宁夏银川九中2015届高考数学一模试卷(理科)
- 格式:doc
- 大小:510.50 KB
- 文档页数:21
2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。
阶段性测试题一(集合与常用逻辑用语)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃临夏中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B 等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案] C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案] B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于() A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案] B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·山西曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=()A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案] B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·山东省德州市期中)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5}C.{1,3,4} D.{2}[答案] B[解析] ∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4)[答案] B[解析] ∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·福州市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0[答案] C[解析] 由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·甘肃临夏中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案] D[解析] 特称命题的否定是全称命题.6.(文)(2014·河北冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x [答案] B[解析] ∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x =32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x =22=cos x ,∴D 错误,故选B.(理)(2014·山东省德州市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案] D[解析] 由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·甘肃省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] ∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·江西临川十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.8.(2014·江西都昌一中月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则右图中的阴影部分表示( )A .{2,4}B .{1,3}C .{5}D .{2,3,4,5} [答案] C[解析] 阴影部分在集合B 中,不在集合A 中,故阴影部分为B ∩(∁U A )={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α⊥β,α⊥γ,则β∥γC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,则α∥β [答案] D[解析] m ∥α,n ∥α时,m 与n 可平行,也可相交或异面,故A 错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B 错;当α∩β=l ,m ⊄α,m ⊄β,m ∥l 时,m ∥α,m ∥β,故C 错,故选D.10.(2014甘肃临夏中学期中)已知函数f (x )=x +b cos x ,其中b 为常数.那么“b =0”是“f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C[解析] 当b =0时,f (x )=x 为奇函数,故满足充分性;当f (x )为奇函数时,f (-x )=-f (x ),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·海南省文昌市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案] D[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.14.(文)(2014·安徽程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数范围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案] ①②③④[解析] ∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确; ∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论:①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案] ②③④[解析] x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4a b )=92,等号在⎩⎪⎨⎪⎧b a =4a b ,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a=2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·福建文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号) [答案] ①②③[解析] 由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·合肥八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案] ①④[解析] ①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·银川九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①②③[解析] ①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·福州市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试求实数a 的取值范围,使C ⊆(A ∩B ).[解析] (1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·甘肃临夏中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),求实数p 的取值范围.[解析] (1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值范围是{p |0<p ≤1}.18.(本小题满分12分)(2014·山东省菏泽市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.[解析] 不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解析] 由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2,∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. [解析] (1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马鞍山二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3, ∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·河北冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.[解析] (1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1,当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞), ∴A ∩B =(-4,-3]∪[1,2). (2)∵∁R A =(-∞,-4]∪[2,+∞), 由(ax -1a)(x +4)≤0,知a ≠0,当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a 2],不满足C ⊆∁R A ;当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a 2,+∞),欲使C ⊆∁R A ,则1a 2≥2,解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值范围是[-22,0). 22.(本小题满分14分)(2014·九江市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析] 当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧90(0≤x ≤0.2),-50x +100(0.2<x ≤2).(2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2).当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时; 当0.2≤x ≤2时,f (x )=50x (2-x )≤50, 当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。
2015届高考模拟试卷数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i -B .i 2-C .iD .i 22.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32π B .π+ 3 C.32π+ 3 D.52π+ 33.在极坐标系中,过点(2,)6π且垂直于极轴的直线的极坐标方程是( )A.ρθ=B.ρθ=C.sin ρθ=D.cos ρθ=4.图(1)是某高三学生进入高中三年来 的数学考试成绩茎叶图,第1次到第 14次的考试成绩依次记为A 1,A 2,…, A 14.图(2)是统计茎叶图中成绩在一定 范围内考试次数的一个算法流程图. 那么算法流程图输出的结果是( )A .7B .8C .9D .105.已知“命题p :∃x ∈R ,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( ) A .[0,1) B .(-∞,1) C .[1,+∞) D .(-∞,1]6.若函数f (x )=(k -1)·a x -a -x (a >0且a ≠1) 在R 上既是奇函数,又是减函数, 则g (x )=log a (x +k )的图象是( )7.等比数列{}n a 的首项为1,公比为q ,前n 项和记为S,由原数列各项的倒数组成一个新数列1{}n a ,则1{}na 的前n 项之和'S 是( )A.1SB.1n q SC.n q SD. 1n S q -8. 若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x yz +=的最小值是( )A .9. 若二项式*(2)()n x n N -∈的展开式中所有项的系数的绝对值之和是a ,所有项的二项式系数之和是b ,则b aa b+的最小值是( ) A.2 B.136 C.73 D.15610.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( )个A.78B. 102C.114D.120第Ⅱ卷(非选择题共100分)请用0 5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
2015年宁夏高考理科数学试题与答案(word版)2015年宁夏高考理科数学试题与答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1)已知集合A={-2,-1,2},B={x|(x-1)(x+2)<0},则A∩B=(C){-1.1}解析:将函数y=(x-1)(x+2)画出来,易知其在x=-2,x=1处为零点,因此在(-∞,-2)U(1,∞)上为负,即B={x|x∈(-∞,-2)U(1,∞)},A∩B={-1,1}。
2)若a为实数且(2+ai)(a-2i)=-4i,则a=(C)1解析:将(a-2i)乘过去,得到2a+4=0,即a=-2.但是,a=-2时,(2+ai)(a-2i)=-8i,与题目所给条件不符。
因此,a=1.3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是:(D)2006年以来我国二氧化硫年排放量与年份正相关。
解析:从图中可以看出,2006年至2013年我国二氧化硫年排放量逐年减少,因此选项C正确,D不正确。
4)等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(C)63解析:设公比为q,则a3=q^2a1,a5=q^4a1,a7=q^6a1.代入已知条件得到a1(1+q^2+q^4)=21,解得q=2.因此,a3=12,a5=24,a7=48,所以a3+a5+a7=63.5)设函数{an}=(-1)^(n+1)/n,则(-2)+=(B)6解析:(-2)+表示将-2代入函数中,即a2=-1/2.因此,(-2)+=a2+a4+a6+。
2015高考数学模拟试卷及答案解析(理科)本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数321i i -(i 为虚数单位)的虚部是A .15iB .15C .15i -D .15-2.设全集U=R ,A={x|2x (x-2)<1},B={x|y=1n (l -x )},则右图中阴影部分表示的集合为 A .{x |x≥1} B .{x |x≤1} C .{x|0<x≤1} D .{x |1≤x<2}3.等比数列{a n }的各项均为正数,且564718a a a a +=,则log 3 a 1+log 3a 2+…+log 3 a l0= A .12 B .10C .8D .2+log 3 54.若x=6π是f (x )=3sin x ω+cos x ω的图象的一条对称轴,则ω可以是 A .4 B .8 C .2 D .15.己知某几何体的三视图如图所示,则该几何体的体积是 A .233π+ B .2323π+ C .232π+ D .23π+6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有’5架舰载机准备着舰.如果甲乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12 B .18 C .24 D .487.已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅I ,则a= A .-6或-2 B .-6 C .2或-6 D .-28.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸(单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P= P 0e -kt ,(k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.A .12小时 B .59小时 c .5小时 D .10小时9.己知抛物线22(0)y px p =>的焦点F 恰好是双曲线22221(0,0)x y a b a b-=>>的右焦点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为 A .2+1B .2C .2D .2-110.实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1则(a 5+a 6)-(a 1+a 4)的最大值为A .3B .22C .6D .1二、填空题(本大题共6小题,考生共需作答5小题.每小题5分,共25分,请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.)(一)必考题.(11-14题) 11.己知0(sin cos )xa t t dt =+⎰,则(1x ax-)6的展开式中的常数项为 。
