ∥) 由平行四边形11B C DA 有11B A C D ∥, 又,F E 为棱中点,有1EF C D ∥, ∴1EF B A ∥,∴1EF B K ∥,且1EF B K =. ∴1B F EK ∥,且1B F ⊄面1A BE ,EK ⊂面1A BE , ∴棱11C D 上存在中点F ,使得1B F ∥面1A BE .【例2】如图,已知正方体1111ABCD A B C D -中,E 、F 分别为AB 、BC 的中点,在棱1DD 上是否存在一点K ,使得AK ∥平面1EFD ?证明你的结论.原图:法一: 取K 使得12DKKD =,则这样的K 满足要求. K F ED 1C 1B 1A 1DCBAKFE DCBAD 1C 1B 1A 1KF EB 1A 1DCBA延长AK 交11A D 于S ,连接CS 、AC . 由1112D S D K AD KD ==,得112D S AD =. 又12CF BC =,AD BC =,∴1D S CF =易知1D S CF ∥,∴1D S FC ∥,1CFD S 是平行四边形 ∴1CS D F ∥.另外,由E 、F 分别为AB 、BC 的中点,知EF AC ∥. ∵CS AC C =I ,∴面ACS ∥面1EFD ∵AK ⊂面ACS ,∴AK ∥面1EFD . 法二:延长EF 交DC 于P ,则111122CP EB CD C D ===.连接1PD 交1CC 于Q ,则11112CQ CP QC C D ==. 连接FQ ,平面1EFD 与面11BB C C 的交线即为FQ ,要想AK ∥面1EFD ,则只需AK FQ ∥即可.由113:232FC CQ ==知,只需32AD DK =即可,即12233DK AD DD ==.此时的K 满足要求.【例3】 如图,已知四棱锥B ACDE -的底面为直角梯形ACDE ,90BAC ACD ∠=∠=︒,60EAC ∠=︒,AB AC AE ==.在直线BC 上是否存在一点P ,使得DP ∥平面EAB ?请证明你的结论.原图:线段BC 的中点就是满足条件的点P . 证明如下:取AB 的中点F 连结DP 、PF 、EF ,则FP AC ∥,12FP AC =. 取AC 的中点M ,连结EM 、EC ,∵AE AC =且60EAC ∠=︒,∴EAC △是正三角形,∴EM AC ⊥. ∴四边形EMCD 为矩形,∴12ED MC AC ==. 又∵ED AC ∥,∴ED FP ∥且ED FP =,四边形EFPD 是平行四边形. ∴DP EF ∥,而EF ⊂平面EAB ,DP ⊄平面EAB , ∴DP ∥平面EAB . 核心考点 :垂直证明【例1】在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =,点M 是SD 的中点,AN SC ⊥,且交SC 于点N ,证明:平面SAC ⊥平面AMN .BA CDEM NDCBA SMF PBA CDE● ∵SA ⊥底面ABCD ,CD ⊂平面ABCD ,∴SA CD ⊥;又∵CD AD ⊥,SA ⊂平面SAD ,AD ⊂平面SAD ,SA AD A =I , ∴CD ⊥平面SAD .AM ⊂平面SAD ,∴CD AM ⊥.又∵SA AD AB ==,M 是SD 的中点, ∴AM SD ⊥;SD ⊂平面SCD ,CD ⊂平面SCD ,SD CD D =I ,∴AM ⊥平面SCD .SC ⊂平面SCD ,∴AM SC ⊥.又∵AN SC ⊥,AM 、AN ⊂平面AMN ,AM AN A =I , ∴SC ⊥平面AMN ,又∵SC ⊂平面SAC , ∴平面SAC ⊥平面AMN .【例2】如图,已知BCD △中,90BCD ∠=︒,1BC CD ==,AB ⊥平面BCD ,60ADB ∠=︒,E 、F分别是AC 、AD 上的动点,且()01AE AFAC ADλλ==<<. ⑴ 求证:不论λ为何值,总有平面BEF ⊥平面ABC ;⑵ 当λ为何值时,平面BEF ⊥平面ACD ?● ⑴ ∵AB ⊥平面BCD ,∴AB CD ⊥.∵CD BC ⊥,且AB BC B =I ,∴CD ⊥平面ABC .FEDCBA又AE AFAC ADλ==,故EF CD ∥. ∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴不论λ为何值,总有平面BEF ⊥平面ABC . ⑵ 由⑴知,BE EF ⊥,又平面BEF ⊥平面ACD , ∴BE ⊥平面ACD ,∴BE AC ⊥. ∵90BCD ∠=︒,1BC CD ==,60ADB ∠=︒∴2BD =,2tan 606AB =︒=,227AC AB BC =+=. 由射影定理2AB AE AC =⋅,解得67AE =,∴67AE AC λ==. 因此67λ=时,平面BEF ⊥平面ACD .【例3】在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =,点M 是SD 的中点,AN SC ⊥,且交SC 于点N ,证明:平面SAC ⊥平面AMN .【解析】∵SA ⊥底面ABCD ,CD ⊂平面ABCD , ∴SA CD ⊥;又∵CD AD ⊥,SA ⊂平面SAD ,AD ⊂平面SAD ,SA AD A =I ,M NDCBA S∴CD ⊥平面SAD .AM ⊂平面SAD ,∴CD AM ⊥.又∵SA AD AB ==,M 是SD 的中点, ∴AM SD ⊥;SD ⊂平面SCD ,CD ⊂平面SCD ,SD CD D =I ,∴AM ⊥平面SCD .SC ⊂平面SCD ,∴AM SC ⊥.