阶段性测试题十一(算法、框图、复数、推理与证明)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·白鹭洲中学期中)复数z =(m 2+m )+m i(m ∈R ,i 为虚数单位)是纯虚数,则实数m 的值为( )A .0或-1B .0C .1D .-1[答案] D[解析] ∵z 为纯虚数,∴⎩⎪⎨⎪⎧m 2+m =0,m ≠0,∴m =-1,故选D.2.(文)(2014·山东省博兴二中质检)如果等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于( )A .21B .30C .35D .40[答案] C[解析] ∵3a 6=a 5+a 6+a 7=15,∴a 6=5, ∴a 3+a 4+…+a 9=7a 1+35d =7a 6=35.(理)(2014·银川九中一模)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .(32)n -1C .(23)n -1D.12n -1 [答案] B[解析] ∵S n =2a n +1=2(S n +1-S n ),∴S n +1S n =32,又S 1=a 1=1,∴S n =(32)n -1,故选B.3.(文)(2014·银川九中一模)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3[答案] C[解析] ∵f (x )为偶函数,∴f (-x )=f (x ),∴sin-x +φ3=sin x +φ3,∴cos φ3sin x3=0, ∵此式对任意x 都成立,∴cos φ3=0,∵φ∈[0,2π],∴φ=3π2.(理)(2014·杭州七校联考)“sin x =1”是“cos x =0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件[答案] A[解析] 若sin x =1,则x =2k π+π2,k ∈Z ,∴cos x =0;若cos x =0,则x =k π+π2,k ∈Z ,∴sin x=±1.4.(文)(2014·北京朝阳区期中)执行如图所示的程序框图,则输出的T 值为( )A .91B .55C .54D .30 [答案] B[解析] 所给的程序的作用是计算:T =12+22+32+42+52=55. (理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)下列程序框图的输出结果为( )A.20122013B.12013C.20132014D.12014 [答案] C[解析] 由程序框图知,每循环一次,i 的值增加1,S 的值加上1i (i +1),当i =2013时,不满足i >2013,再循环一次,i 的值变为2014,满足i >2013,此时输出S ,故S 最后加上的数为12013×2014,∴S =11×2+12×3+…+12013×2014=(1-12)+(12-13)+…+(12013-12014)=1-12014=20132014,故选C.5.(2014·武汉市调研)复数z =m (3+i)-(2+i)(m ∈R ,i 为虚数单位)在复平面内对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] B[解析] 复数z =(3m -2)+(m -1)i 在复平面内的对应点P (3m -2,m -1),当m >1时,P 在第一象限;当m <23时,P 在第三象限,当23<m <1时,P 在第四象限,当m =23时,P 在y 轴上,当m =1时,P 在x 轴上,故选B.6.(2014·佛山市质检)将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a >b )的比值ab ,称这些比值中的最小值为这个数表的“特征值”.当n =2时,数表的所有可能的“特征值”最大值为( )A.32B.43 C .2 D .3[答案] A[解析] 当n =2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1,2同行或同列时,这个数表的“特征值”为43;当1,3同行或同列时,这个数表的特征值分别为43或32;当1,4同行或同列时,这个数表的“特征值”为43或32;故这些可能的“特征值”的最大值为32.7.(2014·山西省太原五中月考)某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e-xD .f (x )=sin 2x1+cos 2x[答案] B[解析] 由框图知,f (x )为有零点的奇函数,A 、C 中函数f (x )无零点;D 中函数f (x )为偶函数;B 中函数f (x )=ln(x 2+1-x )满足f (0)=0且f (-x )=ln(x 2+1+x )=ln 1x 2+1-x=-ln(x 2+1-x )=-f (x ),故选B.8.(2014·哈六中期中)若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)[答案] B[解析] ∵x >0,y >0,1x +4y =1,∴x +y 4=(x +y 4)(1x +4y )=2+y 4x +4xy≥2+2y 4x ·4xy=4,等号在y =4x ,即x =2,y =8时成立,∴x +y 4的最小值为4,要使不等式m 2-3m >x +y4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.9.(文)(2014·吉林市摸底)如图,程序输出的结果s =132,则判断框中应填( )A .i ≥10?B .i ≥11?C.i≤11? D.i≥12?[答案] B[解析]第一次循环:s=1×12=12,i=12-1=11,不满足条件,继续循环;第二次循环:s=12×11=132,i=11-1=10,此时应输出,结束循环,因此判断框中应填i≥11?.(理)(2014·成都七中模拟)阅读下边的程序框图,若输出S的值为-14,则判断框内可填写()A.i<6? B.i<8?C.i<5? D.i<7?[答案] B[解析]这是一个循环结构,每次循环的结果为:S=2-1=1,i=1+2=3;S=1-3=-2,i =3+2=5;S=-2-5=-7,i=5+2=7;S=-7-7=-14,i=7+2=9.因为最后输出-14,所以判断框内可填写i<8?选B.10.(2014·广东梅县东山中学期中)在f(m,n)中,m,n,f(m,n)∈N*,且对任意m,n都有:(1)f(1,1)=1,(2)f(m,n+1)=f(m,n)+2,(3)f(m+1,1)=2f(m,1);给出下列三个结论:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26;其中正确的结论个数是()个.()A.3B.2C.1D.0[答案] A[解析]∵f(m,n+1)=f(m,n)+2,∴f(m,n)组成首项为f(m,1),公差为2的等差数列,∴f(m,n)=f(m,1)+2(n-1).又f(1,1)=1,∴f(1,5)=f(1,1)+2×(5-1)=9,又∵f(m+1,1)=2f(m,1),∴f(m,1)构成首项为f(1,1),公比为2的等比数列,∴f(m,1)=f(1,1)·2m-1=2m-1,∴f(5,1)=25-1=16,∴f(5,6)=f(5,1)+2×(6-1)=16+10=26,∴①②③都正确,故选A.11.(文)(2014·九江市修水一中第四次月考)如图,在△ABC 中,∠CAB =∠CBA =30°,AC 、BC 边上的高分别为BD 、AE ,垂足分别是D 、E ,以A 、B 为焦点且过D 、E 的椭圆与双曲线的离心率分别为e 1、e 2,则1e 1+1e 2的值为( )A .1 B. 3 C .2 D .2 3[答案] B[解析] 设AE =1,则AB =2,BD =1,AD =BE =3,∴椭圆的焦距2c =2,∴c =1,长轴长2a =AD +BD =3+1,∴离心率e 1=13+12=3-1,双曲线的焦距2c 1=2, ∴c 1=1,双曲线的实轴长2a 1=AD -BD =3-1, ∴离心率e 2=13-12=3+1. ∴1e 1+1e 2=13-1+13+1=3,故选B. (理)(2014·北京市海淀区期末)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,BD ∩AC =O ,M 是线段D 1O 上的动点,过点M 作平面ACD 1的垂线交平面A 1B 1C 1D 1于点N ,则点N 到点A 距离的最小值为( )A. 2B.62C.233 D .1[答案] B[解析] 因为ABCD -A 1B 1C 1D 1为正方体,所以BB 1⊥平面A 1B 1C 1D 1,因为BB 1⊂平面BDD 1B 1,所以平面BDD 1B 1⊥平面A 1B 1C 1D 1,因为M ∈平面BDD 1B 1,MN ⊥平面ACD 1,平面BDD 1B 1∩平面A 1B 1C 1D 1=B 1D 1,所以N ∈B 1D 1.因为ABCD -A 1B 1C 1D 1为正方体,棱长为1,所以△AB 1D 1为正三角形,边长为2,所以当N 为B 1D 1中点时,AN 最小为2sin60°=62.故B 正确. 12.(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4[答案] C[解析] 将△ABC 的三条边长a 、b 、c 类比到四面体P -ABC 的四个面面积S 1、S 2、S 3、S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r +13S 2r+13S 3r +13S 4r ,∴r =3VS 1+S 2+S 3+S 4. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量监测)有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和a n 与其组的编号数n 的关系为________.[答案] a n =n 3[解析] 第n 组含n 个数,前n -1组共有1+2+3+…+(n -1)=n (n -1)2个数,∴第n 组的最小数为n 2-n +1,第n 组的n 个数组成首项为n 2-n +1,公差为2的等差数列,∴其各项之和为a n =n (n 2-n +1)+n (n -1)2×2=n 3.(理)(2014·陕西工大附中四模)由13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,……,可猜想出的第n 个等式是________.[答案] 13+23+…+n 3=(1+2+…+n )2[解析] 观察各等式可见第n 个等式左边有n 项,每个等式都是从13到n 3的和,等式右端是从1到n 的和的平方,故第n 个等式为13+23+33+…+n 3=(1+2+3+…+n )2.14.(文)(2014·吉林市摸底)下列说法:①“∃x ∈R ,使2x >3”的否定是“∀x ∈R ,使2x ≤3”;②函数y =sin(2x +π3)的最小正周期是π;③“在△ABC 中,使sin A >sin B ,则A >B ”的逆命题是真命题;④“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +2=0垂直”的充要条件;其中正确的说法是______(只填序号).[答案] ①②③[解析] ①∵特称命题的否定是全称命题,∴“∃x ∈R ,使2x >3”的否定是“∀x ∈R ,使2x ≤3”,正确;②因为T =2π2=π,所以函数y =sin(2x +π3)的最小正周期是π,正确;③“在△ABC 中,若sin A >sin B ,则A >B ”的逆命题是“在△ABC 中,若A >B ,则sin A >sin B ”,在△ABC 中,若A >B ⇒a >b ⇒2r sin A >2r sin B ⇒sin A >sin B ,故③正确;④由3m +(2m -1)m =0得m =0或-1,所以“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +2=0垂直”的充分不必要条件,∴④错误.(理)(2014·泸州市一诊)已知集合A ={f (x )|f 2(x )-f 2(y )=f (x +y )·f (x -y ),x 、y ∈R },有下列命题:①若f (x )=⎩⎪⎨⎪⎧1, x ≥0-1, x <0,则f (x )∈A ;②若f (x )=kx ,则f (x )∈A ;③若f (x )∈A ,则y =f (x )可为奇函数;④若f (x )∈A ,则对任意不等实数x 1,x 2,总有f (x 1)-f (x 2)x 1-x 2<0成立.其中所有正确命题的序号是________.(填上所有正确命题的序号) [答案] ②③[解析] 对于①,取x =1,y =-1知,f 2(x )-f 2(y )=f 2(1)-f 2(-1)=1-1=0,但f (x +y )f (x -y )=f (0)·f (2)=1,∴①错;对于②,当f (x )=kx 时,f 2(x )-f 2(y )=k 2x 2-k 2y 2=k (x +y )·k (x -y )=f (x +y )·f (x -y ),∴②正确; 对于③,在f 2(x )-f 2(y )=f (x +y )f (x -y )中令x =0,y =0得,f (0)=0,又令x =0得,f 2(0)-f 2(y )=f (y )·f (-y ),当f (y )≠0时,有f (-y )=-f (y ),∴f (x )可以为奇函数.对于④,取f (x )=x ,则f 2(x )-f 2(y )=x 2-y 2=(x +y )(x -y )=f (x +y )f (x -y ),但x 1,x 2∈R 且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2=x 1-x 2x 1-x 2=1>0,∴④错.15.(2014·湖南长沙实验中学、沙城一中联考)在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,△ABC ,△BOC ,△BDC 三者面积之间关系为________.[答案] S 2△ABC =S △OBC ·S △DBC [解析] 将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DBC . 16.(文)(2014·西安市长安中学期中)21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,24×1×3×5×7=5×6×7×8,…依此类推,第n 个等式为________________.[答案] 2n ×1×3×…×(2n -1)=(n +1)×(n +2)×…×(2n -1)×2n[解析] 由所给4个等式可看出,第n 个等式左边是2n 与从1开始的连续的n 个奇数之积,第n 个等式右边是从n +1开始的连续的n 个正整数之积.所以第n 个等式为:2n ×1×3×…×(2n -1)=(n +1)×(n +2)×…×(2n -1)×2n .(理)(2014·江西临川十中期中)给出下列不等式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,…,则按此规律可猜想第n 个不等式为________________. [答案] 1+12+13+14+…+12n +1-1>n +12[解析] 观察不等式左边最后一项的分母3,7,15,…,通项为2n +1-1,不等式右边为首项为1,公差为12的等差数列,故猜想第n 个不等式为1+12+13+14+…+12n +1-1>n +12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·湖南长沙实验中学、沙城一中联考)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,△ABC 的面积S 满足S =32bc cos A . (1)求角A 的值;(2)若a =3,设角B 的大小为x 用x 表示c ,并求c 的取值范围. [解析] (1)在△ABC 中,由S =32bc cos A =12bc sin A ,得tan A =3, ∵0<A <π,∴A =π3.(2)由a =3,A =π3及正弦定理得:c sin C =a sin A =332=2,∴c =2sin C =2sin(π-A -B )=2sin(2π3-x ).∵A =π3,∴0<x <2π3,∴0<2π3-x <2π3.∴0<sin(2π3-x )≤1,0<2sin(2π3-x )≤2,即c ∈(0,2].18.(本小题满分12分)(文)(2014·吉林省实验中学一模)如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,ED =1,EF ∥BD 且EF =12BD .(1)求证:BF ∥平面ACE ; (2)求证:平面EAC ⊥平面BDEF ; (3)求几何体ABCDEF 的体积.[解析] (1)设AC 与BD 的交点为O ,则DO =BO =12BD ,连接EO ,∵EF ∥BD 且EF =12BD ,∴EF ∥DO 且EF =BO , 则四边形EFBO 是平行四边形, 则BF ∥EO ,又EO ⊂平面ACE , BF ⊄平面ACE ,故BF ∥平面ACE .