又∵AN SC ⊥,AM 、AN ⊂平面AMN ,AM AN A =I , ∴SC ⊥平面AMN ,又∵SC ⊂平面SAC , ∴平面SAC ⊥平面AMN .【例4】如图,已知BCD △中,90BCD ∠=︒,1BC CD ==,AB ⊥平面BCD ,60ADB ∠=︒,E 、F分别是AC 、AD 上的动点,且()01AE AFAC ADλλ==<<. ⑴ 求证:不论λ为何值,总有平面BEF ⊥平面ABC ; ⑵ 当λ为何值时,平面BEF ⊥平面ACD ?⑴ ∵AB ⊥平面BCD ,∴AB CD ⊥.∵CD BC ⊥,且AB BC B =I ,∴CD ⊥平面ABC . 又AE AFAC ADλ==,故EF CD ∥. ∴EF ⊥平面ABC .又∵EF ⊂平面BEF ,∴不论λ为何值,总有平面BEF ⊥平面ABC .FEDCBA⑵ 由⑴知,BE EF ⊥,又平面BEF ⊥平面ACD , ∴BE ⊥平面ACD ,∴BE AC ⊥. ∵90BCD ∠=︒,1BC CD ==,60ADB ∠=︒∴2BD =,2tan 606AB =︒=,227AC AB BC =+=. 由射影定理2AB AE AC =⋅,解得67AE =,∴67AE AC λ==. 因此67λ=时,平面BEF ⊥平面ACD。
第一单元 高考中档大题突破解答题04: 立体几何基本考点——空间平行、垂直关系及体积、表面积的计算1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.1.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.(1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解:如图,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x . 故四棱锥P -ABCD 的体积 V P -ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =2 2. 可得四棱锥P -ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 2.(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积.(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面P AD ,AD ⊂平面P AD ,故BC ∥平面P AD .(2)解:如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27,所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P -ABCD 的体积V =13×2(2+4)2×23=4 3.常考热点——立体几何中的折叠问题、探索性问题考向01:折叠问题折叠问题是高考常考题型,一般来说,折叠问题常从以下两个角度考查:一是将平面图形折叠成空间几何体,进而论证位置关系和求空间几何体体积;二是将空间图形拆分并铺成平面图形来计算一些数量关系.(2017·西安一模)如图(1),在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB =BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=23,如图(2),若G,H分别为D′B,D′E的中点.(1)求证:GH⊥D′A;(2)求三棱锥C-D′BE的体积.[思路点拨](1)通过证明:AD′⊥AE,AD′⊥AC,推出AD′⊥平面ABCD,推出AD′⊥BE,通过证明GH∥BE,推出GH⊥D′A;(2)三棱锥C-D′BE的体积.直接利用棱锥的体积公式求解即可.(1)【证明】在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=23,ED=4,连接BE,GH,在三角形AED′中,可得ED′2=AE2+AD′2,可得AD′⊥AE,DC=ED2+AB2=25,AC=22,可得AC2+AD′2=CD′2,可得AD′⊥AC,因为AE∩AC=A,所以AD′⊥平面ABCD,可得AD′⊥BE,G,H分别为D′B,D′E的中点,可得GH∥BE,所以GH ⊥D ′A .(2)【解】 三棱锥C -D ′BE 的体积为V . 则V =13S △BCE ·AD ′=13×12×2×2×23=433.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.考向02:立体几何中的探索性问题对命题条件的探索常采用以下三种方法:先猜后证;先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;把几何问题转化为代数问题,探索命题成立的条件.(2017·濮阳一模)如图,四边形ABCD 为梯形,AB ∥CD ,PD ⊥平面ABCD ,∠BAD =∠ADC =90°,DC =2AB =2,DA = 3.(1)线段BC 上是否存在一点E ,使平面PBC ⊥平面PDE ?若存在,请给出BECE 的值,并进行证明;若不存在,请说明理由.