(2)∵ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED ⊥AC . ∵四边形ABCD 为正方形,∴BD ⊥AC , 又ED ∩BD =D ,∴AC ⊥平面BDEF , 又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF . (3)因为ED ⊥平面ABCD ,∴ED ⊥BD ,又∵EF ∥BD 且EF =12BD ,∴四边形BDEF 是直角梯形,又∵四边形ABCD 是边长为2的正方形,BD =22,EF =2, ∴梯形BDEF 的面积为(2+22)×12=322,由(1)知AC ⊥平面BDEF ,所以几何体的体积V ABCDEF =2V A -BDEF =2×13S BDEF ·AO =2×13×322×2=2.(理)(2014·佛山市质检)如图1,矩形ABCD 中,AB =12,AD =6,E 、F 分别为CD 、AB 边上的点,且DE =3,BF =4,将△BCE 沿BE 折起至△PBE 位置(如图2所示),连结AP 、PF ,其中PF =2 5.(1)求证:PF ⊥平面ABED ;(2)在线段P A 上是否存在点Q 使得FQ ∥平面PBE ?若存在,求出点Q 的位置;若不存在,请说明理由.(3)求点A 到平面PBE 的距离.[解析] (1)连结EF ,由翻折不变性可知,PB =BC =6,PE =CE =9,在△PBF 中,PF 2+BF 2=20+16=36=PB 2,所以PF ⊥BF ,在图1中,易得EF =62+(12-3-4)2=61,在△PEF 中,EF 2+PF 2=61+20=81=PE 2, 所以PF ⊥EF ,又BF ∩EF =F ,BF ⊂平面ABED ,EF ⊂平面ABCD , 所以PF ⊥平面ABED .(2)当Q 为P A 的三等分点(靠近P )时,FQ ∥平面PBE .证明如下: 因为AQ =23AP ,AF =23AB ,所以FQ ∥BP ,又FQ ⊄平面PBE ,PB ⊂平面PBE ,所以FQ ∥平面PBE . (3)由(1)知PF ⊥平面ABCD ,所以PF 为三棱锥P -ABE 的高.设点A 到平面PBE 的距离为h ,由等体积法得V A -PBE =V P -ABE ,即13×S △PBE h =13×S △ABE ·PF ,又S △PBE =12×6×9=27,S △ABE =12×12×6=36,所以h =S △ABE ·PF S △PBE =36×2527=853,即点A 到平面PBE的距离为853.19.(本小题满分12分)(文)(2014·佛山市质检)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm)分别是162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm)分别是:170、159、162、173、181、165、176、168、178、179.(1)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(2)现从两队所有身高超过178cm 的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?[解析] (1)茎叶图如图所示,篮球队的身高数据方差较小.(2)两队所有身高超过178cm 的同学恰有5人,其中3人来自排球队,记为a ,b ,c,2人来自篮球队,记为A ,B ,则从5人中抽取3名同学的基本事件为:abc ,abA ,abB ,acA ,acB ,aAB ,bcA ,bcB ,bAB ,cAB 共10个;其中恰有两人来自排球队一人来自篮球队所含的事件有:abA ,abB ,acA ,acB ,bcB ,bcA 共6个,所以,恰好两人来自排球队一人来自篮球队的概率是610=35. (理)(2014·山西省太原五中月考)已知函数f (x )=x ln x . (1)求函数f (x )的单调递减区间;(2)若f (x )≥-x 2+ax -6在(0,+∞)上恒成立,求实数a 的取值范围; (3)过点A (-e-2,0)作函数y =f (x )图象的切线,求切线方程.[解析] (1)∵f ′(x )=ln x +1,∴由f ′(x )<0得ln x <-1, ∴0<x <1e ,∴函数f (x )的单调递减区间是(0,1e ).(2)∵f (x )≥-x 2+ax -6,∴a ≤ln x +x +6x ,设g (x )=ln x +x +6x,则g ′(x )=x 2+x -6x 2=(x +3)(x -2)x 2,当x ∈(0,2)时,g ′(x )<0,函数g (x )单调递减; 当x ∈(2,+∞)时,g ′(x )>0,函数g (x )单调递增. ∴g (x )最小值为g (2)=5+ln2,∴实数a 的取值范围是(-∞,5+ln2]. (3)设切点T (x 0,y 0),则k AT =f ′(x 0),∴x 0ln x 0x 0+1e 2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h (x )=e 2x +ln x +1,则h ′(x )=e 2+1x ,当x >0时h ′(x )>0,∴h (x )是单调递增函数, ∴h (x )=0最多只有一个根,又h (1e 2)=e 2×1e 2+ln 1e 2+1=0,∴x 0=1e 2,由f ′(x 0)=-1得切线方程是x +y +1e2=0.20.(本小题满分12分)(文)(2014·山东省烟台市期末)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足P =3-2x +1(其中0≤x ≤a ,a 为正常数);已知生产该产品还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20p)万元/万件.(1)将该产品的利润y 万元表示为促销费用x 万元的函数; (2)促销费用投入多少万元时,厂家的利润最大?[解析] (1)由题意知,y =(4+20P )×P -(10+2P )-x ,将P =3-2x +1代入化简得:y =16-4x +1-x ,(0≤x ≤a ).(2)y =16-4x +1-x =17-(4x +1+x +1)≤17-24x +1×(x +1)=13, 当且仅当4x +1=x +1,即x =1时,上式取等号.当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,y =17-(4x +1+x +1)在[0,a ]上单调递增,所以在x =a 时,函数有最大值.促销费用投入a 万元时,厂家的利润最大.综上所述,当a ≥1时,促销费用投入1万元时,厂家的利润最大;当a <1时,促销费用投入a 万元时,厂家的利润最大.(理)(2014·北京市海淀区期末)如果函数f (x )满足在集合N *上的值域仍是集合N *,则把函数f (x )称为N 函数.例如:f (x )=x 就是N 函数.(1)判断下列函数:①y =x 2,②y =2x -1,③y =[x ]中,哪些是N 函数?(只需写出判断结果);(2)判断函数g(x)=[ln x]+1是否为N函数,并证明你的结论;(3)证明:对于任意实数a,b,函数f(x)=[b·a x]都不是N函数.(注:“[x]”表示不超过x的最大整数)[解析](1)只有y=[x]是N函数.①∵当x∈N*时,{y|y=x2}N*,如3不是函数y=x2(x∈N*)的函数值,∴y=x2不是N函数;②同理,∵当x∈N*时,y=2x-1为奇数,∴y=2x-1不是N函数;③对于任意x∈N*,当n2≤x<(n+1)2时,y=[x]=n,∴y=[x]是N函数.(2)函数g(x)=[ln x]+1是N函数.证明如下:显然,∀x∈N*,g(x)=[ln x]+1∈N*.不妨设[ln x]+1=k,k∈N*.由[ln x]+1=k可得k-1≤ln x<k,即1≤e k-1≤x<e k.因为∀k∈N*,恒有e k-e k-1=e k-1(e-1)>1成立,所以一定存在x∈N*,满足e k-1≤x<e k,所以∀k∈N*,总存在x∈N*满足[ln x]+1=k,所以函数g(x)=[ln x]+1是N函数.(3)①当b≤0时,有f(2)=[b·a2]≤0,所以函数f(x)=[b·a x]都不是N函数.②当b>0时,1°若a≤0,有f(1)=[b·a]≤0,所以函数f(x)=[b·a x]都不是N函数.2°若0<a≤1,由指数函数性质易得b·a x≤b·a,所以∀x∈N*,都有f(x)=[b·a x]≤[b·a],所以函数f(x)=[b·a x]都不是N函数.3°若a>1,令b·a m+1-b·a m>2,则m>log a2 b·(a-1),所以一定存在正整数k使得b·a k+1-b·a k>2,所以∃n1,n2∈N*,使得b·a k<n1<n2<b·a k+1,所以f(k)<n1<n2≤f(k+1).又因为当x<k时,b·a x<b·a k,所以f(x)≤f(k);当x>k+1时,b·a x>b·a k+1,所以f(x)≥f(k+1),所以∀x∈N*,都有n1∉{f(x)|x∈N*},所以函数f(x)=[b·a x]都不是N函数.综上所述,对于任意实数a,b,函数f(x)=[b·a x]都不是N函数.21.(本小题满分12分)(文)(2014·北京市海淀区期末)已知函数f(x)=(x+a)e x,其中a为常数.(1)若函数f(x)在区间[-3,+∞)上的增函数,求实数a的取值范围;(2)若f (x )≥e 2在x ∈[0,2]时恒成立,求实数a 的取值范围. [解析] (1)f ′(x )=(x +a +1)e x ,x ∈R , 因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数, 所以只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1, f (x ),f ′(x )的变化情况如下:①当-a -1≤0,即a ≥-1时,f (x )在[0,2]上的最小值为f (0), 若满足题意只需f (0)≥e 2,解得a ≥e 2, 所以,此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2), 若满足题意只需f (2)≥e 2,解得a ≥-1, 所以此时,a 不存在.综上讨论,所求实数a 的取值范围为[e 2,+∞).(理)(2014·武汉市调研)甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X 表示前4局中乙当裁判的次数,求X 的分布列和数学期望. [解析] 解法1:(1)用A 1表示事件“第2局结果为甲胜”, A 2表示事件“第3局甲参加比赛时,甲负”, A 表示事件“第4局甲当裁判”. 则A =A 1·A 2,P (A 1)=12,P (A 2)=12,∴P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”, B 1表示事件“第1局丙和乙比赛时,结果为乙胜丙”, B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”, B 3表示事件“第3局乙参加比赛时,结果为乙负”. 则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B -1·B 3)=P (B -1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58.∴X 的分布列为∴E (X )=0×18+1×58+2×14=98.解法2:四局比赛所有可能情况如下树状图: 第一局 第二局 第三局 第四局由树状图知,(1)第4局甲当裁判的概率为P =14.(2)P (X =0)=18,P (X =1)=58,P (X =2)=14,∴E (X )=0×18+1×58+2×14=98.22.(本小题满分14分)(文)(2014·佛山质检)如图所示,已知椭圆C 的两个焦点分别为F 1(-1,0)、F 2(1,0),且F 2到直线x -3y -9=0的距离等于椭圆的短轴长.(1)求椭圆C 的方程;(2)若圆P 的圆心为P (0,t )(t >0),且经过F 1、F 2,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当|QM |的最大值为322时,求t 的值.[解析] (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意,2b =|1-9|2=4,所以b =2,又c =1,所以a 2=b 2+c 2=5, 所以椭圆C 的方程为x 25+y 24=1.(2)设Q (x ,y )(其中x 25+y 24=1),圆P 的方程为x 2+(y -t )2=t 2=1,因为PM ⊥QM ,所以|QM |=|PQ |2-t 2-1=x 2+(y -t )2-t 2-1 =-14(y +4t )2+4+4t 2, 若-4t ≤-2即t ≥12,则当y =-2时,|QM |取得最大值,且|QM |max =4t +3=322,解得t =38<12(舍去).若-4t >-2即0<t <12,则当y =-4t 时,|QM |取最大值,且|QM |max =4+4t 2=322,解得t 2=18,又0<t <12,所以t =24.综上,当t =24时,|QM |的最大值为322. (理)(2014·山东省烟台市期末)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,且|F 1F 2|=22,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.(1)求椭圆方程;(2)设椭圆与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.[解析] (1)由已知,可得c =2,a =3b , ∵a 2=b 2+c 2,∴a =3,b =1, ∴x 23+y 2=1.(2)当k =0时,直线和椭圆有两交点只需-1<m <1;当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标, 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,消去y 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1,① x P =x M +x N 2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN ,则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故所求的m 取值范围是(12,2).综上知,k ≠0时,m 的取值范围是(12,2);k =0时,m 的取值范围是(-1,1).。
2015年宁夏银川九中高考数学一模试卷(理科)一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数为纯虚数,则它的共轭复数是()A.2i B.﹣2i C.i D.﹣i2.(5分)下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数;(3)是偶函数.这样的函数是()A.y=x3+1B.y=log2(|x|+2)C.y=()|x|D.y=2|x|3.(5分)在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.1894.(5分)角α的终边经过点A(﹣,a),且点A在抛物线y=﹣x2的准线上,则sinα=()A.﹣B.C.﹣D.5.(5分)某程序框图如图所示,该程序运行后,输出的x值为31,则a等于()A.﹣1B.0C.1D.26.(5分)一个几何体的三视图及其尺寸如图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位cm3)()A.B.C.D.π7.(5分)已知实数m是2,8的等比中项,则圆锥曲线x2+=1的离心率为()A.B.C.与D.以上都不对8.(5分)曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为()A.1B.﹣C.D.9.(5分)为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.4B.3C.2D.110.(5分)设函数f(x)=cos(2x+φ)+sin(2x+φ)(|φ|<),且图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数11.(5分)已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点且⊥,则•的最小值为()A.1B.2C.3D.412.(5分)已知,若|f(x)|≥ax在x∈[﹣1,1]上恒成立,则实数a的取值范围()A.(﹣∞﹣1]∪[0,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,0)二、填空题:本大题共4小题,每题5分,共20分.各题答案必须填写在答题卡上(只填结果,不要过程)13.(5分)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为.14.(5分)已知圆C:x2+y2﹣6x﹣4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为.15.(5分)如图,为了测得河的宽度CD,在一岸边选定两点A、B,使A、B、D在同一直线上.现测得∠CAB=30°,∠CBA=75°,AB=120m,则河的宽度是.16.(5分)球内接正六棱锥的侧棱长与底面边长分别为和2,则该球的体积为.三、解答题:本大题共解答5题,共60分.各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程).17.(12分)已知函数f(x)=x2﹣2(n+1)x+n2+5n﹣7.(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n 项和S n.18.(12分)为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.19.(12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.20.(12分)在直角坐标系xOy中,长为的线段的两端点C、D分别在x 轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交于A、B两点,,当点M 在曲线E上时,求四边形OAMB的面积.21.(12分)已知.(I)求函数f(x)的最小值;(II)当x>2a,证明:.四、选做题:(本小题满分10分.请考生22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.(10分)选修4﹣1:几何证明选讲如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F.(I)求∠ABC的度数:(II)求证:BD=4EF.[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,已知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=OP,点Q的轨迹为C2.(I)求曲线C2的极坐标方程,并化为直角坐标方程;(II)已知直线l的参数方程为(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.[选修4-5:不等式选讲]24.选修4﹣5:不等式选讲设f(x)=|x|+2|x﹣a|(a>0).(I)当a=l时,解不等式f(x)≤4;(Ⅱ)若f(x)≥4恒成立,求实数a的取值范围.2015年宁夏银川九中高考数学一模试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数为纯虚数,则它的共轭复数是()A.2i B.﹣2i C.i D.﹣i【解答】解:复数==为纯虚数,∴=0,≠0,解得a=1.∴=i则它的共轭复数是﹣i.故选:D.2.(5分)下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数;(3)是偶函数.这样的函数是()A.y=x3+1B.y=log2(|x|+2)C.y=()|x|D.y=2|x|【解答】解:当x=0时,对于A:y=x3+1=1;对于B:y=log2(|x|+2)=1;对于C:y=()|x|;对于D:y=2|x|=1.故四个函数都满足性质(1),而满足性质(2)在区间(0,+∞)上是减函数的只有C.且C:y=()|x|是偶函数.故选:C.3.(5分)在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=()A.33B.72C.84D.189【解答】解:在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21故3+3q+3q2=21,∴q=2,∴a3+a4+a5=(a1+a2+a3)q2=21×22=84故选:C.4.(5分)角α的终边经过点A(﹣,a),且点A在抛物线y=﹣x2的准线上,则sinα=()A.﹣B.C.﹣D.【解答】解:抛物线y=﹣x2的准线方程为y=1∵点A(﹣,a)在抛物线y=﹣x2的准线上∴a=1∴点A(﹣,1)∴sinα=故选:B.5.(5分)某程序框图如图所示,该程序运行后,输出的x值为31,则a等于()A.﹣1B.0C.1D.2【解答】解:程序在运行过程中各变量的值如下表示:n x是否继续循环第一圈 2 2a+1 是第二圈 3 4a+2+1 是第三圈 4 8a+4+2+1 是第四圈 5 16a+8+4+2+1=31 否则输出的结果为16a+8+4+2+1=31,所以a=1故选:C.6.(5分)一个几何体的三视图及其尺寸如图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位cm3)()A.B.C.D.π【解答】解:几何体是放倒的半个圆锥,底面半径是1,高是3,则这个几何体的体积是V=(×π×12×3)=(cm3).故选:A.7.(5分)已知实数m是2,8的等比中项,则圆锥曲线x2+=1的离心率为()A.B.C.与D.以上都不对【解答】解:实数m是2,8的等比中项,可得m=4或﹣4,当m=4时,圆锥曲线x2+=1化为:x2+=1,是焦点在y轴上的椭圆,离心率为:=.当m=﹣4时,圆锥曲线x2+=1化为:x2﹣=1,是焦点在x轴上的双曲线,离心率为:=.故选:C.8.(5分)曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为()A.1B.﹣C.D.【解答】解:求导函数,可得,当x=0时,y′=2,∴曲线y=在点(0,一1)处的切线方程为y=2x﹣1,∴当y=0时,x=∴切线与两坐标轴的交点坐标为(,0),(0,﹣1)∴所求面积为故选:C.9.(5分)为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.4B.3C.2D.1【解答】解:本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内,而有200个点落在阴影部分,可知阴影部分的面积==3.故选:B.10.(5分)设函数f(x)=cos(2x+φ)+sin(2x+φ)(|φ|<),且图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数【解答】解:f(x)=cos(2x+φ)+sin(2x+φ)=2[cos(2x+φ)+sin(2x+φ)]=2cos(2x+φ﹣),∵ω=2,∴T==π,又函数图象关于直线x=0对称,∴φ﹣=kπ(k∈Z),即φ=kπ+(k∈Z),又|φ|<,∴φ=,∴f(x)=2cos2x,令2kπ≤2x≤2kπ+π(k∈Z),解得:kπ≤x≤kπ+(k∈Z),∴函数的递减区间为[kπ,kπ+](k∈Z),又(0,)⊂[kπ,kπ+](k∈Z),∴函数在(0,)上为减函数,则y=f(x)的最小正周期为π,且在(0,)上为减函数.故选:B.11.(5分)已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点且⊥,则•的最小值为()A.1B.2C.3D.4【解答】解:以AB所在的直线为x轴,以AD所在的直线为y轴,建立平面直角坐标系,如图:则由正方形ABCD的边长为2可得A(0,0)、D(0,2)、C(2,2),设点P(a,0)、Q(2,b),则a、b∈[0,2].则=(a,﹣2),=(2,b),=(a﹣2,﹣2),=(a﹣2,﹣b).由⊥,可得•=(a,﹣2)•(2,b)=2a﹣2b=0,∴a=b.∴•=(a﹣2,﹣2)•(a﹣2,﹣b)=(a﹣2)2+2b=a2﹣4a+4+2a=a2﹣2a+4=(a﹣1)2+3.故当a=1时,•的最小值为3,故选:C.12.(5分)已知,若|f(x)|≥ax在x∈[﹣1,1]上恒成立,则实数a的取值范围()A.(﹣∞﹣1]∪[0,+∞)B.[﹣1,0]C.[0,1]D.[﹣1,0)【解答】解:函数的图象如图:|f(x)|的图象如图:因为|f(x)|≥ax在x∈[﹣1,1]上恒成立,所以y=ax的图象应在y=|f(x)|的图象的下方,故须斜率为负,或为0.当斜率为负时,排除答案A,C;当a=0,y=0满足要求,排除D.故选:B.二、填空题:本大题共4小题,每题5分,共20分.各题答案必须填写在答题卡上(只填结果,不要过程)13.(5分)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为.【解答】解:∵y2=4x∴p=2,焦点坐标为(1,0)过M作准线的垂线于M,由PF=PM,依题意可知当P,Q和M三点共线且点P在中间的时候,距离之和最小如图,故P的纵坐标为﹣1,然后代入抛物线方程求得x=,故答案为:(,﹣1).14.(5分)已知圆C:x2+y2﹣6x﹣4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为.【解答】解:圆C:x2+y2﹣6x﹣4y+8=0,令y=0可得x2﹣6x+8=0,得圆C与坐标轴的交点分别为(2,0),(4,0),则a=2,c=4,b2=12,所以双曲线的标准方程为.故答案为:.15.(5分)如图,为了测得河的宽度CD,在一岸边选定两点A、B,使A、B、D在同一直线上.现测得∠CAB=30°,∠CBA=75°,AB=120m,则河的宽度是60m.【解答】解:由题意,可得C=180°﹣A﹣B=180°﹣30°﹣75°=75°∵在△ABC中,由正弦定理得BC==又∵△ABC的面积满足S=AB•BC sin B=AB•h△ABC∴AB边的高h满足:h=BC sin B=•sin75°=60(m)即题中所求的河宽为60m.故答案为:60m.16.(5分)球内接正六棱锥的侧棱长与底面边长分别为和2,则该球的体积为.【解答】解:设球的半径是R,则∵正六棱锥的侧棱长与底面边长分别为和2,∴正六棱锥的高为2,由题意,R2=22+(R﹣2)2,∴R=2,∴球的体积为==,故答案为:.三、解答题:本大题共解答5题,共60分.各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程).17.(12分)已知函数f(x)=x2﹣2(n+1)x+n2+5n﹣7.(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n 项和S n.【解答】(Ⅰ)证明:∵f(x)=x2﹣2(n+1)x+n2+5n﹣7=[x﹣(n+1)]2+3n﹣8,∴a n=3n﹣8,﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴a n+1﹣a n=3(n+1)﹣8﹣(3n﹣8)=3,∴数列{a n}为等差数列.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)解:由题意知,b n=|a n|=|3n﹣8|,﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∴当1≤n≤2时,b n=8﹣3n,;﹣﹣﹣﹣(8分)当n≥3时,b n=3n﹣8,S n=b1+b2+b3+…+b n=5+2+1+…+(3n﹣8)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)18.(12分)为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.【解答】(本小题满分12分)解:(1)由频率分布直方图第四组第五组的频率分别为0.175,0.075.再由频率之比和互斥事件的和事件的概率等于概率之和:P=0.25+0.375+0.175=0.8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)设抽取的顾客人数为n,则由已知可得n=40.尺码落在区间(43.5,45.5]的人数为3人,所以可知X可能取到的值为0,1,2.又尺码落在区间(37.5,39.5]的人数为10人,所以:P(X=0)=,P(X=1)=,P(X=2)=﹣﹣﹣﹣﹣﹣(11分)所以X的数学期望EX=﹣﹣﹣﹣(12分)19.(12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.【解答】解:证明:(I)设AC与BD交于点G,因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,所以CE⊥平面ABCD.如图,以C为原点,建立空间直角坐标系C﹣xyz.则C(0,0,0),A(,,0),D(,0,0),E(0,0,1),F(,,1).所以=(,,1),=(0,﹣,1),=(﹣,0,1).所以•=0﹣1+1=0,•=﹣1+0+1=0.所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE(III)由(II)知,=(,,1),是平面BDE的一个法向量,设平面ABE的法向量=(x,y,z),则•=0,•=0.即所以x=0,且z=y.令y=1,则z=.所以n=(),从而cos(,)=因为二面角A﹣BE﹣D为锐角,所以二面角A﹣BE﹣D为.20.(12分)在直角坐标系xOy中,长为的线段的两端点C、D分别在x 轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交于A、B两点,,当点M 在曲线E上时,求四边形OAMB的面积.【解答】解:(Ⅰ)设C(m,0),D(0,n),P(x,y).由=,得(x﹣m,y)=(﹣x,n﹣y),∴.(2分)由||=+1,得m2+n2=(+1)2,∴(+1)2x2+y2=(+1)2,整理,得曲线E的方程为x2+=1.…(5分)(Ⅱ)设A(x1,y1),B(x2,y2),由=+,知点M坐标为(x1+x2,y1+y2).设直线l的方程为y=kx+1,代入曲线E方程,得(k2+2)x2+2kx﹣1=0,则x1+x2=﹣,x1x2=﹣,…(7分)y1+y2=k(x1+x2)+2=,由点M在曲线E上,知(x1+x2)2+=1,即,解得k2=2.…(9分)这时|AB|===,原点到直线l的距离d==,平行四边形OAMB的面积S=|AB|•d=.…(12分)21.(12分)已知.(I)求函数f(x)的最小值;(II)当x>2a,证明:.【解答】解:(Ⅰ)f′(x)=x﹣=.…(1分)当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.当x=a时,f(x)取得极小值也是最小值f(a)=a2﹣a2lna.…(5分)(Ⅱ)由(Ⅰ),f(x)在(2a,+∞)单调递增,则所证不等式等价于f(x)﹣f(2a)﹣a(x﹣2a)>0.…(7分)设g(x)=f(x)﹣f(2a)﹣a(x﹣2a),则当x>2a时,g′(x)=f′(x)﹣a=x﹣﹣a=>0,…(9分)所以g(x)在[2a,+∞)上单调递增,当x>2a时,g(x)>g(2a)=0,即f(x)﹣f(2a)﹣a(x﹣2a)>0,故>a.…(12分)四、选做题:(本小题满分10分.请考生22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.(10分)选修4﹣1:几何证明选讲如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F.(I)求∠ABC的度数:(II)求证:BD=4EF.【解答】解:(Ⅰ)连接OA、AD.∵AC是圆O的切线,OA=OB,∴OA⊥AC,∠OAB=∠OBA=∠DAC,…(2分)又AD是Rt△OAC斜边上的中线,∴AD=OD=DC=OA,∴△AOD是等边三角形,∴∠AOD=60°,故∠ABC=∠AOD=30°.…(5分)(Ⅱ)由(Ⅰ)可知,在Rt△AEB中,∠EAB=∠ADB=60°,∴EA=AB=×BD=BD,EB=AB=×BD=BD,…(7分)由切割线定理,得EA2=EF×EB,∴BD2=EF×BD,∴BD=4EF.…(10分)[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,已知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=OP,点Q的轨迹为C2.(I)求曲线C2的极坐标方程,并化为直角坐标方程;(II)已知直线l的参数方程为(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.【解答】解:(Ⅰ)设点P、Q的极坐标分别为(ρ0,θ)、(ρ,θ),则ρ=ρ0=•4(cosθ+sinθ)=2(cosθ+sinθ),点Q轨迹C2的极坐标方程为ρ=2(cosθ+sinθ),…(3分)两边同乘以ρ,得ρ2=2(ρcosθ+ρsinθ),C2的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.…(5分)(Ⅱ)将l的代入曲线C2的直角坐标方程,得(t cosφ+1)2+(t sinφ﹣1)2=2,即t2+2(cosφ﹣sinφ)t=0,…(7分)t1=0,t2=sinφ﹣cosφ,由直线l与曲线C2有且只有一个公共点,得sinφ﹣cosφ=0,因为0≤φ<π,所以φ=.…(10分)[选修4-5:不等式选讲]24.选修4﹣5:不等式选讲设f(x)=|x|+2|x﹣a|(a>0).(I)当a=l时,解不等式f(x)≤4;(Ⅱ)若f(x)≥4恒成立,求实数a的取值范围.【解答】解:(Ⅰ)当a=l时,f(x)=|x|+2|x﹣1|=.…(2分)当x<0时,由2﹣3x≤4,得﹣≤x<0;当0≤x≤1时,1≤2﹣x≤2,解得0≤x≤1;当x>1时,由3x﹣2≤4,得1<x≤2.综上,不等式f(x)≤4的解集为[﹣,2].…(5分)(Ⅱ)f(x)=|x|+2|x﹣a|=.…(7分)可见,f(x)在(﹣∞,a]单调递减,在(a,+∞)单调递增.当x=a时,f(x)取最小值a.若f(x)≥4恒成立,则应有a≥4,所以,a取值范围为[4,+∞).…(10分)第21页(共21页)。