(2)若PD =3,线段PC 上有一点F ,且PC =3PF ,求三棱锥A -FBD 的体积. [思路点拨] (1)存在线段BC 的中点E ,连接DE ,PE ,推导出BC ⊥DE ,BC ⊥PD ,从而BC ⊥平面PDE ,由此得到平面PBC ⊥平面PDE .(2)三棱锥A -FBD 的体积V A -FBD =V F -ABD ,由此能求出结果.【解】 (1)存在线段BC 的中点E ,使平面PBC ⊥平面PDE ,即BECE =1.证明如下:连接DE ,PE ,∵∠BAD =∠ADC =90°,AB =1,DA =3,∴BD =DC =2,∵E 为BC 的中点,∴BC ⊥DE , ∵PD ⊥平面ABCD ,∴BC ⊥PD , ∵DE ∩PD =D ,∴BC ⊥平面PDE , ∵BC ⊂平面PBC ,∴平面PBC ⊥平面PDE . (2)∵PD ⊥平面ABCD ,且PC =3PF , ∴F 到平面ABCD 的距离为23PD =233,∴三棱锥A -FBD 的体积:V A -FBD =V F -ABD =13×S △ABD ×233=13×12×1×3×233=13.1.如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由. (1)证明:因为D ,E 分别为AC ,AB 的中点, 所以DE ∥BC .又为DE ⊄平面A 1CB ,BC ⊂平面A 1CB . 所以DE ∥平面A 1CB .(2)证明:由已知得AC ⊥BC 且DE ∥BC , 所以DE ⊥AC . 所以DE ⊥A 1D ,DE ⊥CD .又A1D∩CD=D,所以DE⊥平面A1DC.因为A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D.所以A1F⊥平面BCDE.因为BE⊂平面BCDE,所以A1F⊥BE.(3)解:假设线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B中点P,Q,连接PQ,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,又A1C⊂平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.因为DP∩DE=D.所以A1C⊥平面DEP,即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.2.(2017·长春二模)已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC =2,AD⊥平面BCD,AD=1.(1)求证:平面ABC⊥平面ACD;(2)若E为AB中点,求点A到平面CED的距离.(1)证明:∵AD⊥平面BCD,BC⊂平面BCD,∴AD⊥BC,又∵AC⊥BC,AC∩AD=A,∴BC⊥平面ACD,BC⊂平面ABC,∴平面ABC⊥平面ACD.(2)解:由已知可得CD =3,取CD 中点为F ,连接EF ,∵ED =EC =12AB =2,∴△ECD 为等腰三角形,从而EF =52,S △ECD =154, 由(1)知BC ⊥平面ACD ,∴点E 到平面ACD 的距离为1,S △ACD =32, 令A 到平面CED 的距离为d ,则V A -ECD =13·S △ECD ·d =V E -ACD =13·S △ACD ·1,解得d =255.1.(2017·晋中二模)如图,直角△ABC 中,∠ACB =90°,BC =2AC =4,D 、E 分别是AB 、BC 边的中点,沿DE 将△BDE 折起至△FDE ,且∠CEF =60°.(1)求四棱锥F -ADEC 的体积; (2)求证:平面ADF ⊥平面ACF .解:(1)D 、E 分别是AB 、BC 边的中点,∴DE 平行且等于AC 的一半,DE ⊥BC ,DE =1,依题意,DE ⊥EF ,BE =EF =2,∵EF ∩EC =E ,∴DE ⊥平面CEF ,∵DE ⊥平面CEF , ∴平面ACED ⊥平面CEF .作FM ⊥EC 于M ,则FM ⊥平面ACED , ∵∠CEF =60°,∴FM =3,梯形ACED 的面积S =12(AC +ED )×EC =12(1+2)×2=3,∴四棱锥F -ADEC 的体积V=13Sh =13×3×3= 3. (2)法一:如图所示.取线段AF 、CF 的点N 、Q ,连接DN 、NQ 、EQ ,则NQ 平行且等于AC 的一半,∴NQ 平行且等于DE ,DEQN 是平行四边形,DN ∥EQ ,∵EC =EF ,∠CEF =60°, ∴△CEF 是等边三角形,EQ ⊥FC , 又∵DE ⊥平面CEF ,DE ⊥EQ ,∴AC ⊥EQ ,∵FC ∩AC =C ,∴EQ ⊥平面ACF ,∴DN ⊥平面ACF , 又DN ⊂平面ADF ,∴平面ADF ⊥平面ACF .法二:连接BF ,∵EC =EF ,∠CEF =60°,∴△CEF 是边长为2等边三角形, ∵BE =EF ,∴∠EBF =12∠CEF =30°,∴∠BFC =90°,BF ⊥FC ,DE ⊥平面BCF ,DE ∥AC ,∴AC ⊥平面BCF , ∵BF ⊂平面BCF ,∴AC ⊥BF ,又∵FC ∩AC =C , ∴BF ⊥平面ACF ,又∵BF ⊂平面ADF ,∴平面ADF ⊥平面ACF .2.(2017·许昌一模)如图,在四棱锥E -ABCD 中,底面ABCD 是矩形,AB =2BC ,P 、Q 分别为线段AB 、CD 的中点,EP ⊥底面ABCD .