2015年银川二中高三练习题(理科)数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}2|20x x x --<,B={}|sin ,y y x x R =?,则( )(A )A B Í (B )B A Í (C )[)1,2A B?- (D )A B ?F2. 若()121ai i bi +=- ,其中,a b R Î ,则||a bi +=( )(A )12i + (B(C(D )543.设{}n a 是首项为1a ,公差为 -1的等差数列,n S 是其前n 项的和,若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D ) - 124. 若实数x ,y 满足10,0,310,x y x y y x ì-+?ïïï+?íïï-+?ïïî则2z x y =-的最大值是( )(A )3- (B )32 (C )34 (D)32-5.阅读下列算法: (1)输入x.(2)判断x>2是否成立,若是,y=x; 否则,y=-2x+6. (3)输出y.当输入的[]0,7x Î时,输出的y 的取值范围是( ) (A )[]2,7 (B )[]2,6 (C )[]6,7 (D ) []0,7 6. 将三封信件投入两个邮箱,每个邮箱都有信件的概率是( ) (A )1 (B )34 (C )23 (D ) 187.下列命题正确的个数是( )213侧视图俯视图正视图①命题“2000,13x R x x $?> ”的否定是“2,13x R x x "??”; ②“函数()22cos sin f x ax ax =- 的最小正周期为p ”是“1a = ”的必要不充分条件; ③“[]221,2x x a x x+澄在上恒成立”Û“()()2max min 2x x ax +?在[]1,2x Î上恒成立”; ④“平面向量a 与b 的夹角是钝角”的充分必要条件是“ab<0”. (A )1 (B )2 (C )3 (D ) 48.把一个三棱锥适当调整位置,可以使它的三视图(正视图, 侧视图,俯视图)都是矩形,形状及尺寸如图所示,则这个 三棱锥的体积是( )(A )1 (B )2 (C )3 (D ) 69.若函数()()2sin 0f x x w w =>在()0,2p 上恰有两个极大值和一个极小值,则w 的取值范围是( )(A )57,44纟çúççúèû (B )34,45纟çúççúèû (C )51,4纟çúççúèû (D )35,44纟çúççúèû10.设F 是抛物线C :212y x = 的焦点,A 、B 、C 为抛物线上不同的三点,若0FA FB FC ++=,则FA FB FC ++=( )(A )3 (B )9 (C )12 (D ) 1811.已知定义在R 上的函数()f x 满足()()1.5f x f x +=- ,当[)0,3x Î 时,()()210.5f x x =--,记集合A=()()(){}|3 5.5n n y f x x y m m R =-#=?是函数的图像与直线的交点个数 ,则集合A 的子集个数为( )(A )8 (B )16 (C )32 (D )6412.已知椭圆1C :()222210x y a b a b+=>> 的左右焦点分别为',F F ,双曲线2C :222221x y a b b -=-与椭圆1C 在第一象限的一个交点为P ,有以下四个结论:①'0PF PF ?,且三角形'PFF 的面积小于2b ;②当a 时,''2PF F PFF p?? ;③分别以'PF FF ,为直径作圆,这两个圆相内切; ④曲线1C 与2C 的离心率互为倒数.其中正确的有( )(A )4个. (B )3个. (C )2个. (D )1个.第Ⅱ卷 (共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡中横线上. 13.已知向量a,b 的夹角为0120,若 |a|=3,|b|=4,|a+b|=l |a|,则实数l 的值为 ________. 14. 已知相关变量x,y 之间的一组数据如下表所示,回归直线y bx a =+所 表示的直线经过的定点为(1.5,5),则mn=_____________.15.已知函数()()ln 213f x x =++,若方程()()'3f x f x a +-= 有解,则实数a 的取值范围是_____________________.16.已知数列{}n a 的首项11a =,前n 项和为n S ,且()*1212n n S S n n N -=+澄且 ,数列{}n b 是等差数列,且114123,b a b a a a ==++,设11n n n c b b +=,数列{}n c 的前n 项和为n T ,则10T =_________________.三、解答题:(解答题应写出文字说明、证明过程或演算步骤,解答过程写在指定位置)x 0 1 2 3 y8mn417.(本小题满分12分) 已知函数f (x )=sin 26x p 骣÷ç-÷ç÷ç桫+2cos 2x -1 (Ⅰ)求函数f (x )的单调递增区间,并说明把)(x f 图像经过怎样的变换得到()sin 2g x x =的图像。
银川市第九中学2015届高三上学期第四次月考理科数学试题1.若复数11iz i-=+,则z 等于( )A .-iB .iC .2iD .1+i2. 如果0,0a b <>,那么,下列不等式中正确的是( )A.11a b<< C.22a b < D.||||a b > 3. 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“β⊥m ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知||=3,||=5,且=12a b ⋅,则向量在向量上的投影为( )A .512B .3C .4D .5 5.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点距离为5,则抛物线方程为( )A. x y 82=B. xy 82-= C. x y 42= D. x y 42-=6.已知曲线1,27)1(,13)0(,)(24=-=-'-='++=x f f bx ax x x f 则曲线在且处切线 的倾斜角为( )A .6π B .-6π C .3π D .4π 7.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98B .97C .96D . 998.在棱长为1的正方体1111D C B A ABCD - 中,M 和N 分别是111BB B A 和中点,那么直线AM 与CN 所成的角的余弦值是( ) A52 B 52- C 53D 10109.若()tan lg 10a α=,1tan lgaβ=,且4παβ+=,则实数a 的值为 ( )A.1B.110C.1或110D.1或1010.若点()1,0A 和点()4,0B 到直线l 的距离依次为1和2,则这样的直线有( ) A.1条 B.2条 C.3条 D.4条11.在ABC ∆中,()︒︒=72cos ,18cos AB ,()︒︒=27cos 2,63cos 2BC ,则ABC ∆面积为( ) A .42 B .22 C .23 D .2 12. 设,x y 满足约束条件360,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩若目标函数(0,z ax by a b =+>>0)的最大值为12,则23a b+的最小值为( ) A .256 B. 83 C. 113D. 4第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22—24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.双曲线2214x y -=的顶点到其渐近线的距离等于.14. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .17 (本题12分)已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在ABC ∆中,内角A,B,C 的对边分别为c b a ,,,已知21)(=A f ,c a b ,,成等差数列,且9=∙,求边a 的值.18.(本题共12分)设数列{}n a 是公比为正数的等比数列,12a =,3212a a -=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:333log log 2n n n b a ⎛⎫=+ ⎪⎝⎭,求数列{}n n a b +的前n 项和n S .19 (本题共12分)如图,在底面是矩形的四棱锥ABCD P -中,PA ⊥平面ABCD ,2==AB PA ,4=BC .E 是PD 的中点,(Ⅰ)求证:平面PDC ⊥平面PAD ; (Ⅱ)求二面角D AC E --的余弦值; (Ⅲ)求直线CD 与平面AEC 所成角的正弦值20.(本题共12分)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率. 21.(本题共12分)已知函数2()()f x x x a =-,2()(1)g x x a x a =-+-+(其中a 为常数); (I )如果函数()y f x =和()y g x =有相同的极值点,求a 的值;(II )设0a >,问是否存在0(1,)3ax ∈-,使得00()()f x g x >,若存在,请求出实数a 的取值范围;若不存在,请说明理由.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4—4:坐标系与参数方程已知在直角坐标系xOy 中,圆C 的参数方程为4cos 4sin x y θθ⎧⎨⎩==(θ为参数),直线l 经过定点P (2,3),倾斜角为3π. (Ⅰ)写出直线l 的参数方程和圆C 的标准方程;(Ⅱ)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.24. (本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=log 2(|x +1|+|x -2|-m ). (1)当m =5时,求函数f (x )的定义域;(2)若关于x 的不等式f (x )≥1的解集是R ,求m 的取值范围.银川九中2015届高三第四次模拟考试试卷理科数学答案6013、 14、(x-2)2+(y-1)2=4 15、201 16、8三、解答题:17、(每小题6分,共12分)18、(每小题6分,共12分)18、(每小题4分,共12分)(Ⅲ)延长AE,过D作DG垂直AE于G,连结CG,解法二:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A (0,0,0) , B (2,0,0), C (2,4,0) , D (0,4,0) ,E (0,2,1) , P (0,0,2) .∴=(2,0,0) , AD =(0,4,0) , AP =(0,0,2) , CD =(-2,0,0) ,AE =(0,2,1) , AC =(2,4,0) .(Ⅰ)0=⋅AD CD , AD CD ⊥∴. 又0=⋅ , AP CD ⊥∴ .A AD AP =⋂ ,PAD CD 平面⊥∴,而PDC CD 平面⊂, ∴平面PDC ⊥平面PAD .20、(每小题6分,共12分)21、(每小题6分,共12分)22、(每小题5分,共10分)23、(每小题5分,共10分)24、(每小题5分,共10分)解:(1)由题意知,|x +1|+|x -2|>5,则有⎩⎨⎧ x ≥2,x +1+x -2>5或⎩⎨⎧ -1≤x <2,x +1-x +2>5 或⎩⎨⎧x <-1,-x -1-x +2>5, 解得x <-2或x >3.∴函数f (x )的定义域为(-∞,-2)∪(3,+∞).(2)由对数函数的性质知,f (x )=log 2(|x +1|+|x -2|-m )≥1=log 22,不等式f (x )≥1等价于不等式|x +1|+|x -2|≥2+m ,∵当x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,而不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,故m 的取值范围是(-∞,1].。
宁夏银川二中2015届高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2<0},B={y|y=sinx,x∈R},则( )A.A⊆B B.B⊆A C.A∪B=[﹣1,2)D.A∩B=Φ2.若(1+2ai)•i=1﹣bi,其中a,b∈R,则|a+bi|=( )A.B.C.D.3.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=( )A.2 B.﹣2 C.D.﹣4.若实数x,y满足,则z=x﹣2y的最大值是( )A.﹣3 B.C.D.5.阅读下列算法:(1)输入x.(2)判断x>2是否成立,若是,y=x;否则,y=﹣2x+6.(3)输出y.当输入的x∈[0,7]时,输出的y的取值范围是( )A.[2,7] B.[2,6] C.[6,7] D.[0,7]6.将三封信件投入两个邮箱,每个邮箱都有信件的概率是( )A.1 B.C.D.7.下列命题正确的个数是( )①命题“∃x0∈R,x02+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“•<0”.A. 1 B.2 C.3 D.48.把一个三棱锥适当调整位置,可以使它的三视图(正视图,侧视图,俯视图)都是矩形,形状及尺寸如图所示,则这个三棱锥的体积是( )A.1 B.2 C.3 D.69.若函数f(x)=2sinωx(ω>0)在(0,2π)上有两个极大值和一个极小值,则ω的取值范围是( )A.(,] B.(,] C.(1,] D.(,]10.设F是抛物线C:y2=12x的焦点,A、B、C为抛物线上不同的三点,若,则|FA|+|FB|+|FC|=( )A.3 B.9 C.12 D.1811.已知定义在R上的函数f(x)满足f(x+1.5)=﹣f(x),当x∈[0,3)时,f(x)=|(x﹣1)2﹣0.5|,记集合A={n|n是函数y=f(x)(﹣3≤x≤5.5)的图象与直线y=m(m∈R)的交点个数},则集合A的子集个数为( )A.8 B.16 C.32 D.6412.已知椭圆C1:的左右焦点分别为F,F′,双曲线C2:=1与椭圆C1在第一象限的一个交点为P,有以下四个结论:①>0,且三角形PFF′的面积小于b2;②当a=b时,∠PF′F﹣∠PFF′=;③分别以PF,FF′为直径作圆,这两个圆相内切;④曲线C1与C2的离心率互为倒数.其中正确的有( )A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡中横线上.13.已知向量,的夹角为120°,若||=3,||=4,|+|=λ||,则实数λ的值为__________.14.已知相关变量x,y之间的一组数据如下表所示,回归直线所表示的直线经过的定点为(1.5,5),则mn=__________.x 0 1 n 3y 8 m 2 415.已知函数f(x)=ln(2x+1)+3,若方程f(x)+f′(x)﹣3=a有解,则实数a的取值范围是__________.16.已知数列{a n}的首项a1=1,前n项和为S n,且S n=2S n﹣1+1(n≥2且n∈N*),数列{b n}是等差数列,且b1=a1,b4=a1+a2+a3,设c n=,数列{c n}的前n项和为T n,则T10=__________.三、解答题:(解答题应写出文字说明、证明过程或演算步骤,解答过程写在指定位置)17.已知函数f(x)=sin(2x﹣)+2cos2x﹣1(Ⅰ)求函数f(x)的单调增区间,并说明可把f(x)图象经过怎样的平移变换得到g(x)=sin2x的图象.(Ⅱ)若在△ABC中,a、b、c分别是角A、B、C的对边,且a=1,b+c=2,f(A)=,求△ABC 的面积.18.如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)求异面直线AD1与BD所成的角的余弦值;(Ⅱ)求直线B1C1与平面ACD1所成角的正弦值.19.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)估计这500件产品质量指标值的样本平均数.(Ⅱ)由频率分布直方图可以认为,这种总产品的质量指标值Z近似服从正态分布N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2.(由样本估计得样本方差为s2=150)(i)利用该正态分布,求P(Z<212.2);(ii)若将这种产品质量指标值位于这三个区间(﹣∞,187.8)(187.8,212.2)(212.2.,+∞)的等级分别为二等品,一等品,优质品,这三类等级的产品在市场上每件产品的利润分别为2元,5元,10元.某商户随机从该企业批发100件这种产品后卖出获利,记X表示这100件产品的利润,利用正态分布原理和(i)的结果,求EX.附:≈12.2.若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.20.如图,点P(0,﹣1)是椭圆C1:的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.( I)求椭圆C1的方程;(Ⅱ)求△ABD面积的最大值及取得最大值时直线l1的方程.21.设函数f(x)=ax﹣2﹣lnx(a∈R).(I)若f(x)在点(e,f(e))处的切线为x﹣ey+b=0,求a,b的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若g(x)=ax﹣e x,求证:在x>0时,f(x)>g(x)[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.已知曲线C:=1,直线l:(t为参数)( I)写出曲线a,b的参数方程,直线2a+3b=6的普通方程;(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值及取得最大值时P点的坐标.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+1|﹣|x﹣4|( I)解不等式f(x)>0;(Ⅱ)若f(x)+|x﹣4|>m对一切实数x均成立,求实数m的取值范围.宁夏银川二中2015届高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣2<0},B={y|y=sinx,x∈R},则( )A.A⊆B B.B⊆A C.A∪B=[﹣1,2)D.A∩B=Φ考点:并集及其运算.专题:集合.分析:求出集合A,B的等价条件,进行判断即可.解答:解:A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={y|y=sinx,x∈R}={y|﹣1≤y≤1},则A∪B=[﹣1,2),故选:C.点评:本题主要考查集合的基本运算和集合关系的判断,求出集合的等价条件是解决本题的关键.2.若(1+2ai)•i=1﹣bi,其中a,b∈R,则|a+bi|=( )A.B.C.D.考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、复数相等、模的计算公式即可得出.解答:解:∵(1+2ai)•i=1﹣bi,其中a,b∈R,∴i﹣2a=1﹣bi,∴﹣2a=1,﹣b=1,解得a=﹣,b=﹣1,则|a+bi|=|﹣﹣i|==.故选:C.点评:本题考查了复数的运算法则、复数相等、模的计算公式,属于基础题.3.设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=( )A.2 B.﹣2 C.D.﹣考点:等比数列的性质;等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1.解答:解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.点评:本题考查等差数列的前n项和公式,考查了等比数列的性质,是基础的计算题.4.若实数x,y满足,则z=x﹣2y的最大值是( )A.﹣3 B.C.D.考点:简单线性规划.专题:计算题;作图题;不等式的解法及应用.分析:由题意作出其平面区域,将z=x﹣2y化为y=x﹣,﹣相当于直线y=x﹣的纵截距,由几何意义可得.解答:解:由题意作出其平面区域,将z=x﹣2y化为y=x﹣,﹣相当于直线y=x﹣的纵截距,由解得,E(,﹣);此时z=x﹣2y有最大值+2×=;故选:C.点评:本题考查了简单线性规划,作图要细致认真,同时注意几何意义的应用,属于中档题.5.阅读下列算法:(1)输入x.(2)判断x>2是否成立,若是,y=x;否则,y=﹣2x+6.(3)输出y.当输入的x∈[0,7]时,输出的y的取值范围是( )A.[2,7] B.[2,6] C.[6,7] D.[0,7]考点:排序问题与算法的多样性.专题:计算题;算法和程序框图.分析:确定分段函数,分别求y的取值范围,即可得出结论.解答:解:由题意,y=,x∈(2,7],y=x∈(2,7];x∈[0,2],y=﹣2x+6∈[2,6],∴输入的x∈[0,7]时,输出的y的取值范围是[2,7],故选:A.点评:本题考查算法,考查函数表达式的确定于运用,比较基础.6.将三封信件投入两个邮箱,每个邮箱都有信件的概率是( )A.1 B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:求出三封信件投入两个邮箱的所有种数,求出每个邮箱都有信件的种数,然后求解概率.解答:解:三封信件投入两个邮箱的所有种数:23=8.每个邮箱都有信件的种数:C32•A22=6.将三封信件投入两个邮箱,每个邮箱都有信件的概率是:.故选:B.点评:本题考查古典概型的概率的求法,基本知识的考查.7.下列命题正确的个数是( )①命题“∃x0∈R,x02+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“•<0”.A.1 B.2 C.3 D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:(1)根据特称命题的否定是全称命题来判断是否正确;(2)化简三角函数,利用三角函数的最小正周期判断;(3)用特例法验证(3)是否正确;(4)根据向量夹角为π时,向量的数量积小于0,来判断(4)是否正确.解答:解:(1)根据特称命题的否定是全称命题,∴(1)正确;(2)f(x)=cos2ax﹣sin2ax=cos2ax,最小正周期是=π⇒a=±1,∴(2)正确;(3)例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2x max=4,∴(3)不正确;(4)∵,当θ=π时,•<0.∴(4)错误.∴正确的命题是(1)(2).故选:B点评:本题借助考查命题的真假判断,考查命题的否定、向量的数量积公式、三角函数的最小正周期及恒成立问题.8.把一个三棱锥适当调整位置,可以使它的三视图(正视图,侧视图,俯视图)都是矩形,形状及尺寸如图所示,则这个三棱锥的体积是( )A.1 B.2 C.3 D.6考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据已知中的三视图,画出三棱锥的直观图,利用割补法,可求出三棱锥的体积.解答:解:根据已知中的三视图,画出三棱锥的直观图,如下:图中长方体的体积为:3×2×1=6,切去的四个角的体积为:4×=4,故几何体的体积V=6﹣4=2,故选:B.点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.9.若函数f(x)=2sinωx(ω>0)在(0,2π)上有两个极大值和一个极小值,则ω的取值范围是( )A.(,] B.(,] C.(1,] D.(,]考点:正弦函数的图象.专题:计算题;三角函数的图像与性质.分析:根据函数f(x)=2sinωx(ω>0)的图象在(0,2π)恰有两个极大值和一个极小值,可得T<2π≤T,结合周期的求法,即可得到结论.解答:解:∵函数f(x)=2sinωx(ω>0)的图象在(0,2π)恰有两个极大值和一个极小值∴T<2π≤T,∴×<2π≤×,∴<ω≤故选:A.点评:本题考查三角函数图象的性质,考查周期的求法,考查学生的计算能力,属于基础题.10.设F是抛物线C:y2=12x的焦点,A、B、C为抛物线上不同的三点,若,则|FA|+|FB|+|FC|=( )A.3 B.9 C.12 D.18考点:向量的线性运算性质及几何意义.专题:平面向量及应用;圆锥曲线的定义、性质与方程.分析:设A(x1,y1),B(x2,y2),C(x3,y3),由已知条件推导出x1+x2+x3=9,根据,得出点F(3,0)是△ABC重心,运用重心的坐标公式得出:x1+x2+x3=9,再根据抛物线的定义得出|FA|+|FB|+|FC|=x1+3+x2+3+x3+3,整体求解即可.解答:解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线y2=12x焦点坐标F(3,0),准线方程:x=﹣3,∵,∴点F(3,0)是△ABC重心,∴x1+x2+x3=9,y1+y2+y3=0,而||=x1﹣(﹣3)=x1+3,||=x2﹣(﹣3)=x2+3,||=x3﹣(﹣3)=x3+3,∴|FA|+|FB|+|FC|=x1+3+x2+3+x3+3=(x1+x2+x3)+9=9+9=18.故选:D.点评:本题考查抛物线的简单性质的应用,是中档题,解题时要认真审题,注意三角形重心性质的灵活运用11.已知定义在R上的函数f(x)满足f(x+1.5)=﹣f(x),当x∈[0,3)时,f(x)=|(x﹣1)2﹣0.5|,记集合A={n|n是函数y=f(x)(﹣3≤x≤5.5)的图象与直线y=m(m∈R)的交点个数},则集合A的子集个数为( )A.8 B.16 C.32 D.64考点:抽象函数及其应用;子集与真子集.专题:计算题;函数的性质及应用.分析:由题意,函数f(x)的周期为3,在同一坐标系中画出函数y=f(x)与y=m的图象,确定集合A有6个元素,即可得出结论.解答:解:由题意,函数f(x)的周期为3,在同一坐标系中画出函数y=f(x)与y=m 的图象如图,因为集合A={n|n是函数y=f(x)(﹣3≤x≤5.5)的图象与直线y=m(m∈R)的交点个数},如图可知,交点的个数有6种情况,所以集合A有6个元素,所以集合A的子集个数为64.故选:D.点评:本题考查函数的性质,考查集合的子集个数,考查学生分析解决问题的能力,属于中档题.12.已知椭圆C1:的左右焦点分别为F,F′,双曲线C2:=1与椭圆C1在第一象限的一个交点为P,有以下四个结论:①>0,且三角形PFF′的面积小于b2;②当a=b时,∠PF′F﹣∠PFF′=;③分别以PF,FF′为直径作圆,这两个圆相内切;④曲线C1与C2的离心率互为倒数.其中正确的有( )A.4个B.3个C.2个D.1个考点:命题的真假判断与应用;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程;简易逻辑.分析:根据题意,写出F′、F、B1各点坐标,通过联立椭圆与双曲线的方程及点P在第一象限,可得P(,),①通过计算、S△PFF′,可得①正确;②当a=b时,通过计算可得cos(∠PF′F﹣∠PFF′)=cos∠PF′Fcos∠PFF′+sin∠PF′Fsin∠PFF′=0,故②正确;③举出反例,当a=b时不成立,故③不正确;④直接计算出曲线C1与C2的离心率即可④正确.解答:解:根据题意,得F′(,0),F(﹣,0),B1(0,b),联立椭圆与双曲线的方程,消去y,得,又∵点P在第一象限,∴P(,),①=(﹣﹣,﹣)•(﹣,﹣)=2﹣(a2﹣b2)+=>0,三角形PFF′的面积为=×<b2,故①正确;②当a=b时,有a2=2b2,则F′(b,0),F(﹣b,0),,∴=(,),=(,),=(﹣2b,0),∴=,=,=2b,∴cos∠PF′F==,cos∠PFF′==,∴sin∠PF′F=,sin∠PFF′=或(舍),∵c os(∠PF′F﹣∠PFF′)=cos∠PF′Fcos∠PFF′+sin∠PF′Fsin∠PFF′=×+×=0,∴∠PF′F﹣∠PFF′=,故②正确;③当a=b时,线段PF的中点为M(,),则OM=,MF=,OF=2b,∵MF﹣OF=﹣2b<=OM,故③不正确;④曲线C1与C2的离心率分别为:e1=,e2==,故④正确;综上所述,命题①②④正确,故选:B.点评:本题考查圆锥曲线的简单性质,向量数量积运算,三角形面积计算公式,三角函数差角公式,中点坐标公式,圆与圆的位置关系,考查分析问题、解决问题的能力,考查计算能力,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡中横线上.13.已知向量,的夹角为120°,若||=3,||=4,|+|=λ||,则实数λ的值为.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:把|+|=λ||平方代人已知数据可得λ的方程,解方程可得答案.解答:解:∵|+|=λ||,∴λ>0,平方可得++2•=λ2,∵向量,的夹角为120°,且||=3,||=4,∴9+16+2×3×4×()=9λ2,解得λ=故答案为:点评:本题考查数量积与向量的夹角,属基础题.14.已知相关变量x,y之间的一组数据如下表所示,回归直线所表示的直线经过的定点为(1.5,5),则mn=12.x 0 1 n 3y 8 m 2 4考点:线性回归方程.专题:概率与统计.分析:利用回归直线方程经过中心点坐标,然后求出mn即可.解答:解:∵回归直线方程经过中心点坐标,∴==1.5;==5,解得m=6,n=2.mn=12.故答案为:12;点评:本题考查了线性回归方程的应用,在线性回归分析中样本中心点(,)在回归直线上的解题的关键.15.已知函数f(x)=ln(2x+1)+3,若方程f(x)+f′(x)﹣3=a有解,则实数a的取值范围是[1+ln2,+∞).考点:利用导数研究函数的极值;导数的运算.专题:导数的综合应用.分析:求函数的导数,利用导数研究函数的极值和最值即可得到结论.解答:解;函数的导数f′(x)=,函数的定义域为{x|x>},则由f(x)+f′(x)﹣3=a得ln(2x+1)+﹣3=a,设g(x)=ln(2x+1)++3﹣3=ln(2x+1)+,则函数的f(x)的导数g′(x)==,当x>得函数的导数g′(x)>0,当﹣<x<,则函数的导数g′(x)<0,则函数g(x)的极小值同时也是最小值为g()=1+ln2,故若方程f(x)+f′(x)﹣3=a有解,则a≥1+ln2,故答案为:[1+ln2,+∞);点评:本题主要考查函数与方程的应用,求函数的导数,利用导数研究函数的极值和最值是解决本题的关键.16.已知数列{a n}的首项a1=1,前n项和为S n,且S n=2S n﹣1+1(n≥2且n∈N*),数列{b n}是等差数列,且b1=a1,b4=a1+a2+a3,设c n=,数列{c n}的前n项和为T n,则T10=.考点:数列的求和.专题:等差数列与等比数列.分析:由S n=2S n﹣1+1(n≥2且n∈N*),变形为S n+1=2(S n﹣1+1),利用等比数列的通项公式可得S n.再利用等差数列的通项公式可得b n,利用“裂项求和”可得T n.解答:解:∵S n=2S n﹣1+1(n≥2且n∈N*),∴S n+1=2(S n﹣1+1),∴数列{S n+1}是等比数列,首项为2,公比为2,∴S n+1=2n,∴﹣1.设等差数列{b n}的公差为d,∵b1=a1=1,b4=a1+a2+a3=S3﹣1=7,∴1+3d=7,解得d=2.∴b n=1+2(n﹣1)=2n﹣1.设c n===,∴数列{c n}的前n项和为T n=+…+==.∴T10=.故答案为:.点评:本题考查了等差数列与等比数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.三、解答题:(解答题应写出文字说明、证明过程或演算步骤,解答过程写在指定位置)17.已知函数f(x)=sin(2x﹣)+2cos2x﹣1(Ⅰ)求函数f(x)的单调增区间,并说明可把f(x)图象经过怎样的平移变换得到g(x)=sin2x的图象.(Ⅱ)若在△ABC中,a、b、c分别是角A、B、C的对边,且a=1,b+c=2,f(A)=,求△ABC 的面积.考点:正弦函数的奇偶性;正弦函数的单调性.专题:三角函数的求值;三角函数的图像与性质;解三角形.分析:(Ⅰ)首先对函数的关系式进行恒等变换,把函数的关系式变形成正弦型成正弦型函数,进一步求出函数的单调区间,利用函数的图象平移变换求出函数的结果.(Ⅱ)利用函数的解析式,根据函数的定义域求出A的值,进一步利用余弦定理求出bc,再利用三角形的面积公式求出结果.解答:解(Ⅰ)∵f(x)=sin(2x﹣)+2cos2x﹣1=sin2x﹣cos2x+cos2x=sin 2x+cos 2x=sin(),令:(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z),把函数f(x)=sin()的图象上的所有点的坐标向右平移个单位,就可得到g(x)=sin2x的图象.(Ⅱ)∵f(A)=,∴sin()=.又0<A<π,∴<2A+<.∴2A+=,故A=.在△ABC中,∵a=1,b+c=2,A=,∴1=b2+c2﹣2bccos A,即1=4﹣3bc.∴bc=1.∴S△ABC=bcsin A=.点评:本题考查的知识要点:三角函数关系式的恒等变换,利用整体思想求三角函数的单调区间,正弦型函数的图象变换问题.利用函数的关系式求函数的值,余弦定理和三角形面积的应用,主要考查学生的应用能力.18.如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)求异面直线AD1与BD所成的角的余弦值;(Ⅱ)求直线B1C1与平面ACD1所成角的正弦值.考点:直线与平面所成的角;异面直线及其所成的角.专题:计算题;空间角.分析:(Ⅰ)建立空间直角坐标系,先求出AB,可得=,而,利用向量的夹角公式,即可求异面直线AD1与BD所成的角的余弦值;(Ⅱ)求出平面ACD1的一个法向量,利用向量的夹角公式,求直线B1C1与平面ACD1所成角的正弦值.解答:解:(Ⅰ)由题意,AB,AD,AA1两两垂直.如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为:A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).从而=(﹣t,3,﹣3),=(t,1,0),=(﹣t,3,0).因为AC⊥BD,所以•=﹣t2+3+0=0.解得t=或t=﹣(舍去).所以=,而,所以=(Ⅱ)由(Ⅰ)知,=(0,3,3),=(,1,0),=(0,1,0).设=(x,y,z)是平面ACD1的一个法向量,则令x=1,则=(1,﹣,).设直线B1C1与平面ACD1所成角为θ,则sinθ=|cos<,>|==.即直线B1C1与平面ACD1所成角的正弦值为.点评:本题给出直四棱柱,求异面直线、直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、空间向量等知识,属于中档题.19.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)估计这500件产品质量指标值的样本平均数.(Ⅱ)由频率分布直方图可以认为,这种总产品的质量指标值Z近似服从正态分布N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2.(由样本估计得样本方差为s2=150)(i)利用该正态分布,求P(Z<212.2);(ii)若将这种产品质量指标值位于这三个区间(﹣∞,187.8)(187.8,212.2)(212.2.,+∞)的等级分别为二等品,一等品,优质品,这三类等级的产品在市场上每件产品的利润分别为2元,5元,10元.某商户随机从该企业批发100件这种产品后卖出获利,记X表示这100件产品的利润,利用正态分布原理和(i)的结果,求EX.附:≈12.2.若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:应用题;概率与统计.