(1)求证:AQ ∥平面CEP ; (2)求证:平面AEQ ⊥平面DEP ;(3)若EP =AP =1,求三棱锥E -AQC 的体积. (1)证明:在矩形ABCD 中,∵AP =PB ,DQ =QC , ∴AP ∥CQ 且AP =CQ ,∴AQCP 为平行四边形,∴CP ∥AQ . ∵CP ⊂平面CEP ,AQ ⊄平面CEP , ∴AQ ∥平面CEP .(2)证明:∵EP ⊥平面ABCD ,AQ ⊂平面ABCD ,∴AQ ⊥EP .∵AB =2BC ,P 为AB 中点,∴AP =AD .连接PQ ,则ADQP 为正方形.∴AQ ⊥DP .又EP ∩DP =P ,∴AQ ⊥平面DEP .∵AQ ⊂平面AEQ .∴平面AEQ ⊥平面DEP.(3)解:∵EP ⊥平面ABCD ,∴EP 为三棱锥E -AQC 的高,∴V E -AQC =13S △AQC ·EP =13×12CQ ·AD ·EP =16×1×1×1=16.3.(2017·大连双基测试)如图,已知四棱锥P -ABCD 中,底面ABCD 是菱形,PD ⊥平面ABCD ,E 为PB 上任意一点.(1)证明:平面EAC ⊥平面PBD ;(2)试确定点E 的位置,使得四棱锥P -ABCD 的体积等于三棱锥P -ACE 体积的4倍. (1)证明:连接AC ,BD ,∵底面ABCD 是菱形,∴AC ⊥BD ,∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PD ,∵BD ∩PD =D ,∴AC ⊥平面PBD , ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBD .(2)解:∵四棱锥P -ABCD 的体积等于三棱锥P -ACE 体积的4倍,∴V E -ABC V P -ABCD =14,设E 到平面ABCD 的距离为h ,则V E -ABC V P -ABCD =13×S △ABC×h 13×2S △ABC ×PD =h 2PD =14,解得h =12PD ,故此时E 为PB 的中点.4.(2017·北京卷)如图,在三棱锥P -ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积.(1)证明:因为P A ⊥AB ,P A ⊥BC ,所以P A ⊥平面ABC .又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明:因为AB =BC ,D 为AC 的中点, 所以BD ⊥AC . 由(1)知,P A ⊥BD , 所以BD ⊥平面P AC , 所以平面BDE ⊥平面P AC .(3)解:因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE , 所以P A ∥DE .因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积 V =16BD ·DC ·DE =13.5.(2017·莆田二模)如图,在四棱锥S -ABCD 中,四边形ABCD 为矩形,E 为SA 的中点,SA =SB ,AB =23,BC =3.(1)证明:SC ∥平面BDE ;(2)若BC ⊥SB ,求三棱锥C -BDE 的体积. (1)证明:连接AC ,设AC ∩BD =O , ∵四边形ABCD 为矩形,则O 为AC 的中点,在△ASC 中,E 为AS 的中点,∴SC ∥OE , 又OE ⊂平面BDE ,SC ⊄平面BDE , ∴SC ∥平面BDE ;(2)解:过E 作EH ⊥AB ,垂足为H , ∵BC ⊥AB ,且BC ⊥SB ,AB ∩SB =B , ∴BC ⊥平面SAB , ∵EH ⊂平面ABS ,∴EH ⊥BC ,又EH ⊥AB ,AB ∩BC =B , ∴EH ⊥平面ABCD ,在△SAB 中,取AB 中点M ,连接SM ,则SM ⊥AB , ∴SM =1.∵EH ∥SM ,EH =12SM =12.∴S △BCD =12×3×23=3 3.∴V C -BDE =V E -BCD =13S △BCD ·EH =13×33×12=32.∴三棱锥C -BDE 的体积为32.6.5.(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1)证明:如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)解:连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.。
答案:平行
解决有关线面平行、面面平行的判定与性质的基本问题要注意:
(1)注意判定定理与性质定理中易忽视的条件、如线面平行的条件中线在面外易忽视. (2)结合题意构造或绘制图形、结合图形作出判断. (3)会举反例或用反证法推断命题是否正确.
考点二 直线与平面平行的判定与性质(师生共研)
[命题角度1] 直线与平面平行的判定 [典
例
] (20xx·
全
国
Ⅰ卷
)如图、直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形、AA 1=4、AB =2、
∠
BAD =60°、E 、M 、N 分别是BC 、BB 1、A 1D 的中点.
(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. [解]