分析:(1)运用离散型随机变量的期望和方差公式,即可求出;(2)(i)由(1)知Z~N,从而求出P(187.8<Z<212.2),P=0.3413,即可得出结论;(ii)设这种产品每件利润为随机变量Y,求出E(Y),即可求得EX.解答:解:(1)取个区间中点值为区间代表计算得:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(i)由(1)知Z~N,从而P(187.8<Z<212.2)=P=0.6826,所以P=0.3413,所以P(Z<212.2)=0.8413(ii)设这种产品每件利润为随机变量Y,其分布列为Y 2 5 10P 0.1587 0.6826 0.1587E(Y)=2×0.1587+5×0.6826+10×0.1587=5.3174,E(x)=E(100Y)=100×5.3174=531.74.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.20.如图,点P(0,﹣1)是椭圆C1:的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.( I)求椭圆C1的方程;(Ⅱ)求△ABD面积的最大值及取得最大值时直线l1的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(1)求出椭圆的几何量,然后求解椭圆C1的方程.(2)设A(x1,y2),B(x2,y2),P(x0,y0).设直线l1的方程为y=kx﹣1.求出点O到直线l1的距离,然后利用直线与椭圆联立方程组,通过韦达定理求出PD,表示出△ABD的面积为S,利用基本不等式求出最值,然后求解直线方程..解答:解:(1)由题意点P(0,﹣1)是椭圆C1:的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,得∴椭圆C1的方程为.(2)设A(x1,y2),B(x2,y2),P(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为y=kx﹣1.故点O到直线l1的距离为,又圆C2:x2+y2=4,∴.又l1⊥l2,∴直线l2的方程为x+ky+k=0.由,消去y,整理得(4+k2)x2+8kx=0,故,代入l2的方程得.∴.设△ABD的面积为S,则,∴.当且仅当,即时上式取等号.∴当时,△ABD的面积取得最大值,此时直线l1的方程为.点评:本题考查椭圆的方程的求法,直线与椭圆的综合应用,考查分析问题解决问题的能力.21.设函数f(x)=ax﹣2﹣lnx(a∈R).(I)若f(x)在点(e,f(e))处的切线为x﹣ey+b=0,求a,b的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)若g(x)=ax﹣e x,求证:在x>0时,f(x)>g(x)考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:函数的性质及应用;导数的综合应用.分析:(I)通过f(x)在点(e,f(e))处的切线为x﹣ey+b=0,可得f′(e)=,解得,再将切点(e,﹣1)代入切线方程x﹣ey+b=0,可得b=﹣2e;(II)由(I)知:f′(x)=(x>0),结合导数分①a≤0、②a>0两种情况讨论即可;(III)通过变形,只需证明g(x)=e x﹣lnx﹣2>0即可,由于g′(x)=,根据指数函数及幂函数的性质可知,根据函数的单调性及零点判定定理即得结论.解答:解:(I)∵f(x)=ax﹣2﹣lnx(a∈R)∴f′(x)==(x>0),∵f(x)在点(e,f(e))处的切线为x﹣ey+b=0,即f(x)在点(e,f(e))的切线的斜率为,∴f′(e)==,∴,∴切点为(e,﹣1),将切点代入切线方程x﹣ey+b=0,得b=﹣2e,所以,b=﹣2e;(II)由(I)知:f′(x)=(x>0),下面对a的正负情况进行讨论:①当a≤0时,f′(x)<0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上单调递减;②当a>0时,令f′(x)=0,解得x=,当x变化时,f′(x)、f(x)随x的变化情况如下表:0 (a,+∞)f′(x)﹣ 0 +f(x)↓↑由此表可知:f(x)在(0,)上单调递减,f(x)在(,+∞)上单调递增;综上所述,当a≤0时,f(x)的单调递减区间为(0,+∞);当a>0时,f(x)的单调递减区间为(0,),f(x)的单调递增区间为(,+∞);(III)∵f(x)=ax﹣2﹣lnx,g(x)=ax﹣e x,∴要证:当x>0时,f(x)>g(x),即证:e x﹣lnx﹣2>0,令g(x)=e x﹣lnx﹣2 (x>0),则只需证:g(x)>0,由于g′(x)=,根据指数函数及幂函数的性质可知,g′(x)=在(0,+∞)上是增函数,∵g(1)=e﹣1>0,=,∴g(1),∴g(x)在内存在唯一的零点,也即g(x)在(0,+∞)上有唯一零点,设g(x)的零点为t,则g(t)=,即(),由g(x)的单调性知:当x∈(0,t)时,g(x)<g(t)=0,g(x)为减函数;当x∈(t,+∞)时,g(x)>g(t)=0,g(x)为增函数,所以当x>0时,,又,故等号不成立,∴g(x)>0,即当x>0时,f(x)>g(x).点评:本题考查求函数解析式,函数的单调性,零点的存在性定理,注意解题方法的积累,属于难题.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.考点:与圆有关的比例线段.专题:计算题.分析:(I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.解答:解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=F B同理可证:CF=GF∴BF=FG点评:本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.已知曲线C:=1,直线l:(t为参数)( I)写出曲线a,b的参数方程,直线2a+3b=6的普通方程;(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值及取得最大值时P点的坐标.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(1)利用三角函数的平方关系式,推出曲线C的参数方程,消去参数t求解直线L 的普通方程.(2)设曲线上任意一点P的坐标为,则|PA|的距离是P到直线距离的两倍,得到关系式,利用三角函数的有界性求出最值.得到点的坐标.解答:解:(1)曲线C:=1,曲线C的参数方程为:,直线l:(t为参数),消去参数t,可得,直线L的普通方程为x+2y﹣6=0(2)设曲线上任意一点P的坐标为,则|PA|的距离是P到直线距离的两倍所以得,当时,|PA|有最大值,此时θ的一个值为:﹣.此时P的坐标为(﹣2,﹣3..点评:本题考查直线与椭圆的位置关系的综合应用,参数方程与普通方程的互化,考查计算能力.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+1|﹣|x﹣4|( I)解不等式f(x)>0;(Ⅱ)若f(x)+|x﹣4|>m对一切实数x均成立,求实数m的取值范围.考点:函数的最值及其几何意义;绝对值不等式的解法.专题:函数的性质及应用.分析:( I)分类讨论当x≥4时,当时,当时,求解原不等式的解集.(II)利用绝对值三角不等式求出最值,可得m的范围,解答:解:( I)当x≥4时,f(x)=2x+1﹣(x﹣4)=x+5>0,得x>﹣5,所以x≥4成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以1<x<4成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以x<﹣5成立.综上,原不等式的解集为{x|x>1或x<﹣5}.…5分(II)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9.当,所以m<9.…10分.点评:本题考查函数的最值,极大值不等式的解法以及转化思想的应用,考查计算能力.。
宁夏银川九中2015届高考数学一模试卷(理科)一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数为纯虚数,则它的共轭复数是( )A.2i B.﹣2i C.i D.﹣i2.下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数;(3)是偶函数.这样的函数是( )A.y=x3+1 B.y=log2(|x|+2)C.y=()|x|D.y=2|x|3.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=( ) A.33 B.72 C.84 D.1894.角α的终边经过点A(﹣,a),且点A在抛物线y=﹣x2的准线上,则sinα=( )A.﹣B.C.﹣D.5.某程序框图如图所示,该程序运行后,输出的x值为31,则a等于( )A.﹣1 B.0 C.1 D.26.﹣个几何体的三视图及其尺寸如图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位cm3)( )A.B.C.D.π7.已知实数m是2,8的等比中项,则圆锥曲线x2+=1的离心率为( )A.B.C.与D.以上都不对8.曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为( )A.1 B.﹣C.D.9.为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是( )A.4 B.3 C.2 D.110.设函数,且其图象关于直线x=0对称,则( )A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数11.已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点且⊥,则•的最小值为( )A.1 B.2 C.3 D.412.已知,若|f(x)|≥ax在x∈上恒成立,则实数a的取值范围( )A.(﹣∞﹣1]∪C. D.概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.19.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.20.在直角坐标系xOy中,长为的线段的两端点C、D分别在x轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交于A、B两点,,当点M在曲线E上时,求四边形OAMB的面积.21.已知.(I)求函数f(x)的最小值;(II)当x>2a,证明:.四、选做题:(本小题满分10分.请考生22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分)22.选修4﹣1:几何证明选讲如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F.(I)求∠ABC的度数:(II)求证:BD=4EF.23.选修4﹣4:坐标系与参数方程极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=OP,点Q的轨迹为C2.(I)求曲线C2的极坐标方程,并化为直角坐标方程;(II)已知直线l的参数方程为(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.24.选修4﹣5:不等式选讲设f(x)=|x|+2|x﹣a|(a>0).(I)当a=l时,解不等式f(x)≤4;(Ⅱ)若f(x)≥4恒成立,求实数a的取值范围.宁夏银川九中2015届高考数学一模试卷(理科)一、选择题:(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数为纯虚数,则它的共轭复数是( )A.2i B.﹣2i C.i D.﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、纯虚数与共轭复数的定义即可得出.解答:解:复数==为纯虚数,∴=0,≠0,解得a=1.∴=i则它的共轭复数是﹣i.故选:D.点评:本题考查了复数的运算法则、纯虚数与共轭复数的定义,属于基础题.2.下列函数中,同时具有性质:(1)图象过点(0,1);(2)在区间(0,+∞)上是减函数;(3)是偶函数.这样的函数是( )A.y=x3+1 B.y=log2(|x|+2)C.y=()|x|D.y=2|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:计算题.分析:对于四个选项中函数,第一步,将x=0,y=1代入函数表达式,看它是否满足;第二步,考查各个函数在区间(0,+∞)上的单调性;最后一步,考虑f(﹣x)与f(x)是否相等.从而得出正确答案.解答:解:当x=0时,对于A:y=x3+1=1;对于B:y=log2(|x|+2)=1;对于C:y=()|x|;对于D:y=2|x|=1.故四个函数都满足性质(1),而满足性质(2)在区间(0,+∞)上是减函数的只有C.且C:y=()|x|是偶函数.故选C.点评:本题考查函数图象上的特殊点,函数的奇偶性,单调性的判定,是基础题.3.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=( )A.33 B.72 C.84 D.189考点:等比数列的性质.专题:计算题.分析:根据等比数列{a n}中,首项a1=3,前三项和为21,可求得q,根据等比数列的通项公式,分别求得a3,a4和a5代入a3+a4+a5,即可得到答案.解答:解:在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21故3+3q+3q2=21,∴q=2,∴a3+a4+a5=(a1+a2+a3)q2=21×22=84故选C.点评:本题主要考查了等比数列的性质.要理解和记忆好等比数列的通项公式,并能熟练灵活的应用.4.角α的终边经过点A(﹣,a),且点A在抛物线y=﹣x2的准线上,则sinα=( )A.﹣B.C.﹣D.考点:抛物线的简单性质;任意角的三角函数的定义.专题:计算题.分析:先确定抛物线的准线方程,从而确定点A的坐标,利用三角函数的定义即可得到结论.解答:解:抛物线y=﹣x2的准线方程为y=1∵点A(﹣,a)在抛物线y=﹣x2的准线上∴a=1∴点A(﹣,1)∴sinα=故选B.点评:本题考查抛物线的几何性质,考查三角函数的定义,属于基础题.5.某程序框图如图所示,该程序运行后,输出的x值为31,则a等于( )A.﹣1 B.0 C.1 D.2考点:程序框图.专题:计算题;函数的性质及应用.分析:该程序的作用是利用循环计算x值并输出,模拟程序的运行过程,即可得到答案.解答:解:程序在运行过程中各变量的值如下表示:n x 是否继续循环第一圈 2 2a+1 是第二圈 3 4a+2+1 是第三圈 4 8a+4+2+1 是第四圈 5 16a+8+4+2+1=31 否则输出的结果为16a+8+4+2+1=31,所以a=1故选C.点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.﹣个几何体的三视图及其尺寸如图所示,其中正(主)视图是直角三角形,侧(左)视图是半圆,俯视图是等腰三角形,则这个几何体的体积是(单位cm3)( )A.B.C.D.π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由题意推知:几何体是放倒的半个圆锥,根据数据计算其表面积.解答:解:几何体是放倒的半个圆锥,底面半径是1,高是3,则这个几何体的体积是V=(×π×12×3)=(cm3).故选A.点评:本题考查三视图求面积,考查简单几何体的三视图的运用,空间想象能力和基本的运算能力;是中档题.7.已知实数m是2,8的等比中项,则圆锥曲线x2+=1的离心率为( ) A.B.C.与D.以上都不对考点:椭圆的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出m值,然后利用椭圆、双曲线的性质求解离心率即可.解答:解:实数m是2,8的等比中项,可得m=4或﹣4,当m=4时,圆锥曲线x2+=1化为:x2+=1,是焦点在y轴上的椭圆,离心率为:=.当m=﹣4时,圆锥曲线x2+=1化为:x2﹣=1,是焦点在x轴上的双曲线,离心率为:=.故选:C.点评:本题考查圆锥曲线的离心率的求法,等比数列的性质,考查计算能力.8.曲线y=在点(0,﹣1)处的切线与两坐标轴围成的封闭图形的面积为( )A.1 B.﹣C.D.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先求切线方程,再求切线与两坐标轴的交点坐标,即可求得切线与两坐标轴围成的封闭图形的面积解答:解:求导函数,可得,当x=0时,y′=2,∴曲线y=在点(0,一1)处的切线方程为y=2x﹣1,∴当y=0时,x=∴切线与两坐标轴的交点坐标为(,0),(0,﹣1)∴所求面积为故选C.点评:本题考查导数的几何意义,考查切线方程,考查三角形面积的计算,属于基础题.9.为了测算如图所示的阴影部分的面积,作一个边长为3的正方形将其包含在内,并向正方形内随机投掷600个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是( )A.4 B.3 C.2 D.1考点:几何概型.专题:计算题;概率与统计.分析:根据几何概率的计算公式可求,向正方形内随机投掷点,落在阴影部分的概率P(A)=,即可得出结论.