(1)连结B 1C 、ME .因为M 、E 分别为BB 1、BC 的中点、所以ME ∥B 1C 、且ME =1
2B 1C 、
又因为N 为A 1D 的中点、所以ND =1
2
A 1D .
由题设知A 1B 1
CD 、可得B 1C
A 1D 、故ME
ND 、因此四边形MNDE 为平行四
边形、MN ∥ED 、又MN ⊄平面C 1DE 、所以MN ∥平面C 1DE .
(2)过C 作C 1E 的垂线、垂足为H 、
由已知可得DE ⊥BC 、DE ⊥C 1C 、所以DE ⊥平面C 1CE 、故DE ⊥CH 、
1 2。
专题07 立体几何§7-1 点、直线、平面之间的位置关系【知识要点】1.空间直线和平面的位置关系:(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a⊂α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .2.空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 【例题分析】例1 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点. 求证:(Ⅰ)E 、C 、D 1、F 四点共面;(Ⅱ)CE 、DA 、D 1F 三线共点.【分析】对于(Ⅰ)中证明“E 、C 、D 1、F 四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE 、DA 、D 1F 三线共点”,可证其中两条相交直线的交点位于第三条直线上.证明:(Ⅰ)连接D 1C 、A 1B 、EF . ∵E ,F 分另是AB ,AA 1的中点,∴EF ∥A 1B ,,211B A EF =又A 1D 1∥BC ,A 1D 1=BC , ∴A 1D 1CB 是平行四边形. ∴A 1B ∥D 1C ,EF ∥D 1C , ∴E 、C 、D 1、F 四点共面. (Ⅱ)由(Ⅰ)得EF ∥CD 1,,211CD EF =∴直线CE 与直线D 1F 必相交,记CE ∩ D 1F =P , ∵P ∈D 1F ⊂平面A 1ADD 1,P ∈CE ⊂平面ABCD , ∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点. ∵平面A 1ADD 1∩平面ABCD =AD , ∴P ∈AD ,∴CE 、DA 、D 1F 三线共点.【评述】1、证明多点共面、多点共线、多线共面的主要依据: (1)证明多点共面常用公理2及其推论;(2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上; (3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内. 2、证明a ,b ,c 三线交于一点的主要依据:(1)证明a 与b 相交,c 与b 相交,再证明两交点重合; (2)先证明a 与b 相交于点P ,再证明P ∈c .例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面P AD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面P AD ,MN ⊄平面P AD , ∴MN ∥平面P AD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .【评述】关于直线和平面平行的问题,可归纳如下方法:111111【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,且AB⊥BC,∴BC⊥平面P AB,∴AP⊥BC.又AP⊥PB,∴AP⊥平面PBC,又AP 平面P AC,∴平面P AC⊥平面PBC.【评述】关于直线和平面垂直的问题,可归纳如下方法:(1)证明线线垂直:例5 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .练习7-1一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【知识要点】1.简单空间几何体的基本概念:(1)(2)特殊的四棱柱:3.简单几何体的三视图与直观图:(1)平行投影:①概念:如图,已知图形F,直线l与平面α 相交,过F上任意一点M作直线MM1平行于l,交平面α 于点M1,则点M1叫做点M在平面α 内关于直线l的平行投影.如果图形F上的所有点在平面α 内关于直线l 的平行投影构成图形F1,则F1叫图形F在α 内关于直线l的平行投影.平面α 叫投射面,直线l叫投射线.②平行投影的性质:性质1.直线或线段的平行投影仍是直线或线段;性质2.平行直线的平行投影是平行或重合的直线;性质3.平行于投射面的线段,它的投影与这条线段平行且等长;性质4.与投射面平行的平面图形,它的投影与这个图形全等;性质5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.(2)直观图:斜二侧画法画简单空间图形的直观图.(3)三视图:①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影.②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图.