解答:解:本题中向正方形内随机投掷600个点,相当于600个点均匀分布在正方形内,而有200个点落在阴影部分,可知阴影部分的面积==3.故选:B.点评:本题考查的是一个关于几何概型的创新题,属于基础题.解决此类问题的关键是读懂题目意思,然后与学过的知识相联系转化为熟悉的问题.10.设函数,且其图象关于直线x=0对称,则( )A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数考点:两角和与差的正弦函数.专题:计算题.分析:将函数解析式提取2,利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,找出ω的值,代入周期公式,求出函数的最小正周期,再由函数图象关于直线x=0对称,将x=0代入函数解析式中的角度中,并令结果等于kπ(k∈Z),再由φ的范围,求出φ的度数,代入确定出函数解析式,利用余弦函数的单调递减区间确定出函数的得到递减区间为(k∈Z),可得出(0,)⊂(k∈Z),即可得到函数在(0,)上为减函数,进而得到正确的选项.解答:解:f(x)=cos(2x+φ)+sin(2x+φ)=2=2cos(2x+φ﹣),∵ω=2,∴T==π,又函数图象关于直线x=0对称,∴φ﹣=kπ(k∈Z),即φ=kπ+(k∈Z),又|φ|<,∴φ=,∴f(x)=2cos2x,令2kπ≤2x≤2kπ+π(k∈Z),解得:kπ≤x≤kπ+(k∈Z),∴函数的递减区间为(k∈Z),又(0,)⊂(k∈Z),∴函数在(0,)上为减函数,则y=f(x)的最小正周期为π,且在(0,)上为减函数.故选B点评:此题考查了三角函数的周期性及其求法,余弦函数的对称性,余弦函数的单调性,以及两角和与差的余弦函数公式,其中将函数解析式化为一个角的余弦函数是本题的突破点.11.已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点且⊥,则•的最小值为( )A.1 B.2 C.3 D.4考点:平面向量数量积的运算.专题:平面向量及应用.分析:建立坐标系,求出有关点的坐标,由•=0求得a=b,计算•=(a﹣1)2+3,利用二次函数的性质求得•的最小值.解答:解:以AB所在的直线为x轴,以AD所在的直线为y轴,建立平面直角坐标系,如图:则由正方形ABCD的边长为2可得A(0,0)、D(0,2)、C(2,2),设点P(a,0)、Q(2,b),则a、b∈.则=(a,﹣2),=(2,b),=(a﹣2,﹣2),=(a﹣2,﹣b).由⊥,可得•=(a,﹣2)•(2,b)=2a﹣2b=0,∴a=b.∴•=(a﹣2,﹣2)•(a﹣2,﹣b)=(a﹣2)2+2b=a2﹣4a+4+2a=a2﹣2a+4=(a﹣1)2+3.故当a=1时,•的最小值为3,故选:C.点评:本题主要考查两个向量的数量积公式,两个向量坐标形式的运算,二次函数的性质,属于基础题.12.已知,若|f(x)|≥ax在x∈上恒成立,则实数a的取值范围( )A.(﹣∞﹣1]∪C. D.上恒成立,所以y=ax的图象应在y=|f(x)|的图象的下方,故须斜率为负,或为0.当斜率为负时,排除答案A,C;当a=0,y=0满足要求,排除D.故选B.点评:本题主要考查函数的图象.其中涉及到二次函数,一次函数,分段函数以及带绝对值的函数的图象,是对函数的大汇总,在画整体带绝对值的函数图象时,注意起翻折原则是X轴上方的保持不变,X轴下方的沿x轴对折.二、填空题:本大题共4小题,每题5分,共20分.各题答案必须填写在答题卡上(只填结果,不要过程)13.已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为.考点:抛物线的简单性质.专题:计算题.分析:先根据抛物线方程求出焦点坐标,再由抛物线的性质知:当P,Q和焦点三点共线且点P在中间的时候距离之和最小,进而先求出纵坐标的值,代入到抛物线中可求得横坐标的值从而得到答案.解答:解:∵y2=4x∴p=2,焦点坐标为(1,0)依题意可知当P,Q和焦点三点共线且点P在中间的时候,距离之和最小如图,故P的纵坐标为﹣1,然后代入抛物线方程求得x=,故答案为:(,﹣1).点评:本题主要考查抛物线的基本性质.属基础题.14.已知圆C:x2+y2﹣6x﹣4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为.考点:圆与圆锥曲线的综合.专题:计算题.分析:先在圆C:x2+y2﹣6x﹣4y+8=0的方程中令y=0得出圆C与坐标轴的交点,从而得出双曲线的a,c,b值,最后写出双曲线的标准方程即可.解答:解:圆C:x2+y2﹣6x﹣4y+8=0,令y=0可得x2﹣6x+8=0,得圆C与坐标轴的交点分别为(2,0),(4,0),则a=2,c=4,b2=12,所以双曲线的标准方程为.故答案为:.点评:本小题主要考查圆与圆锥曲线的综合、双曲线的标准方程等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.15.如图,为了测得河的宽度CD,在一岸边选定两点A、B,使A、B、D在同一直线上.现测得∠CAB=30°,∠CBA=75°,AB=120m,则河的宽度是60m.考点:解三角形的实际应用.专题:应用题;解三角形.分析:三角形内角和定理算出C,在△ABC中由正弦定理解出BC,利用三角形面积公式进行等积变换,即可算出题中所求的河宽解答:解:由题意,可得C=180°﹣A﹣B=180°﹣30°﹣75°=75°∵在△ABC中,由正弦定理得BC==又∵△ABC的面积满足S△ABC=AB•BCsinB=AB•h∴AB边的高h满足:h=BCsinB=•sin75°=60(m)即题中所求的河宽为60m.故答案为:60m.点评:本题给出实际应用问题,求河的宽度.着重考查了三角形内角和定理、正弦定理解三角形和三角形的面积公式等知识,属于中档题.16.球内接正六棱锥的侧棱长与底面边长分别为和2,则该球的体积为.考点:球的体积和表面积;球内接多面体.专题:计算题;空间位置关系与距离.分析:求出正六棱锥的高,再利用勾股定理求出球的半径,即可求出球的体积.解答:解:设球的半径是R,则∵正六棱锥的侧棱长与底面边长分别为和2,∴正六棱锥的高为2,由题意,R2=22+(R﹣2)2,∴R=2,∴球的体积为==,故答案为:.点评:本题考查求球的体积,考查学生的计算能力,求出球的半径是关键.三、解答题:本大题共解答5题,共60分.各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程).17.已知函数f(x)=x2﹣2(n+1)x+n2+5n﹣7.(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n项和S n.考点:数列与函数的综合;等差关系的确定;数列的求和.专题:综合题.分析:(Ⅰ)配方,确定函数y=f(x)的图象的顶点的纵坐标,从而可求数列{a n}的通项,再证明为等差数列;(Ⅱ)确定数列{b n}的通项,进而可分段求出{b n}的前n项和S n.解答:(Ⅰ)证明:∵f(x)=x2﹣2(n+1)x+n2+5n﹣7=2+3n﹣8,∴a n=3n﹣8,﹣﹣﹣﹣﹣﹣﹣﹣﹣∴a n+1﹣a n=3(n+1)﹣8﹣(3n﹣8)=3,∴数列{a n}为等差数列.﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:由题意知,b n=|a n|=|3n﹣8|,﹣﹣﹣﹣﹣﹣﹣﹣﹣∴当1≤n≤2时,b n=8﹣3n,;﹣﹣﹣﹣当n≥3时,b n=3n﹣8,S n=b1+b2+b3+…+b n=5+2+1+…+(3n﹣8)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题考查数列与函数的关系,考查等差数列的证明,考查数列的求和,考查分类讨论的数学思想,正确求数列的通项是关键.18.为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)通过频率分布直方图第四组第五组的频率.再由频率之比和互斥事件的和事件的概率等于概率之和求解即可.(2)设抽取的顾客人数为n,求出n.尺码落在区间(43.5,45.5]的人数为3人,得到X可能取到的值,然后求出概率,得到期望.解答:(本小题满分12分)解:(1)由频率分布直方图第四组第五组的频率分别为0.175,0.075.再由频率之比和互斥事件的和事件的概率等于概率之和:P=0.25+0.375+0.175=0.8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)设抽取的顾客人数为n,则由已知可得n=40.尺码落在区间(43.5,45.5]的人数为3人,所以可知X可能取到的值为0,1,2.又尺码落在区间(37.5,39.5]的人数为10人,所以:P(X=0)=,P(X=1)=,P(X=2)=﹣﹣﹣﹣﹣﹣所以X的数学期望EX=﹣﹣﹣﹣点评:本题考查离散型随机变量的分布列,期望的求法,频率分布直方图的应用,考查计算能力.19.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A﹣BE﹣D的大小.考点:空间中直线与平面之间的位置关系;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)设AC与BD交于点G,则在平面BDE中,可以先证明四边形AGEF为平行四边形⇒EG∥AF,就可证:AF∥平面BDE;(Ⅱ)先以C为原点,建立空间直角坐标系C﹣xyz.把对应各点坐标求出来,可以推出•=0和•=0,就可以得到CF⊥平面BDE(Ⅲ)先利用(Ⅱ)找到=(,,1),是平面BDE的一个法向量,再利用平面ABE 的法向量•=0和•=0,求出平面ABE的法向量,就可以求出二面角A﹣BE﹣D的大小.解答:解:证明:(I)设AC与BD交于点G,因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,所以CE⊥平面ABCD.如图,以C为原点,建立空间直角坐标系C﹣xyz.则C(0,0,0),A(,,0),D(,0,0),E(0,0,1),F(,,1).所以=(,,1),=(0,﹣,1),=(﹣,0,1).所以•=0﹣1+1=0,•=﹣1+0+1=0.所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE(III)由(II)知,=(,,1),是平面BDE的一个法向量,设平面ABE的法向量=(x,y,z),则•=0,•=0.即所以x=0,且z=y.令y=1,则z=.所以n=(),从而cos(,)=因为二面角A﹣BE﹣D为锐角,所以二面角A﹣BE﹣D为.点评:本题综合考查直线和平面垂直的判定和性质和线面平行的推导以及二面角的求法.在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行来推导线面平行.20.在直角坐标系xOy中,长为的线段的两端点C、D分别在x轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交于A、B两点,,当点M在曲线E 上时,求四边形OAMB的面积.考点:直线与圆锥曲线的综合问题;向量在几何中的应用.专题:综合题.分析:(Ⅰ)设C(m,0),D(0,n),P(x,y).由=,得(x﹣m,y)=(﹣x,n﹣y),由||=+1,得m2+n2=(+1)2,由此能求出曲线E的方程.(Ⅱ)设A(x1,y1),B(x2,y2),由=+,知点M坐标为(x1+x2,y1+y2).设直线l的方程为y=kx+1.代入曲线E方程,得(k2+2)x2+2kx﹣1=0,由此能求出平行四边形OAMB 的面积.解答:解:(Ⅰ)设C(m,0),D(0,n),P(x,y).由=,得(x﹣m,y)=(﹣x,n﹣y),∴.由||=+1,得m2+n2=(+1)2,∴(+1)2x2+y2=(+1)2,整理,得曲线E的方程为x2+=1.…(Ⅱ)设A(x1,y1),B(x2,y2),由=+,知点M坐标为(x1+x2,y1+y2).设直线l的方程为y=kx+1,代入曲线E方程,得(k2+2)x2+2kx﹣1=0,则x1+x2=﹣,x1x2=﹣,…y1+y2=k(x1+x2)+2=,由点M在曲线E上,知(x1+x2)2+=1,即,解得k2=2.…这时|AB|===,原点到直线l的距离d==,平行四边形OAMB的面积S=|AB|•d=.…点评:本题考查曲线方程的求法,考查四边形面积的求法,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.21.已知.(I)求函数f(x)的最小值;(II)当x>2a,证明:.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:综合题.分析:(Ⅰ)由f′(x)=x﹣=,知当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.由此能求出函数f(x)的最小值.(Ⅱ)由(Ⅰ),知f(x)在(2a,+∞)单调递增,则所证不等式等价于f(x)﹣f(2a)﹣a(x﹣2a)>0,由此能够证明>a.解答:解:(Ⅰ)f′(x)=x﹣=.…当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.当x=a时,f(x)取得极小值也是最小值f(a)=a2﹣a2lna.…(Ⅱ)由(Ⅰ),f(x)在(2a,+∞)单调递增,则所证不等式等价于f(x)﹣f(2a)﹣a(x﹣2a)>0.…设g(x)=f(x)﹣f(2a)﹣a(x﹣2a),则当x>2a时,g′(x)=f′(x)﹣a=x﹣﹣a=>0,…所以g(x)在22.选修4﹣1:几何证明选讲如图,在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B作BE⊥CA于点E,BE交圆D于点F.(I)求∠ABC的度数:(II)求证:BD=4EF.考点:弦切角;与圆有关的比例线段.专题:计算题.(Ⅰ)连接OA、AD.由AC是圆O的切线,OA=OB,知OA⊥AC,∠OAB=∠OBA=∠DAC,分析:由AD是Rt△OAC斜边上的中线,知AD=OD=DC=OA,由△AOD是等边三角形,能求出∠ABC 的度数.(Ⅱ)由(Ⅰ)可知,在Rt△AEB中,∠EAB=∠ADB=60°,由EA=AB=×BD=BD,知EB=AB=×BD=BD,由切割线定理,得EA2=EF×EB,由此能够证明BD=4EF.解答:解:(Ⅰ)连接OA、AD.∵AC是圆O的切线,OA=OB,∴OA⊥AC,∠OAB=∠OBA=∠DAC,…又AD是Rt△OAC斜边上的中线,∴AD=OD=DC=OA,∴△AOD是等边三角形,∴∠AOD=60°,故∠ABC=∠AOD=30°.…(Ⅱ)由(Ⅰ)可知,在Rt△AEB中,∠EAB=∠ADB=60°,∴EA=AB=×BD=BD,EB=AB=×BD=BD,…由切割线定理,得EA2=EF×EB,∴BD2=EF×BD,∴BD=4EF.…点评:本题考查弦切角、与圆有关的比例线段的应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.23.选修4﹣4:坐标系与参数方程极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=OP,点Q的轨迹为C2.(I)求曲线C2的极坐标方程,并化为直角坐标方程;(II)已知直线l的参数方程为(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.考点:圆的参数方程;直线与圆的位置关系;简单曲线的极坐标方程.专题:计算题.分析:(Ⅰ)设点P、Q的极坐标分别为(ρ0,θ)、(ρ,θ),则极坐标方程,ρ=ρ0=•4(cosθ+sinθ)=2(cosθ+sinθ),利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程.(Ⅱ)将l的代入曲线C2的直角坐标方程,得出(tcosφ+1)2+(tsinφ﹣1)2=2,即t2+2(cosφ﹣sinφ)t=0,φ的值应使得关于t的方程有两相等实根.解答:解:(Ⅰ)设点P、Q的极坐标分别为(ρ0,θ)、(ρ,θ),则ρ=ρ0=•4(cosθ+sinθ)=2(cosθ+sinθ),点Q轨迹C2的极坐标方程为ρ=2(cosθ+sinθ),…两边同乘以ρ,得ρ2=2(ρcosθ+ρsinθ),C2的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.…(Ⅱ)将l的代入曲线C2的直角坐标方程,得(tcosφ+1)2+(tsinφ﹣1)2=2,即t2+2(cosφ﹣sinφ)t=0,…t1=0,t2=sinφ﹣cosφ,由直线l与曲线C2有且只有一个公共点,得sinφ﹣cosφ=0,因为0≤φ<π,所以φ=.…点评:本题考查了极坐标方程、直角坐标方程的转化,参数方程中参数的意义,考查了方程思想.24.选修4﹣5:不等式选讲设f(x)=|x|+2|x﹣a|(a>0).(I)当a=l时,解不等式f(x)≤4;(Ⅱ)若f(x)≥4恒成立,求实数a的取值范围.考点:带绝对值的函数;绝对值不等式的解法.专题:计算题.分析:(Ⅰ)当a=l时,f(x)=|x|+2|x﹣1|=,分三种情况求出不等式的解集,再取并集即得所求.(Ⅱ)化简函数f(x)=|x|+2|x﹣a|的解析式,求出它的最小值,由题意可得f(x)的最小值a 大于或等于4,由此求得a取值范围.解答:解:(Ⅰ)当a=l时,f(x)=|x|+2|x﹣1|=.…当x<0时,由2﹣3x≤4,得﹣≤x<0;当0≤x≤1时,1≤2﹣x≤2,解得0≤x≤1;当x>1时,由3x﹣2≤4,得1<x≤2.综上,不等式f(x)≤4的解集为.…(Ⅱ)f(x)=|x|+2|x﹣a|=.…可见,f(x)在(﹣∞,a]单调递减,在(a,+∞)单调递增.当x=a时,f(x)取最小值a.若f(x)≥4恒成立,则应有a≥4,所以,a取值范围为[4,+∞).…点评:本题主要考查带有绝对值的函数,绝对值不等式的解法,函数的恒成立问题以及求函数的最小值,属于中档题.。