将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”. 4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积:①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.②'=ch S 21正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高. ③''+=h c c S )(21正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台的斜高.④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高. ⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长. ⑥S 球=4πR 2,其中R 是球的半径. (2)柱体、锥体、台体和球的体积:①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.②Sh V 31=锥体,其中S 是锥体的底面积,h 是锥体的高. ③)(31'+'+=S SS S h V 台体,其中S ',S 分别是台体的上、下底面的面积,h 为台体的高.④3π34R V =球,其中R 是球的半径.【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图; 3.理解球、棱柱、棱锥、台的表面积与体积的计算公式. 【例题分析】例1 如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:P A ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积; (Ⅲ)求三棱锥P -ABC 的体积.【分析】对于(Ⅰ)只要证明BC (P A )垂直于经过P A (BC )的平面即可;对于(Ⅱ)则要根据正三棱锥的基本性质进行求解.证明:(Ⅰ)取BC 中点D ,连接AD ,PD . ∵P -ABC 是正三棱锥,∴△ABC 是正三角形,三个侧面P AB ,PBC ,P AC 是全等的等腰三角形. ∵D 是BC 的中点,∴BC ⊥AD ,且BC ⊥PD , ∴BC ⊥平面P AD ,∴P A ⊥BC .(Ⅱ)解:在Rt △PBD 中,,4212222a b BD PB PD -=-= ∴.442122a b a PD BC S PBC -==⋅∆ ∵三个侧面P AB ,PBC ,P AC 是全等的等腰三角形, ∴三棱锥P -ABC 的侧面积是.44322a b a- ∴△ABC 是边长为a 的正三角形,∴三棱锥P -ABC 的底面积是,432a∴三棱锥P -ABC 的表面积为⋅-+=-+)312(434434322222a b a aa b a a (Ⅲ)解:过点P 作PO ⊥平面ABC 于点O ,则点O 是正△ABC 的中心, ∴,63233131aa AD OD =⨯==在Rt △POD 中,,3332222a b OD PD PO -=-=∴三棱锥P -ABC 的体积为.3123334331222222a b a a b a -=-⨯⨯【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的Rt △POD ,其中含有棱锥的高PO ;如Rt △PBD ,其中含有侧面三角形的高PD ,即正棱锥的斜高;如果连接OC ,则在Rt △POC 中含有侧棱.熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1, ∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.例3 在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ; (Ⅱ)求四棱锥P -ABCD 的体积. 【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面P AD ,又BD ⊂平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△P AD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高, 所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V例4 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm)(Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .【分析】画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”,根据此原则及相关数据可以画出三视图.证明:(Ⅰ)该几何体三视图如下图:(Ⅱ)所求多面体体积).cm (32842)2221(316442=⨯⨯⨯⨯-⨯⨯=-=正三棱锥长方体V V V (Ⅲ)证明:在长方体ABCD -A'B'C'D'中,连结AD',则AD'∥BC'. 因为E ,G 分别为AA',A'D'中点, 所以AD'∥EG ,从而EG ∥BC '.又BC'⊄平面EFG , 所以BC'∥平面EFG .例5 有两个相同的直三棱柱,底面三角形的三边长分别是3a ,4a ,5a ,高为a2,其中a >0.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的一个是四棱柱,求a 的取值范围.解:直三棱柱ABC -A 1B 1C 1的三个侧面的面积分别是6,8,10,底面积是6a 2,因此每个三棱柱的表面积均是2×6a 2+6+8+10=12a 2+24.情形①:将两个直三棱柱的底面重合拼在一起,只能拼成三棱柱,其表面积为: 2×(12a 2+24)-2×6a 2=12a 2+48.情形②:将两个直三棱柱的侧面ABB 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×8=24a 2+32.情形③:将两个直三棱柱的侧面ACC 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×6=24a 2+36.情形④:将两个直三棱柱的侧面BCC 1B 1重合拼在一起,只能拼成四棱柱,其表面积为:2×(12a 2+24)-2×10=24a 2+28在以上四种情形中,②、③的结果都比④大,所以表面积最小的情形只能在①、④中产生.依题意“表面积最小的一个是四棱柱”,得24a 2+28<12a 2+48,解得,352<a 所以a 的取值范围是⋅)315,0(例6 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.【分析】计算三棱锥F -A 1ED 1的体积时,需要确定锥体的高,即点F 到平面A 1ED 1的距离,直接求解比较困难.利用等积的方法,调换顶点与底面的方式,如1111EFD A ED A F V V --=,也不易计算,因此可以考虑使用等价转化的方法求解.解法1:取AB 中点G ,连接FG ,EG ,A 1G . ∵GF ∥AD ∥A 1D 1,∴GF ∥平面A 1ED 1,∴F 到平面A 1ED 1的距离等于点G 到平面A 1ED 1的距离.∴.8183313132111111111a a a D A S V V V EG A EG A D ED A G ED A F =⨯⨯====⋅∆---解法2:取CC 1中点H ,连接F A 1,FD 1,FH ,FC 1,D 1H ,并记FC 1∩D 1H =K .∵A 1D 1∥EH , A 1D 1=EH ,∴A 1,D 1,H ,E 四点共面. ∵A 1D 1⊥平面C 1CDD 1,∴FC ⊥A 1D 1.又由平面几何知识可得FC 1⊥D 1H ,∴FC ⊥平面A 1D 1HE . ∴FK 的长度是点F 到平面A 1D 1HE (A 1ED 1)的距离. 容易求得.811053453131,1053321111a a a FK S V a FK ED A ED A F =⨯⨯===⋅∴∆- 练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) (A)2π (B)4π (C)8π (D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9π (B)10π (C)11π (D)12π3.有一种圆柱体形状的笔筒,底面半径为4 cm ,高为12 cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5 kg 可以涂1 m 2,那么为这批笔筒涂色约需涂料( ) (A)1.23 kg (B)1.76 kg (C)2.46 kg (D)3.52 kg 4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) (A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF 的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①:_______________________________________________________________; 充要条件②:_______________________________________________________________. (写出你认为正确的两个充要条件) 三、解答题:9.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 是DD 1的中点.(Ⅰ)求证:BD 1∥平面ACE ;(Ⅱ)求证:平面ACE ⊥平面B 1BDD 1. 10.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(Ⅰ)求该几何体的体积V ; (Ⅱ)求该几何体的侧面积S .11.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(Ⅰ)求证:E ,B ,F ,D 1四点共面; (Ⅱ)若点G 在BC 上,32=BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.习题7一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2 (B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______.9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ; (Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积. 14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD =2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.专题07 立体几何参考答案练习7-1一、选择题:1.B 2.D 3.C 4.B 二、填空题:5.10 6.AC ⊥BD (或能得出此结论的其他条件)7.②、③、④⇒①;或①、③、④⇒② 8.④ 三、解答题:9.(Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形. ∵N 为BC 的中点,∴MN ⊥BC . 在Rt △MNB 中,⋅=-=2222BN MB MN (Ⅱ)证明:∵M 是P A 的中点,∴P A ⊥MB ,同理P A ⊥MC .∵MB ∩MC =M ,∴P A ⊥平面MBC , 又BC ⊂平面MBC ,∴P A ⊥BC .10.证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .11.(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形. (Ⅱ)C ,D ,F ,E 四点共面.理由如下: 由BE ∥AF ,AF BF 21=,G 是F A 的中点, 得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面. (Ⅲ)连结EG ,由AB =BE ,BE ∥AG ,BE =AG 及∠BAG =90°,知ABEG 是正方形, 故BG ⊥EA .由题设知F A ,AD ,AB 两两垂直,故AD ⊥平面F ABE ,∴BG ⊥AD . ∴BG ⊥平面EAD ,∴BG ⊥ED . 又ED ∩EA =E ,∴BG ⊥平面ADF . 由(Ⅰ)知CH ∥BG ,∴CH ⊥平面ADE .由(Ⅱ)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .练习7-2一、选择题:1.B 2.D 3.D 4.C 二、填空题: 5.5 6.122 7.3π48.答案不唯一,如“两组相对侧面分别平行”;“一组相对侧面平行且全等”;“对角线交于一点”;“底面是平行四边形”等. 三、解答题:9.证明:(Ⅰ)设AC ∩BD =O ,连结OE .∵E 是DD 1的中点,O 是BD 的中点,∴OE ∥BD 1.又OE ⊂平面ACE ,BD 1⊄平面ACE ,∴BD 1∥平面ACE .(Ⅱ)∵ABCD -A 1B 1C 1D 1是正四棱柱,∴底面ABCD 是正方形,∴AC ⊥BD .又D 1D ⊥平面ABCD ,∴AC ⊥D 1D ,∴AC ⊥平面B 1BDD 1, ∵AC ⊂平面ACE ,∴平面ACE ⊥平面B 1BDD 1.10.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥P -ABCD .(Ⅰ).644)68(3131=⨯⨯⨯==Sh V (Ⅱ)该四棱锥有两个侧面P AD 、PBC 是全等的等腰三角形,且BC 边上的高为:h 1=.24)28(422=+ 另两个侧面P AB 、PCD 也是全等的等腰三角形, AB 边上的高为,5)26(4222=-+=h因此.22440)582124621(2+=⨯⨯+⨯⨯=S11.(Ⅰ)证明:在DD 1上取一点N 使得DN =1,连接CN ,EN ,显然四边形CFD 1N 是平行四边形,∴D 1F ∥CN . 同理四边形DNEA 是平行四边形,∴EN ∥AD ,且EN =AD . 又BC ∥AD ,且BC =AD ,∴EN ∥BC ,且EN =BC , ∴四边形CNEB 是平行四边形,∴CN ∥BE , ∴D 1F ∥BE ,∴E ,B ,F ,D 1四点共面.(Ⅱ)∵GM ⊥BF ,∴△BCF ∽△MBG ,∴,CF BGBC MB =即,2323=MB ∴MB =1.∵AE =1,∴四边形ABME 是矩形,∴EM ⊥BB 1.又平面ABB 1A 1⊥平面BCC 1B 1,且EM ⊂平面ABB 1A 1,∴EM ⊥平面BCC 1B 1.习题7一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅n 且,011=⋅B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλ, 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0(ο>=<-=BM BA BA 故,60cos ||||.οBM =即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM AM ⊥⊥∴==⋅⋅∴cos,G 〈等于二面角S -AM -B 的平面角. Θ,36||||),cos(-==MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。